JPS59218143A - Ultrasonic examining apparatus - Google Patents

Ultrasonic examining apparatus

Info

Publication number
JPS59218143A
JPS59218143A JP9181983A JP9181983A JPS59218143A JP S59218143 A JPS59218143 A JP S59218143A JP 9181983 A JP9181983 A JP 9181983A JP 9181983 A JP9181983 A JP 9181983A JP S59218143 A JPS59218143 A JP S59218143A
Authority
JP
Japan
Prior art keywords
ultrasonic
main
reception
ultrasonic transducer
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9181983A
Other languages
Japanese (ja)
Inventor
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9181983A priority Critical patent/JPS59218143A/en
Publication of JPS59218143A publication Critical patent/JPS59218143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超音波1生体内に放射し、生体内からの反射波
を検出してこの検出出力をもとに生検に 体の断層像を表示して診断に供する超音波検査装置に関
するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention emits ultrasonic waves into a living body, detects reflected waves from within the living body, and generates a tomographic image of the body for biopsy based on this detection output. The present invention relates to an ultrasonic testing device that displays images for diagnosis.

〔発明の技術的背景〕[Technical background of the invention]

医用超音波診断装置においては超音波振動子よシ超音波
を生体内に放射し、その超音波の生体内からの反射波を
再び超音波振動子で検出してこれよシ生体内の断層像を
表示して診断に供している。
In medical ultrasound diagnostic equipment, an ultrasonic transducer emits ultrasonic waves into a living body, and the reflected waves of the ultrasound waves from within the living body are detected again by the ultrasonic transducer to create a tomographic image of the inside of the living body. is displayed for diagnosis.

この超音波の断層像における分解能は大別すると距離分
解能と方位分解能の二つに分けられる。
The resolution of this ultrasound tomographic image can be roughly divided into two types: distance resolution and azimuth resolution.

このうち距離分解能とは超音波が伝搬する方向での分解
能であシ、これはパルス状に放射される超音波のパルス
幅によってほぼ決定される。
Among these, the distance resolution is the resolution in the direction in which the ultrasonic waves propagate, and this is approximately determined by the pulse width of the ultrasonic waves emitted in a pulsed manner.

一方、方位分解能とは超音波の伝搬方向と直交する断面
内での分解能で、これは送波される超音波の?−ム太さ
と受信する超音波振動子の受信指向性とによってほは定
まる。送波される超音波ビームの太さは送波する超音波
振動子の指向性によって定まるので、云い換えれば方位
分解能は送信超音波振動子の指向性と受信超音波振動子
の指向性によって決定されると云っても良い。
On the other hand, lateral resolution is the resolution within a cross section perpendicular to the propagation direction of the ultrasound, and this is the resolution of the transmitted ultrasound. - The distance is determined by the thickness of the wave and the receiving directivity of the receiving ultrasonic transducer. The thickness of the transmitted ultrasonic beam is determined by the directivity of the transmitting ultrasonic transducer; in other words, the azimuth resolution is determined by the directivity of the transmitting ultrasonic transducer and the receiving ultrasonic transducer. It is safe to say that it will be done.

ところで、生体の超音波断層像を得るためには生体内で
超音波のビームを走査することが必要である。そして、
超音波のビームを走査する方式としては機械的に超音波
振動子を移動させて超音波ビームを走査させる機械走査
方式と、多数の微小超音波振動子を並設してなる超音波
探触子を用い、これらの微小超音波振動子のうち例えば
所望超音波ビーム放射位置を中心に隣接するいくつかの
振動子を一組として選択し、この−組の微小超音波振動
子について超音波ビームの放射方向、焦点位置などに応
じて定まる各々の超音波振動子に対する適宜な遅延時間
をもって各々の超音波振動子に励振パルスを与え、超音
波を励振させこの励振された各々の超音波振動子からの
超音波の位相差による干渉を利用して前記所望の放射位
置、放射方向、焦点位置となる超音波ビームを得るよう
にした電気的制御によって超音波ビームのリニア、セク
タ走査のできる電子走査方式の二種類がある。
Incidentally, in order to obtain an ultrasound tomographic image of a living body, it is necessary to scan an ultrasound beam within the living body. and,
There are two methods for scanning an ultrasound beam: a mechanical scanning method that moves an ultrasound transducer mechanically to scan the ultrasound beam, and an ultrasound probe that consists of a large number of micro ultrasonic transducers arranged side by side. For example, among these micro-ultrasonic transducers, several adjacent transducers centered around the desired ultrasonic beam emission position are selected as a set, and the ultrasonic beam distribution for this set of micro-ultrasonic transducers is An excitation pulse is given to each ultrasonic transducer with an appropriate delay time determined according to the radiation direction, focal position, etc., and the ultrasonic wave is excited and released from each of the excited ultrasonic transducers. An electronic scanning system capable of linear and sector scanning of an ultrasound beam by electrical control, which uses interference due to a phase difference between the ultrasound waves to obtain an ultrasound beam having the desired radiation position, radiation direction, and focal position. There are two types.

電子走査方式は高分解能を得るだめに配列された微小の
短冊状超音波振動子に所望の遅延時間を与えて超音波を
放射させることにょシ、所望の距離において超音波ビー
ムを収束させ、一方、受信の際も各々の微小超音波振動
子の受信信号に所望の遅延を与えてから加算し、合成す
ることによシ所望の受信指向性を得る方式がとられてい
る。
The electronic scanning method consists of emitting ultrasonic waves by giving a desired delay time to tiny strip-shaped ultrasonic transducers arranged in order to obtain high resolution, and converging the ultrasonic beam at a desired distance. Also during reception, a method is used in which a desired reception directivity is obtained by giving a desired delay to the reception signal of each micro ultrasonic transducer and then adding and synthesizing the signals.

この場合、微、J\超音波振動子の配列方向では超音波
の広がシを電子的に制御できるので分解能の改善がiい
得るが、この方向と直交する方向、すなわち微小短柵状
の超音波振動子はその長手側を隣接させて配設するがそ
の長手側に沿う方向では超音波振動子列がないので、超
音波の広がシを電子的に制御することはできない。
In this case, the resolution can be improved in the direction in which the ultrasonic transducers are arranged, since the spread of the ultrasonic waves can be electronically controlled. Although the ultrasonic transducers are arranged with their longitudinal sides adjacent to each other, since there is no ultrasonic transducer row in the direction along the longitudinal sides, it is not possible to electronically control the spread of the ultrasonic waves.

¥のため、一般にシリコンゴムなどによってかまばと形
に成形され、超音波の伝搬時間を調整するための誉響レ
ンズをとの短冊状超音波振動子列の前面に設け′て超音
波振動子配列方向と直交する方向に対しての超音波ビー
ムの収束を行っている。
For this reason, the ultrasonic transducer is generally made of silicone rubber or the like in the shape of a hook, and is equipped with a honor lens in front of the rectangular array of ultrasonic transducers to adjust the propagation time of the ultrasonic waves. The ultrasonic beam is focused in a direction perpendicular to the arrangement direction.

しかし、電気的な遅延尭術を用いたビーム収束は電気的
に遅延時間を制御す゛ることか可能であるので所望の距
(に収束すなわち焦点を結ばせることが可能であるが、
音響レンズの焦点はそのレンズに固有なもめとなるため
、任意に焦点を移動させることはできない。従って、一
方について焦点が任意に設定できても他方について固定
であれば、双方の焦点位置が一致する範囲以外では分解
能が低下してしまう。
However, since it is possible to electrically control the delay time in beam focusing using electrical delay focusing, it is possible to converge or focus at a desired distance.
The focal point of an acoustic lens is a problem unique to that lens, so the focal point cannot be moved arbitrarily. Therefore, even if the focus can be arbitrarily set for one, if the focus is fixed for the other, the resolution will decrease outside the range where both focal positions match.

この問題を解決する一手段として微小超音波振動子をマ
トリックス状すなわち基盤の目のように配列した二内元
配列の超音波探触子を用いると云う考えがある。この場
合は各々の微小超音波振動子に与える遅延時間を制御す
ることによって任意の距離に焦点を設定できる。しかし
ながら、これを実現するには電子回路があまシに複雑に
なり、また、マトリフックス配列の超音波探触子の製作
は極めて困難であることから、全く実用に供されていな
い。
One idea to solve this problem is to use an ultrasonic probe with a two-element array in which minute ultrasonic transducers are arranged in a matrix, that is, like the eyes of a base. In this case, the focus can be set at any distance by controlling the delay time given to each micro ultrasonic transducer. However, to realize this, the electronic circuit becomes quite complicated, and it is extremely difficult to manufacture an ultrasonic probe with a matrix array, so it has not been put to practical use at all.

従って任意の距離における方位分解能を高めるためには
上述したような音響レンズを用いる方式では実現ができ
ない。
Therefore, increasing the azimuth resolution at a given distance cannot be achieved by the method using an acoustic lens as described above.

診断を目的とする場合、所望の深さの像を高分解能で見
ることは正しい診断を行ううえで必須の要件であること
から、音響レンズによる固定焦点と云う限界を打開でき
る技術が強く要求されている。
For diagnostic purposes, seeing an image at a desired depth with high resolution is an essential requirement for making a correct diagnosis, so there is a strong demand for technology that can overcome the limitations of the fixed focus provided by acoustic lenses. ing.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みて成されたもので、任意の距離
において収束させることができ、従って広い診断視野に
わたって高分解能の断層像を表示することの可能な超音
波検査装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic examination apparatus that can converge at an arbitrary distance and thus display a high-resolution tomographic image over a wide diagnostic field of view. purpose.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は上記目的を達成するため、複数の超
音波振動子を並設してなる超音波探触子を用い、これら
超音波振動子の所望の複数個を励振して超音波ビームを
送信すると共に所望の複数個を用いて超音波反射波を受
信し、この受信信号より前記超音波ビームによる超音波
反射波の映像信号を得てこれより超音波像の表示を行う
ようにした超音波fi装置において、肖訂−記超音波探
触子は受信指向性を異ならせるべく配列方向を異ならせ
た主及び副超音波振動子群を有する構成とし、壕だ、こ
れら各々の主及び副超音波振動子群各々に対応して設け
られ所望の深さで超音波ビームが収束するよう受信に用
いた超音波振動子釜々の受信出力を遅延、加算する手段
と、これら各遅延、加算された受信用9力を乗算する手
段とを用いて構成し、超音波探触子は配列方向を異なら
せた指向性の異なる主及び副超音波振動子群を有するも
のを使用して送信は主超音波振動子群を用いその配列方
向に対して所望の深さで収束させると共に受信は主及び
副超音波振動子群を用いて行い、受信信号の遅延処理に
よって主、副超音波振動子群各々の振動子配列方向につ
いて所望の深さで収束された受信信号を得、これによっ
て、主、副両超音波振動子群よシ各々指向性の異なる超
音波の受信信号を得、これによって主、副両超音波振動
子群の振動子配列方向について任意の深さ位置で超音波
ビームを収束させることができるようにし、また、上記
主、副両超音波振動子群による指向性の異なる両受信信
号を乗算することによって上記指向性の重な多合う領域
の信号以外は大幅に減衰して該限られた領域の信号が抽
出できるととを利用して所望の深さ位置において位置分
解能の高い超音波像を得ることができるようにする。
That is, in order to achieve the above object, the present invention uses an ultrasonic probe having a plurality of ultrasonic transducers arranged in parallel, and excites a desired plurality of these ultrasonic transducers to generate an ultrasonic beam. The ultrasonic device transmits and receives reflected ultrasonic waves using a desired plurality of beams, obtains a video signal of the reflected ultrasonic waves by the ultrasonic beam from the received signal, and displays an ultrasonic image from this. In the sonic FI device, the ultrasonic probe has a main and sub-ultrasonic transducer group arranged in different directions so as to have different reception directivities. means for delaying and adding the reception outputs of the ultrasonic transducer pots used for reception so that the ultrasonic beam is converged at a desired depth, which is provided corresponding to each ultrasonic transducer group, and each of these delays and additions; The ultrasonic probe has main and sub-ultrasonic transducer groups with different directivity arranged in different directions. The main ultrasonic transducer group is used to converge at a desired depth in the arrangement direction, and reception is performed using the main and sub ultrasonic transducer groups, and the main and sub ultrasonic transducers are Obtain a received signal converged at a desired depth in the transducer array direction of each group, thereby obtaining received ultrasonic signals with different directivity for both the main and auxiliary ultrasonic transducer groups, and thereby The ultrasonic beam can be focused at any depth position in the transducer arrangement direction of both the main and sub-ultrasonic transducer groups, and the directivity of the main and sub-ultrasonic transducer groups is different. By multiplying both received signals, signals other than those in the area where the directivity overlaps are significantly attenuated, and the signal in the limited area can be extracted.Using this, the positional resolution is achieved at a desired depth position. It is possible to obtain high-quality ultrasound images.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照しながら説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

はじめに本発明の原理を半部化したモデルによって説明
する。
First, the principle of the present invention will be explained using a half-part model.

第1図(IJ)に示すようにX軸方向に対しaなる幅を
有すると共に、y軸方向に対し無限に長く、且つ2軸方
向での距離zOにおいてX軸方向に対する焦点(収東檜
持つ超音波振動子PB4を考える。この超音波振動子P
B、に対する距離zOでの受信感度特性P (zo)は
近似的に次のように表わすことができる。
As shown in Figure 1 (IJ), it has a width a in the X-axis direction, is infinitely long in the y-axis direction, and has a focal point in the X-axis direction at a distance zO in the two-axis direction. Consider ultrasonic transducer PB4.This ultrasonic transducer P
The reception sensitivity characteristic P (zo) at a distance zO with respect to B can be approximately expressed as follows.

  Up ここでkは超音波の波数である。 Up Here, k is the wave number of the ultrasonic wave.

この様子を示したものが第1−図(b)であハこの図で
は受信感度をIで表わしておりI=’1PX12の関係
をもって示しである。
This situation is shown in FIG. 1(b). In this figure, the reception sensitivity is expressed by I, and the relationship I='1PX12 is shown.

この図に示すようにy軸方向には受信感度が一様である
がX軸方向ではai1xc関数の形で受信感度が変化す
る。
As shown in this figure, the receiving sensitivity is uniform in the y-axis direction, but it changes in the form of an ai1xc function in the x-axis direction.

一方、第1図(C)に示すようにX軸方向に対し無限に
長く、y軸方向に対してはbなる幅を有すると共に2軸
方向の距離ZQにおいてy軸方向に対する焦点(収束)
を持つ超音波振動子を考えるとこの超音波振動子に対す
る距離zOでの受信感度特性Py (Zo )は第1式
と同様にと表わすことができる。
On the other hand, as shown in FIG. 1(C), it is infinitely long in the X-axis direction, has a width b in the y-axis direction, and is focused (convergent) in the y-axis direction at a distance ZQ in the two-axis direction.
Considering an ultrasonic transducer with , the reception sensitivity characteristic Py (Zo ) at a distance zO to this ultrasonic transducer can be expressed as in the first equation.

この様子を示したものが第1図(d)であ)、この場合
はX軸方向に一様でy軸方向に対しでは5ine関数の
形で変化する受信感度が得られる。
This situation is shown in FIG. 1(d). In this case, the reception sensitivity is uniform in the X-axis direction and changes in the form of a 5ine function in the Y-axis direction.

今、第1図(a)の超音波振動子PI3+と第1図(e
)の超音波振動子PB、を第1図(e)に示すように仮
想的に原点(XO17G)で交叉させて配置し、その各
々の出力を乗算すると次式に示す受信感度特性が得られ
る。
Now, the ultrasonic transducer PI3+ in Fig. 1(a) and the ultrasonic transducer PI3+ in Fig. 1(e)
) are arranged so as to virtually intersect at the origin (XO17G) as shown in Fig. 1(e), and by multiplying their respective outputs, the reception sensitivity characteristic shown in the following formula is obtained. .

この第3式で示される受信感度特性を示したものが第1
図(f)である。この図に示されるように各々の超音波
振動子FBI 、 PB、はy軸方向あるいはX軸方向
に対し一様な受信感度を有するものであってもその両者
の出力を乗算することによって!+7平面内で二次元的
に極限された受信感度特性を得ることができる。
The receiving sensitivity characteristic shown by this third equation is the first one.
It is figure (f). As shown in this figure, even though each ultrasonic transducer FBI, PB has uniform receiving sensitivity in the y-axis direction or the x-axis direction, by multiplying the outputs of both of them! It is possible to obtain reception sensitivity characteristics that are two-dimensionally limited within the +7 plane.

本発明は上述の原理を応用したもので、1個または一組
の振動子では事実上沓ることが困難な受信感度特性を受
信指向性の異なる二種以上の撮動子を用い、その出力を
乗算することによって得るもので超音波診断装置の方位
分解能を向上させることができ、任意の距離で焦点を結
ばせることができるものである。
The present invention is an application of the above-mentioned principle, and uses two or more types of imagers with different receiving directivity to obtain the receiving sensitivity characteristics that are virtually difficult to obtain with one or a set of transducers, and the output thereof The azimuth resolution of the ultrasonic diagnostic apparatus can be improved by multiplying the .

次に本発明の実施例について説明する。第2図は本装置
の超音波探触子20の構造を示す斜視図であシ、図に示
す如くこの超音波探触子20は複数の超音波振動子を一
方向に並設してなるリニア或いはセクタ電子走査形超音
波探触子として広く知られているアレイ形の超音波振動
子群21(以下、主超音波振動群と称する)をはさんで
超音波振動子群21の長手側両側に配列方向がこのアレ
イ形の超音波振動子群の配列方向と直交する方向となる
ようにしてそれぞれアレイ形の超音波振動子群22,2
3(以下、副超音波振動子群と称する)を配したもので
ある。
Next, examples of the present invention will be described. FIG. 2 is a perspective view showing the structure of the ultrasonic probe 20 of this device. As shown in the figure, the ultrasonic probe 20 is made up of a plurality of ultrasonic transducers arranged in parallel in one direction. The longitudinal side of the ultrasonic transducer group 21 is sandwiched between the array-type ultrasonic transducer group 21 (hereinafter referred to as the main ultrasonic vibration group), which is widely known as a linear or sector electronic scanning ultrasonic probe. Array-type ultrasonic transducer groups 22, 2 are arranged on both sides so that the arrangement direction is orthogonal to the arrangement direction of the array-type ultrasonic transducer groups.
3 (hereinafter referred to as sub-ultrasonic transducer group).

電子走査方式の超音波探触子ではその超音波振動子群の
配列方向に対して超音波ビームを電子的に任意に収束制
御させることが可能であシ、また、受信指向性を制御す
ることが可能であるので、上述のような構成とすること
によって第1図で説明した原理を利用することが可能と
なる。
In an electronic scanning type ultrasound probe, it is possible to electronically control the ultrasound beam to be arbitrarily converged in the array direction of the ultrasound transducer group, and it is also possible to control the reception directivity. Therefore, the above-described configuration makes it possible to utilize the principle explained in FIG. 1.

第3図は本発明装置の構成を示すブロック図であシ、図
中20は前述の超音波探触子である。
FIG. 3 is a block diagram showing the configuration of the apparatus of the present invention, and 20 in the figure is the aforementioned ultrasonic probe.

また、31はトリガパルスを遅延させる送信遅延回路で
あシ、この送信遅延回路31には′超音波探触子20に
おける複数の超音波振動子のうち励振を最大N個二組と
して行うものとすれば少なくともN個分の遅延線を備え
ている。そして、各々の遅延線は図示しない制御回路の
制御によシピーム方向及び収束(焦点)距離に応じ各々
の遅延線に対応される励振されるべき超音波振動子に必
要な遅延時間を与えるものである。32はと昨ら各々の
遅延線に対応させて設けられ、その対応する遅延線を通
して得られるトリガパルスを受けて超音波励振用の励振
ノ4ルス−を発生するノソルサー、33はスイッチング
回路である。
Further, 31 is a transmission delay circuit that delays the trigger pulse, and this transmission delay circuit 31 is designed to excite two sets of at most N ultrasonic transducers of the plurality of ultrasonic transducers in the ultrasonic probe 20. Then, at least N delay lines are provided. Each delay line is controlled by a control circuit (not shown) to give a necessary delay time to the ultrasonic transducer to be excited corresponding to each delay line according to the beam direction and convergence (focal point) distance. be. Reference numeral 32 indicates a sensor which is provided corresponding to each delay line and generates an excitation pulse for ultrasonic excitation in response to a trigger pulse obtained through the corresponding delay line, and reference numeral 33 is a switching circuit. .

このスイッチング回路33は超音波送信時においてはパ
ルサー32の出力を超音波探触子20における主超音波
振動子群21中の所望のN個に与えるもので、主超音波
振動子群21中の所望の一組分(N個)を選択してこの
一組分の超音波振動子群に対し各々の相対的な位置に対
応する前記パルサー32のN個の系統別に分けられたノ
クルサーの対応する/4′ルサーよ多出力される励振/
4’ルスを与えると共に受信時にはこの送信に供した超
音波振動子の各出方を受信系に送る機能を有する。この
スイッチング回路33は超音波探触子20における超音
波走査位置に応じ、前記図示しない制御装置の制御のも
とに動作する。スイッチング回路33には主超音波振動
子群21の9個(Q>N)ある振動予告々の信号線とノ
4ルサー32のN系統の出方線及び受信系のM系統の信
号線が接続さ・れておシ、スイ、テング回路33は例え
ばリニアスキャンの場合、主超音波振動子群2ノ中の例
えば隣接するN個を単位として順次主超音波振動子群2
1の一芳側端の位置よ、9N個を選択し、これに・ヤル
サー32の該N個に対して各々対応する各ノfルサーの
出力を与えると共にこの選択したN個の主超音波振動子
よシ各々検出された反射波の出力はM個分(MはNと等
しくとも或いは異っていても良い)このスイッチング回
路33を介して各別に受信系に与える構成となりてぃて
、スイッチング回路33は超音波の送受が終る毎に順次
例えば主超音波振動子1つ分ずつ位置をずらしながらN
個を単位として選択してゆくことによシ超音波ビームを
リニアスキャンさせることができる。
This switching circuit 33 provides the output of the pulser 32 to a desired number N of the main ultrasonic transducer group 21 in the ultrasonic probe 20 during ultrasonic transmission. A desired set (N) of ultrasonic transducers is selected, and the corresponding noclusars of the pulsers 32, which are divided into N systems, correspond to the relative positions of each set of ultrasonic transducers. /4'Luther's multi-output excitation/
It has a function of providing a 4' pulse and, at the time of reception, transmitting each output of the ultrasonic transducer used for this transmission to the reception system. This switching circuit 33 operates under the control of the control device (not shown) according to the ultrasonic scanning position of the ultrasonic probe 20. The switching circuit 33 is connected to the nine (Q>N) vibration warning signal lines of the main ultrasonic transducer group 21, the output lines of the N systems of the noise generator 32, and the signal lines of the M system of the receiving system. For example, in the case of linear scanning, the S/T, S, Teng circuit 33 sequentially scans the main ultrasonic transducers 2 in units of, for example, N adjacent ones in the main ultrasonic transducer group 2.
Select 9N of the positions of the one-way side ends of 1, give the output of each Nofrusar corresponding to the N of Yarusa 32, and apply the selected N main ultrasonic vibrations. The output of each detected reflected wave is sent to the receiving system separately via this switching circuit 33 (M may be equal to or different from N), and the switching The circuit 33 sequentially shifts its position, for example, by one main ultrasonic transducer, each time the transmission and reception of ultrasonic waves is completed.
By selecting each piece as a unit, the ultrasonic beam can be linearly scanned.

34はこのスイッチング回路33から与えられるM系統
分の出力を各々各別に増幅する前置増幅器であり、s’
uこの増幅され九M系統分の各別の出力を所望の受信指
向性を形成するべく、各々適宜なる遅延時間が設定され
た遅延線群を有する受信遅延回路及びこの各遅延線群の
出力を加算して合成する加算回路よ構成る受信遅延およ
び加算回路である。ここで上記遅延線群の遅延時間は所
望とする受信指向性に対応させて指示される受信指向性
指令に合わせて前記図示しない制御回路によシ設定され
る。
34 is a preamplifier that separately amplifies the outputs of M systems given from this switching circuit 33, and s'
In order to form a desired reception directivity for each of the amplified outputs of the 9M systems, a reception delay circuit having a delay line group each having an appropriate delay time and the output of each delay line group is used. This is a reception delay and addition circuit composed of an addition circuit that adds and synthesizes. Here, the delay time of the delay line group is set by the control circuit (not shown) in accordance with a reception directivity command issued in correspondence with a desired reception directivity.

32は前記超音波探触子20における副超音波振動子群
22.23の各振動子受信出力を各別に増幅する前置増
幅器であシ、38はこの各別に出力される増幅された受
信出力を所望の受信指向性を形成すべく各々適宜なる遅
延時間がこの遅延線群の出力を加算して合成する加算回
路よ形成る受信遅延および加算回路であシ、機能的には
先に説明した受信遅延および加算回路35と同様のもの
である。38は両受信遅延および加算回路35,37の
加算出力を受けて両者を乗算する乗算器、39はこの乗
算にょシ得られた出力を振幅補正する振幅補正回路、4
0はこの振幅補正された出方をビデオ信号に変換する信
号処理部、41はこのビデオ信号を受けて超音波断層像
として表示する表示部である。
32 is a preamplifier that separately amplifies the received output of each transducer of the sub-ultrasonic transducer group 22 and 23 in the ultrasonic probe 20, and 38 is the amplified received output outputted separately. In order to form the desired reception directivity, the reception delay and addition circuit are formed by an adder circuit that adds and synthesizes the outputs of this delay line group, each having an appropriate delay time, and is functionally explained above. This is similar to the reception delay and addition circuit 35. 38 is a multiplier that receives the added outputs of both reception delay and adder circuits 35 and 37 and multiplies them; 39 is an amplitude correction circuit that corrects the amplitude of the output obtained by this multiplication; 4
0 is a signal processing unit that converts this amplitude-corrected output into a video signal, and 41 is a display unit that receives this video signal and displays it as an ultrasonic tomographic image.

次に上記構成の本装置の作用について説明する。本装置
においては超音波の送信は超音波探触子20の主起音波
振動子群2ノにょル行い、受信はこれと副超音波振動子
群22.23を用いて行う。
Next, the operation of this device having the above configuration will be explained. In this apparatus, ultrasonic waves are transmitted using the primary ultrasonic transducer group 2 of the ultrasonic probe 20, and received using this and the sub ultrasonic transducer groups 22 and 23.

すなわち、超音波の送信はQ個の振動子よシなる主起音
波振動子群21中の所望のN個をスイッチング回路33
にょシ選択し、そして、所望の焦点にフォーカスするよ
うに遅延時間が設られる。そして、所望の距離に焦点を
結ぶように設定された各々の信号対応の受信遅延線で遅
延され、加算されてこの加算後の出力が前記乗算器38
に入力される。そして、この乗算器38により両人力は
乗算される。
In other words, ultrasonic waves are transmitted by transmitting a desired N number of Q number of transducers in the main wave transducer group 21 to the switching circuit 33.
A delay time is set to focus on the desired focal point. Then, the signal is delayed by a reception delay line corresponding to each signal set to focus at a desired distance, and added, and the output after this addition is sent to the multiplier 38.
is input. Then, the multiplier 38 multiplies the power of both people.

乗算器38の二つの入力はそれぞれ超音波振動子の配列
方向が90°異なっており、受信指向性は各々一方向に
ついてのみあるだけであるがその方向が90°異なる。
The two inputs of the multiplier 38 each have a 90° difference in the arrangement direction of the ultrasonic transducers, and each receive directivity is only in one direction, but the directions are 90° different.

従って、この二つの信号を乗算すると送信時の超音波ビ
ームの指向性及び主、副超音波振動子群21〜23のう
ち受信に用いられた振動子の面積と主、副超音波振動子
群21〜23の受信時での焦点距離等に応じた鋭い受信
指向性が得られる。
Therefore, when these two signals are multiplied, the directivity of the ultrasound beam during transmission, the area of the transducer used for reception among the main and sub-ultrasonic transducer groups 21 to 23, and the main and sub-ultrasonic transducer groups A sharp reception directivity corresponding to the focal length etc. at the time of reception of 21 to 23 can be obtained.

この乗算された出力は振副補正回路39によシ振幅調整
した後、信号処理部40によシビデオ信号に変換されて
表示部41に与えられ、超音波断層像として超音波探触
子2″0における超音波ビーム送信位置対応の画面位置
に表示される。
The multiplied output is amplitude-adjusted by the amplitude correction circuit 39, and then converted into a video signal by the signal processing unit 40 and given to the display unit 41 as an ultrasonic tomographic image. It is displayed at the screen position corresponding to the ultrasound beam transmission position at 0.

超音波ビー・ムの走査は所定のタイミングで順次出力さ
れるクロックツ9ルスに対応して主超音波振動子群21
中の隣接するN個を1超音波・苧ルスの送受信終了毎に
振動子1つ分ずつずらしながら選択するようスイッチン
グ回路33を制御することによシ行い、また、超音波の
励振パルスは前記クロック・卆ルスを送信遅延回路31
の各遅延線に与えることによって得られる各々の遅延線
によ不設定遅延時間だけ遅れたトリガパルスによシ得る
The scanning of the ultrasonic beam is performed by the main ultrasonic transducer group 21 in response to clock pulses that are sequentially output at predetermined timings.
This is done by controlling the switching circuit 33 so as to select N adjacent ones among them while shifting them by one transducer every time the transmission/reception of one ultrasound pulse is completed, and the ultrasonic excitation pulse is Delay circuit 31 for transmitting clock and clock pulses
The trigger pulse can be delayed by an unset delay time to each delay line obtained by applying the trigger pulse to each delay line.

このようにして超音波ビームを走査し、主。In this way the ultrasound beam is scanned and the main.

副超音波振動子群21〜23でその反射波を検出して受
信フォーカスの処理を行い、加算後に上述のような乗算
処理を行い、この乗算後の出力を用いて表示部で表示す
ることによシ方位分解能の鋭い超音波断層像を得ること
ができる。
The reflected waves are detected by the sub-ultrasonic transducer groups 21 to 23, and reception focus processing is performed, and after addition, multiplication processing as described above is performed, and the output after this multiplication is used to display on the display unit. Sharp ultrasonic tomographic images with good lateral resolution can be obtained.

上述したように本装量においては送受総合の指向性は送
信に用いられ名N個超音波振動子群による送信指向性と
、受信に用いられる配列方向が90°異なった主及び副
の二つの超音波部−動子群すなわち、主超音波振動子群
21中の受信に用いるN個の振動子と副超音波振動子群
・22゜23の指向性の積によって決定される受信指向
性との積によシ決定される。
As mentioned above, in this installation, the overall directivity of transmitting and receiving consists of the transmitting directivity by a group of N ultrasonic transducers used for transmitting, and the main and sub-directivity used for receiving with the arrangement directions different by 90 degrees. Ultrasonic section - receiving directivity determined by the product of the transducer group, that is, the directivity of the N transducers used for reception in the main ultrasonic transducer group 21 and the directivity of the sub ultrasonic transducer group 22 and 23. It is determined by the product of

本装置においては主超音波振動子群21はもとよシ副超
音波振動子群22.23の焦点も該副超音波振動子群2
2.23の受信遅延回路に設定される遅延時間によって
任意に設定できるので、従来のアレイ形の超音波探触子
において音響レンズe用いて収束させる方式のように固
 ′定焦点とならず、任意に設定できることから、従来
ノ音響レンズによる収束方向を含めて所望の深さで焦点
を結ぶように受信処理することができ、しかも収束方向
の異なる主、副超音波振動子群21〜23による受信信
号の乗算を行うようにしたことによシ所望の急峻な指向
性が得られるようになシ、所望ゝの観察対象部位につい
て、分解能の高い像を得lることがそきる。−しかも副
超音波振動子群22.23は主部音波振動子群21を狭
んでその両側に配設する構造としたことによシ超音波、
探触子20は構造的には簡易となシ、容易且つ安価に実
現が可能となる。
In this device, not only the main ultrasonic transducer group 21 but also the focus of the sub ultrasonic transducer groups 22 and 23 are
Since the delay time can be set arbitrarily by the delay time set in the reception delay circuit in 2.23, it does not have a fixed focus unlike the convergence method using the acoustic lens e in conventional array-type ultrasonic probes. Since it can be set arbitrarily, reception processing can be performed to focus at a desired depth, including the convergence direction of the conventional acoustic lens, and moreover, the main and sub-ultrasonic transducer groups 21 to 23 with different convergence directions can be used. By performing the multiplication of the received signals, a desired steep directivity can be obtained, and a high-resolution image of the desired observation target region can be obtained. -Moreover, the sub-ultrasonic transducer groups 22 and 23 are arranged on both sides of the main ultrasonic transducer group 21.
The probe 20 is structurally simple and can be realized easily and inexpensively.

尚、本発明は上記し且つ図面に示す実施例に限定するこ
となく、その要旨を変更しない範囲内で適宜変形して実
施し得るものであシ、例えば上記実施例ではリニア電子
スキャンの例について説明したがセクタ電子スキャンに
おいても“実施することができる。また、本装置は診断
用 ′の他、被破壊検査など生体以外の物体を検査する
場合にも応用できる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with appropriate modifications within the scope of the gist thereof.For example, in the above embodiments, an example of linear electronic scanning is used. As explained above, it can also be carried out in sector electronic scanning.In addition to diagnostic use, this device can also be applied to inspect objects other than living bodies, such as destructive inspection.

〔発明の効果〕〔Effect of the invention〕

以上、詳述し庭ように本発明は複数の超音波振動子を並
設してなる超音波探触子を用い、これら超音波ビームの
所望の複数個を励振して超音波ビームを送信すると共に
所望の複数個を用いて超音波反射波を受信し、この受信
信号よシ・前記超音波ビームによる超音波反射波の映像
信号を得てこれよシ超音波メの表示を行うようにした超
音波検査装置において、前記超音波探触子は受信指向性
を異ならせるべく配列方向を異ならせた主及び副超音波
振動子群を有する構成とし、また、これら各々の主及び
副超音波振動子群各々に対応して設けられ所望の深さで
超音波ビームが収束するよう受信に用いた超音波探触子
各々の受信出力を遅延、加算する手段と。
As described above in detail, the present invention uses an ultrasonic probe having a plurality of ultrasonic transducers arranged in parallel, excites a desired plurality of these ultrasonic beams, and transmits an ultrasonic beam. At the same time, the ultrasonic reflected wave is received using a desired plurality of beams, and the received signal is used to obtain a video signal of the ultrasonic reflected wave by the ultrasonic beam and the ultrasonic image is displayed. In the ultrasonic inspection apparatus, the ultrasonic probe has a main and sub-ultrasonic transducer group arranged in different directions so as to have different reception directivities, and each of the main and sub-ultrasonic vibrations means for delaying and adding the received outputs of the respective ultrasonic probes provided corresponding to each child group and used for reception so that the ultrasonic beams are converged at a desired depth;

これら各遅延、加算された受信出力を乗算する手段とを
用いて構成し、超音波探触子は配列方向を異ならせた指
向性の異なる主及び副超音波振動子群を有するものを使
用して送信は主超音波振動子群を用いその配列方向に対
して所望の深さで収束させると共に受信は主及び副超音
波振動子群を用いて行い、受信信号の遅延処理によって
主、副超音波振動子群各々の振動子配列方向について所
望の深さで収束された受信信号を得、これによダヘ主、
副両超音波振動子群より各々指向性の異なる超音波の受
信信号を得、これによって主、副側超音波振動子群の振
動子配列方向について任意の深さ位置で超音波ビームを
収束させることができるようにし、まだ、上記主、副両
超音波振動子群による指向性の異なる両受信信号を乗算
することによって上記指向性の重なり合う領域の信号以
外は大幅に減衰して該限られた領域の信号が抽出できる
ことを利用して所望の深さ位置において位置分解能の高
い超音波像を得ることができるようにしたので、所望の
検査対象部位について高解像度の超音波断層像を得るこ
とができ、従って、より正確な診断や検査ができるよう
になる他、超音波探触子は主超音波振動子群と配列方向
が異方る副超音波振動子群を主超音波振動子群に近接配
置した構造であるため、製作は容易であり、また、副超
音波振動子群に対する必要な受信系の回路も複雑化しな
いで済むなどの特徴を有する超音波検査装置を提供□す
ることができる。
These delays and means for multiplying the added received outputs are used to construct the ultrasonic probe, and the ultrasonic probe has main and sub ultrasonic transducer groups with different directivity arranged in different directions. Transmission is performed by using the main ultrasonic transducer group to converge at a desired depth in the array direction, and reception is performed using the main and sub ultrasonic transducer groups, and the main and sub ultrasonic transducers are separated by delay processing of the received signal. Obtain a received signal focused at a desired depth in the transducer array direction of each acoustic transducer group, and use this to obtain
Obtain ultrasonic reception signals with different directivity from both sub-ultrasonic transducer groups, and thereby converge the ultrasonic beam at an arbitrary depth position in the transducer arrangement direction of the main and sub-ultrasonic transducer groups. However, by multiplying the received signals with different directivity from both the main and sub ultrasonic transducer groups, signals other than those in the area where the directivity overlaps are significantly attenuated and the signal is limited. Utilizing the ability to extract area signals, it is now possible to obtain ultrasonic images with high positional resolution at desired depth positions, making it possible to obtain high-resolution ultrasonic tomographic images of the desired examination target area. Therefore, in addition to enabling more accurate diagnosis and testing, the ultrasonic probe also uses a sub-ultrasonic transducer group whose arrangement direction is different from the main ultrasonic transducer group. It is possible to provide an ultrasonic inspection apparatus that is easy to manufacture because of the structure in which they are arranged close to each other, and that the circuitry of the reception system required for the sub-ultrasonic transducer group does not need to be complicated. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するだめの図。 第2図は本発明による超音波探触子の構造を示す斜視図
、第3図は本発明の一実施例を示すブロック図である。 20・・・超音波探触子、21・・・主超音波振動子群
、22.23・・・副超音波振動子群、31・・・送信
遅延回路、32・・・l々ルサー、3I・・・スイッチ
ング回路、34.36・・・前置増幅器、35.37・
・・受信遅延および加算回路、3B・・・乗算器。 39・・・振幅補正回路、40・・・信号処理部、41
・・・表示部。
FIG. 1 is a diagram for explaining the invention in detail. FIG. 2 is a perspective view showing the structure of an ultrasonic probe according to the present invention, and FIG. 3 is a block diagram showing an embodiment of the present invention. 20... Ultrasonic probe, 21... Main ultrasonic transducer group, 22.23... Sub-ultrasonic transducer group, 31... Transmission delay circuit, 32... Luther, 3I...Switching circuit, 34.36...Preamplifier, 35.37.
... Reception delay and addition circuit, 3B... Multiplier. 39... Amplitude correction circuit, 40... Signal processing section, 41
...Display section.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の超音波振動子を並設してなる超音波探触子
を用い、これら超音波振動子の所望の複数個を励振して
超音波ビームを送信すると共に所望の複数個を用いて超
音波反射波を受信し、この受信信号よシ前記超音波ビー
ムによる超音波反射波の映像信号を得てこれよシ超音波
像の表示を行うようにした超音波M装置において、前記
超音波探触子は受信指向性を異ならせるべく配列方向を
異ならせだ主及び副超音波振動子群を有する構成とし、
また、これら各々の主及び副超音波振動子許容々に対応
して設けられ所望の深さで超音波ビームが収束するよう
受信に用いた超音波探触子各々の受信出力を遅延、加算
する手段と、これら各遅延、加算された受信出力を乗算
する手段とを具備し、前記乗算後の出力を映像信号とし
て超音波像の表示に用いることを特徴とする超音波検査
装置。
(1) Using an ultrasonic probe consisting of a plurality of ultrasonic transducers arranged in parallel, a desired plurality of these ultrasonic transducers are excited to transmit an ultrasonic beam, and a desired plurality is used. In the ultrasonic M device, the ultrasonic M device receives an ultrasonic reflected wave from the ultrasonic beam, uses the received signal to obtain a video signal of the ultrasonic reflected wave from the ultrasonic beam, and displays an ultrasonic image. The sonic probe has a main and auxiliary ultrasonic transducer group arranged in different directions so as to have different reception directivities,
In addition, the reception outputs of the ultrasonic probes used for reception are delayed and added so that the ultrasonic beam is converged at a desired depth, which is provided corresponding to each of the main and sub-ultrasonic transducer tolerances. and a means for multiplying the respective delayed and added reception outputs, and the output after the multiplication is used as a video signal to display an ultrasound image.
(2)複数の微小短柵状超音波振動子を一方向に並設し
て主超音波振動子群とすると共にこの主超音波振動子群
の並設方向と交叉する方向に主超音波振動子群の分布幅
とほぼ同じ幅の複数の超音波振動子を並設して副超音波
振動子群を構成した超音波探触子を用いることを特徴と
する特許請求の範囲第1項記載の超音波検査装置。
(2) A plurality of micro short fence-shaped ultrasonic transducers are arranged side by side in one direction to form a main ultrasonic transducer group, and the main ultrasonic vibration is carried out in a direction intersecting the direction in which the main ultrasonic transducer group is arranged side by side. Claim 1 is characterized in that an ultrasonic probe is used in which a plurality of ultrasonic transducers having a width substantially the same as the distribution width of the child group are arranged in parallel to form a sub-ultrasonic transducer group. ultrasonic inspection equipment.
JP9181983A 1983-05-25 1983-05-25 Ultrasonic examining apparatus Pending JPS59218143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9181983A JPS59218143A (en) 1983-05-25 1983-05-25 Ultrasonic examining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9181983A JPS59218143A (en) 1983-05-25 1983-05-25 Ultrasonic examining apparatus

Publications (1)

Publication Number Publication Date
JPS59218143A true JPS59218143A (en) 1984-12-08

Family

ID=14037234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9181983A Pending JPS59218143A (en) 1983-05-25 1983-05-25 Ultrasonic examining apparatus

Country Status (1)

Country Link
JP (1) JPS59218143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638622B2 (en) * 2001-06-25 2011-02-23 三井造船株式会社 Real-time 3D ultrasound imaging device and probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638622B2 (en) * 2001-06-25 2011-02-23 三井造船株式会社 Real-time 3D ultrasound imaging device and probe

Similar Documents

Publication Publication Date Title
US8197412B2 (en) Ultrasonic diagnostic apparatus
US10231709B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
US6638220B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
US20080168839A1 (en) Ultrasonic diagnostic apparatus
US7291108B2 (en) Ultrasonic transmission/reception apparatus for generating an image based on ultrasonic echoes and vibro-acoustic sounds
US10231711B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
WO2015015848A1 (en) Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program
US20160157830A1 (en) Ultrasonic diagnostic device and ultrasonic image generation method
US20100056917A1 (en) Ultrasonic diagnostic apparatus
US8905933B2 (en) Ultrasonic diagnostic apparatus
CN109758091A (en) A kind of ultrasonic imaging method and device
JP2002336246A (en) Ultrasonic imaging method and ultrasonic imaging device
JP4458407B2 (en) Harmonic imaging method and apparatus using multiplex transmission
JP4090370B2 (en) Ultrasonic imaging apparatus and ultrasonic imaging method
US10209352B2 (en) Ultrasound transducer assembly
Boni et al. Prototype 3D real-time imaging system based on a sparse PZT spiral array
JPH08289891A (en) Ultrasonic diagnostic device
JPS59218143A (en) Ultrasonic examining apparatus
JP2831719B2 (en) Ultrasound diagnostic equipment
JP6552724B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
JP3332089B2 (en) Ultrasound imaging device
Gunarathne BreakingThroughtheSpeedBarrier—Advancementsin High-Speed Imaging
JPS6216386B2 (en)
JPH0467857A (en) Ultrasonic diagnostic device
CN115844445A (en) Method and system for processing a set of signals received by a transducer element