JPS5921811A - Prevention of growth of ice thickness - Google Patents

Prevention of growth of ice thickness

Info

Publication number
JPS5921811A
JPS5921811A JP12897782A JP12897782A JPS5921811A JP S5921811 A JPS5921811 A JP S5921811A JP 12897782 A JP12897782 A JP 12897782A JP 12897782 A JP12897782 A JP 12897782A JP S5921811 A JPS5921811 A JP S5921811A
Authority
JP
Japan
Prior art keywords
ice
thickness
insulating material
water
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12897782A
Other languages
Japanese (ja)
Inventor
Masanao Oshima
大島 正直
Mikinaga Takamoto
高本 幹永
Hiroshi Tabuchi
田「淵」 寛
Yasuhiro Harita
播田 安弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP12897782A priority Critical patent/JPS5921811A/en
Publication of JPS5921811A publication Critical patent/JPS5921811A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions
    • E02B17/0021Means for protecting offshore constructions against ice-loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/06Operation in ice-infested waters

Abstract

PURPOSE:To greatly delay the speed of water freezing by covering the surface of water or ice surrounding an artificially made islet with a heat insulator having a coefficient of thermal conductivity smaller than that of ice. CONSTITUTION:An oil-well drilling apparatus 3 is set on an artificial islet 1 surrounded by a side wall 2, and frozen sea area 4 surrounding the artificial islet 1 is covered with a circular heat insulator 6 (e.g., expanded polystyrene, etc.) having a smaller heat conductivity than that of ice. The conductivity of low temperature heat from external area in the sea water or ice below the heat insulator 6 becomes difficult, and the conduction of low temperature heat to the area below the ice becomes interrupted. The speed of ice growth or water freezing can thus be greatly reduced or delayed.

Description

【発明の詳細な説明】 本発明は氷厚の成長防止、特に水海構造物周辺の氷厚の
成長を防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing the growth of ice thickness, particularly around water-sea structures.

現在、地球上の石油資源の約1/3は氷海域にあると推
定され、近年、氷海域に構造物を設置して石油掘削が行
なわれ始めている。ところで、氷海域の氷は通常、風力
や潮流等の影響を受けて移動し、この移動量は年間数メ
ートル程度から数百キロメートルの範囲にまで及んでい
る。
Currently, it is estimated that about one-third of the earth's oil resources are located in icy waters, and in recent years, oil drilling has begun to be carried out by installing structures in icy waters. By the way, ice in frozen areas usually moves under the influence of wind power, tidal currents, etc., and the amount of movement ranges from several meters to several hundred kilometers per year.

そして、氷海域に海上構造物を設置した場合、この氷の
移動によって構造物に大きな力が加えられる。
When an offshore structure is installed in an icy area, the movement of the ice applies a large force to the structure.

一般に氷の圧縮強度は30 K4/cd程度であるので
、海上構造物はこれ以上の強度を保持する必要があり、
更に着底式の構造物や、人工島での掘削時のドリル、パ
イプは水平方向の変位は許されないので、大きな水平力
に耐える力が必要である。
Generally, the compressive strength of ice is around 30 K4/cd, so offshore structures need to maintain a strength higher than this.
Furthermore, since horizontal displacement of bottom-mounted structures, drills and pipes used when excavating on artificial islands is not allowed, they must be able to withstand large horizontal forces.

このため、水海構造物は強度的に重構造にならざるをえ
ず、又、水平力に対抗するために人工島を建設したり、
杭打式のケーソンや自重を大きくしたケーソン、さらに
は防氷堤を建設して石油掘削を行なわねばならぬ欠点が
ある。
For this reason, water and sea structures have to be heavy structures in terms of strength, and artificial islands have to be built to counter horizontal forces.
The drawback is that oil drilling requires the construction of pile-driven caissons or caissons with increased self-weight, as well as ice protection dykes.

そこで本発明はかかる従来の欠点を解消すべくなされた
ものであり、特に氷の移動量が数メートル/年程度の地
域における氷厚の成長を効果的に防止し、そのような地
域に設置される水海構造物に加わる水力を極力小さくす
ることにより、当該水海構造物を過度に重構造にしたり
、防氷堤を建設する必要をなくするなどの特長を有する
ものである。
Therefore, the present invention has been made in order to eliminate such conventional drawbacks, and is particularly effective in preventing the growth of ice thickness in areas where the amount of ice movement is approximately several meters per year, and is intended to effectively prevent the growth of ice thickness in areas where the amount of ice movement is approximately several meters per year. By minimizing the hydraulic force applied to the water/sea structure, it eliminates the need to make the water/sea structure excessively heavy or to construct an ice break.

すなわち、本発明の氷厚成長防止方法は、水面または水
面を、氷よりも小さい熱伝導率を有する断熱材で覆うこ
とを特徴とするものである。
That is, the method for preventing ice thickness growth of the present invention is characterized by covering the water surface or the water surface with a heat insulating material having a thermal conductivity lower than that of ice.

以下、本発明を図面に示した実施例にもとづき説明する
The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明の第1実施例を示し、側壁2を周囲に有
する人工島1には、石油掘削装置6が設置されており、
周囲の海域4は結氷5しており、人工島1の周囲の水面
は円形状に断熱材6で覆われている。
FIG. 1 shows a first embodiment of the present invention, in which an oil drilling rig 6 is installed on an artificial island 1 having a side wall 2 around it.
The surrounding sea area 4 is frozen 5, and the water surface around the artificial island 1 is covered with a circular heat insulating material 6.

断熱材6の設置は、海水の氷結前から海面に浮かべてお
いても良いし、或は薄氷が張ってから氷上に置くことも
できる。
The heat insulating material 6 may be placed floating on the sea surface before the sea water freezes, or may be placed on the ice after a thin layer of ice has formed.

ここで本発明において用いる断熱材6は、その熱伝導率
が氷のそれよりも小さければ、如何なるものであっても
良く、具体的には発泡ポリスチレン、発泡ポリエチレン
、発泡ポリウレタンなどの合成樹脂発泡体、天然ゴム発
泡体および合成樹脂シートなどを挙げることができ、好
ましくは合成樹脂発泡体および天然ゴム発泡体である。
Here, the heat insulating material 6 used in the present invention may be of any material as long as its thermal conductivity is lower than that of ice, and specifically, synthetic resin foam such as foamed polystyrene, foamed polyethylene, and foamed polyurethane. , natural rubber foam and synthetic resin sheets, preferably synthetic resin foam and natural rubber foam.

これら発泡体は気泡構造をもっているため発泡体の材質
それ自体の低熱伝導率による伝熱低下効果に加えて気泡
構造による断熱効果を期待することができる。更に、気
泡構造なので海水の比重1.025よりも見掛は比重が
小さく、結氷前の水面または海面に浮上させることもで
きるし、運搬や切断加工なども容易である。なお、気泡
構造には、独立気泡と連続気泡の二型式があるが、独立
気泡型式は特に上記の特性が優れている。かかる断熱材
の使用厚さは、後述するように外気温による氷の成長速
度を考慮して適宜決定することができ、また断熱材によ
る被覆位置も後述する実施例に示す如く、たとえば水海
構造物の柱材の周囲氷面を覆ったり、柱材から間隔を置
いて覆ったりするなど適宜選択することができる。
Since these foams have a cellular structure, in addition to the effect of reducing heat transfer due to the low thermal conductivity of the foam material itself, it is possible to expect a heat insulating effect due to the cellular structure. Furthermore, since it has a bubble structure, its apparent specific gravity is lower than the specific gravity of seawater, which is 1.025, and it can be floated on the water surface before it freezes or on the sea surface, and it is easy to transport and cut. Note that there are two types of cell structure: closed cell and open cell, and the closed cell type is particularly excellent in the above characteristics. The thickness of such a heat insulating material can be appropriately determined by taking into consideration the growth rate of ice depending on the outside temperature, as described later, and the position covered by the heat insulating material can also be determined, for example, in a water-sea structure, as shown in the examples described below. It can be selected as appropriate, such as covering the ice surface around the pillar material or covering it at a distance from the pillar material.

また断熱材の形状も、円板状、平板状、球状、シート状
、粒状、箱状、袋状などのいずれであっても良く、更に
固体ばかりでなく、液体状であっても良い。更に又、太
陽の赤lA線を吸収せしめる色彩に着色するのが好まし
い。かかる断熱材6で海水面または水面を覆うことによ
って、(3) 断熱材6下面の海水または氷は、外部からの冷熱が伝導
されにくくなり、あたかも氷厚が増加して水面下への冷
熱伝導がさまたげられたような状態になり、この結果、
結氷や氷厚成長速度を著しく遅くすることができる。
Further, the shape of the heat insulating material may be any one such as a disk, a flat plate, a sphere, a sheet, a granule, a box, and a bag, and it may be not only solid but also liquid. Furthermore, it is preferable to color it in a color that absorbs the red IA rays of the sun. By covering the sea surface or water surface with such a heat insulating material 6, (3) the sea water or ice on the bottom surface of the heat insulating material 6 becomes difficult to conduct cold heat from the outside, as if the thickness of the ice increases and the cold heat is conducted below the water surface. As a result,
It can significantly slow down the rate of ice formation and ice thickness growth.

なお、断熱材6で覆う範囲は、その地域の年間の氷の移
動量より大きくしておけば良い。又、第1図は氷海域を
例にとり説明したが、本発明はこれに限定されるもので
はなく、淡水域における氷厚防止にも、勿論利用するこ
とができる。
Note that the range covered by the heat insulating material 6 may be made larger than the annual amount of ice movement in the area. Further, although FIG. 1 has been explained using an example of an icy area, the present invention is not limited thereto, and can of course be used to prevent ice thickness in freshwater areas.

次に本発明の原理について説明する。Next, the principle of the present invention will be explained.

一般に氷海域での氷の成長速度は、海水の凍結温度が約
−2℃であるので、−2℃以下の外気温度と、その持続
時間、および氷の熱伝導率の画数となる。外気温度と結
氷温度との温度差に応じて、海面に浮かんだ氷は氷下面
に接した海水が次々に結氷することにより成長して氷厚
を増す。この結氷に必要な潜熱は、氷の上面が外気によ
り冷却されて氷の下面から上面への熱伝導が生じる事に
よって順冷、奪われる。それ(4) ゆえ、氷の成長につれて氷自体が断熱材の役割りをはた
して熱の伝達をさまたげるようになり、氷の成長速度は
次第に低下する。
Generally, since the freezing temperature of seawater is about -2°C, the growth rate of ice in an icy area depends on the outside temperature of -2°C or lower, its duration, and the thermal conductivity of ice. Depending on the temperature difference between the outside air temperature and the freezing temperature, the ice floating on the sea surface grows and increases in ice thickness as the seawater in contact with the sub-ice surface freezes one after another. The latent heat required for this freezing is gradually cooled and removed as the upper surface of the ice is cooled by the outside air and heat conduction occurs from the lower surface of the ice to the upper surface. (4) Therefore, as ice grows, the ice itself begins to act as an insulator, blocking heat transfer, and the rate of ice growth gradually slows down.

今、外気温度を一定とし、氷の厚さ方向のみの熱伝導を
考えると、第2図に示すように、縦軸に氷厚h1横軸に
時間tをとると、氷厚りは、h=に、tV”’(曲線A
)で表わされる。
Now, assuming that the outside temperature is constant and considering heat conduction only in the thickness direction of the ice, as shown in Figure 2, if the vertical axis is the ice thickness h and the horizontal axis is time t, the ice thickness is h =, tV"' (curve A
).

ただし、kは氷の熱伝導率、氷の潜熱等を含む係数であ
る。
However, k is a coefficient including the thermal conductivity of ice, the latent heat of ice, etc.

又、氷の成長速度Vは、 dh      k となる。Also, the ice growth rate V is dh k becomes.

今、第2図において縦軸に更にVをとると、成長速度と
時間との関係は、曲線Bで表わされ、縦軸上の任意の氷
厚りから水平線Cを引き、曲線Aとの交点から垂線りを
おろし、曲線Bとの交点を求めれば氷の成長速度を知る
ことができる。従って、氷の成長速度を天然のそれより
遅くするためには、氷厚を厚くしたような状態、すなわ
ち氷の上に人工的に更に断熱材を置けば良いことが理解
できる。かつ、この断熱材の熱伝導率が氷自体のそれよ
りも小さければ小さい程、効果的である。たとえば、3
0m厚の氷を考え、この水面を氷の熱伝導率より10倍
小さな断熱材で覆った場合、この断熱材は熱伝導率の観
点からすると100mの氷厚に相当するので、氷の成長
速度は130mの氷厚のそれと等しくなり、(0,56
o*/日)、第2図から30 cm氷厚の成長速度(2
,43crn/日)よりはるかに小さいことが理解でき
る。具体的には、発泡ポリウレタンシートでは、熱伝導
率(0,000064J/sec、 deg、m )が
氷の約46分の1程度であり、10m厚のものを用いれ
ば、最初の氷厚+460 cm厚の氷の成長速度、′・
すなわち、極めて小さな成長速度となって実際には氷厚
はほとんど増加しないことになる。
Now, if we further take V on the vertical axis in Figure 2, the relationship between the growth rate and time is represented by curve B, and by drawing a horizontal line C from an arbitrary ice thickness on the vertical axis, it is If you draw a perpendicular line from the intersection and find the intersection with curve B, you can find out the ice growth rate. Therefore, it can be understood that in order to make the ice growth rate slower than that of natural ice, it is necessary to increase the thickness of the ice, that is, to artificially place an additional insulating material on top of the ice. Moreover, the smaller the thermal conductivity of this insulating material is than that of the ice itself, the more effective it is. For example, 3
If we consider ice with a thickness of 0 m and cover the water surface with an insulating material that is 10 times smaller than the thermal conductivity of the ice, this insulating material is equivalent to a thickness of 100 m of ice from the perspective of thermal conductivity, so the growth rate of the ice is is equal to that for an ice thickness of 130 m, and (0,56
o*/day), and from Figure 2, the growth rate of 30 cm ice thickness (2
, 43 crn/day). Specifically, the thermal conductivity (0,000064 J/sec, deg, m ) of foamed polyurethane sheets is about 1/46th that of ice, and if a 10 m thick sheet is used, the initial ice thickness + 460 cm Growth rate of thick ice, ′・
In other words, the growth rate is extremely low and the ice thickness actually hardly increases.

第3図に北極海において一部に成長する最大氷厚と氷の
上に敷く発泡ポリウレタンの厚さとの関係を示す。
Figure 3 shows the relationship between the maximum thickness of ice that grows in some parts of the Arctic Ocean and the thickness of polyurethane foam laid on top of the ice.

この第3図によれば、曲IJEの勾配が小さくなる点、
すなわち、発泡ポリウレタンの厚さをほぼ150〜20
 cm以上にすれば、氷厚成長防止に極めて効果のある
ことが理解できる。
According to this FIG. 3, the point where the slope of the song IJE becomes small,
That is, the thickness of polyurethane foam is approximately 150 to 20
It can be seen that a thickness of cm or more is extremely effective in preventing ice thickness growth.

第4図は本発明の第2実施例を示し、モノポット型着底
構造物7の周辺氷海面を断熱材6で円形に渡った場合の
例である。
FIG. 4 shows a second embodiment of the present invention, and is an example in which the icy sea surface around the monopot type bottomed structure 7 is covered with a heat insulating material 6 in a circular manner.

人工島では水深が大きくなれば、建設が困難であり、着
底式構造物が適している。従来、この種の着底式構造物
では、海水面対辺の形状を水力をすくなくするために円
錐形にしたり、断面積を出来るだけ小さくしていたが、
本発明を採用すれば、水力が小さくなるので、海水面対
辺の形状を円筒形や角形など適宜選択することができ、
断面積も従来のもののように、大巾に小さくする必要が
ない。また水平方向に受ける水力も小さいので、構造物
固定のための杭を打つ必要がなくなるか、または杭の本
数が少なくてすむ利点もある。
Construction of artificial islands becomes difficult as the water depth increases, so bottom-mounted structures are suitable. Conventionally, in this type of bottom-mounted structure, the shape of the side facing the sea surface was made conical to reduce hydraulic power, and the cross-sectional area was made as small as possible.
If the present invention is adopted, the hydraulic force is reduced, so the shape of the side facing the sea surface can be appropriately selected such as cylindrical or square.
There is no need to reduce the cross-sectional area as much as in the conventional case. Furthermore, since the hydraulic force applied in the horizontal direction is small, there is an advantage that there is no need to drive piles to secure the structure, or the number of piles can be reduced.

第5図は本発明の第3実施例であり、着底型(7) 多柱構造物8の各柱9の周辺氷面を断熱材6で夫々独立
に円形に覆った場合を示す。
FIG. 5 shows a third embodiment of the present invention, in which the ice surface around each pillar 9 of a bottom-mounted (7) multi-pillar structure 8 is covered with a heat insulating material 6 independently in a circular shape.

従来、氷厚の大きい所では、多柱構造物は水力が大きく
なるので設置不可能であったが、各柱の周囲に断熱材を
設置すれば水力を弱めることができるので設置可能とな
る。
Conventionally, multi-column structures could not be installed in areas with large ice thickness due to the large hydraulic force, but by installing insulation material around each column, the hydraulic force can be weakened, making it possible to install multi-column structures.

第6図は本発明の第4実施例を示し、アンカー11によ
って70−ティング型構造物10が係止されている。こ
の場合、ドリルパイプ12は水深の5%程度の変位が訂
されるが、水力が大きく、氷厚の大きな海域ではチェノ
16およびアンカー11による係止は不可能であった。
FIG. 6 shows a fourth embodiment of the invention, in which a 70-ring type structure 10 is secured by an anchor 11. In this case, the drill pipe 12 is displaced by about 5% of the water depth, but it is impossible to lock the drill pipe 12 with the chain 16 and the anchor 11 in a sea area with large hydraulic power and large ice thickness.

しかし、断熱材6で構造物10周囲の水面を覆えば水力
が小さくなり、チェノ、アンカー係留が可能になる。
However, if the water surface around the structure 10 is covered with the heat insulating material 6, the hydraulic force will be reduced, and anchorage and anchor mooring will become possible.

第7図は本発明の第5実施例を示し、半没木型構造物1
4がチェノ16により係留されている。
FIG. 7 shows a fifth embodiment of the present invention, in which a half-submerged wooden structure 1
4 is moored by Cheno 16.

断熱材6によって水面を覆えば水力が小さくなるので結
氷時の係留が可能になる。
If the water surface is covered with the heat insulating material 6, the hydraulic force will be reduced, making mooring possible during freezing.

第8図は本発明の第6実施例を示し、多柱式(8) 構造物の柱9が各独立ではなく周囲全水面が断熱材6で
覆われている。
FIG. 8 shows a sixth embodiment of the present invention, in which the columns 9 of a multi-column (8) structure are not independent, but the entire surrounding water surface is covered with a heat insulating material 6.

第9図A、  Bは本発明の第7実施例を示し、構造物
の柱9の周囲をリング状にかつ、間隔を置いて断熱材6
で覆った例である。
9A and 9B show a seventh embodiment of the present invention, in which a ring-shaped insulating material 6 is placed around the pillar 9 of the structure at intervals.
This is an example covered with

この場合、断熱材6で覆われない氷の部分5Aは、氷が
厚くなるが、第9図Bに示す如く、氷の移動時には断熱
材6で覆われた氷の薄い部分5Bで破水するので断熱材
6で柱9の全周囲を覆ったのと同様の効果がある。
In this case, the ice part 5A not covered by the insulation material 6 becomes thick, but as shown in FIG. 9B, when the ice moves, the water breaks at the thin ice part 5B covered by the insulation material 6. This has the same effect as covering the entire circumference of the column 9 with the heat insulating material 6.

第10図は第8実施例を示し、柱9の周囲を歯車状の断
熱材6で覆った場合である。
FIG. 10 shows an eighth embodiment, in which a pillar 9 is surrounded by a gear-shaped heat insulating material 6.

第11図A、Bは第9実施例を示し、柱9の周囲を一部
切欠状の断熱材6で覆っている。
FIGS. 11A and 11B show a ninth embodiment, in which a pillar 9 is partially covered with a heat insulating material 6 having a cutout shape.

これら第8,9実施例はいずれも上記第7実施例と同様
の効果が期待できるばがりでなく、人工島等では、結氷
時に物資の輸送を氷上のトラック等で行なう必要」二、
氷厚の大きいアクセス15を利用することができる。ま
た、切欠部の氷厚が大きくなっても、全体の水力に及ぼ
す影響は少ない。
These 8th and 9th embodiments can not only be expected to have the same effects as the 7th embodiment, but also require transportation of supplies on ice by trucks on ice when ice forms on artificial islands.
Access 15 with large ice thickness can be used. Furthermore, even if the ice thickness in the notch increases, it has little effect on the overall hydraulic power.

第12図A、Bは第10実施例を示し、第12図Aは柱
9の周囲に球状断熱材6を敷設した場合を、第12図B
は小板状の断熱材6を敷設した場合を夫々示している。
12A and 12B show the tenth embodiment, and FIG. 12A shows the case where the spherical heat insulating material 6 is laid around the pillar 9, and FIG. 12B
1 and 2 respectively show the case where a small plate-shaped heat insulating material 6 is installed.

以上述べた如く、本発明は水面または水面を、氷よりも
小さい熱伝導率を有する断熱材で覆ったので、この断熱
材が冷熱の浸入を阻止して結氷時期を遅延せしめたり、
結氷後には氷厚の成長を防止することができる。特に断
熱材の熱伝導率が氷のそれよりも小さければ小さい程、
氷厚成長防止効果は大きくなる。また、断熱材は、その
厚さ、形状、氷面への敷設方法などを任意に選択できる
便利さもある。
As described above, since the present invention covers the water surface or the water surface with a heat insulating material having a thermal conductivity lower than that of ice, this heat insulating material prevents the infiltration of cold heat and delays the freezing period.
After freezing, it is possible to prevent the ice from growing thicker. In particular, the smaller the thermal conductivity of the insulation material is than that of ice, the more
The effect of preventing ice thickness growth will be greater. Another advantage of the insulation material is that you can choose the thickness, shape, method of laying it on the ice surface, etc. as you like.

よって本発明は特に氷海域における石油掘削用水海構造
物周辺の氷厚成長を防止して、これら構造物に及ぼす水
力を低下せしめるので、構造物を従来のように重構造と
したり、防水堤を建設する必要がなくなり、より経済的
な建造が′可能となる。
Therefore, the present invention prevents the growth of ice thickness around oil drilling structures in ice-cold areas and reduces the hydraulic force exerted on these structures. This eliminates the need for construction, allowing for more economical construction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す縦断面概要図、第2
図は氷厚と時間および氷の成長速度と時間との関係を夫
々示す図、第3図は最大氷厚と発泡ポリウレタン厚さと
の関係を示す図、第4図は本発明の第2実施例を示す縦
断面概要図、第5図は本発明の第3実施例を示す縦断面
概要図、第6図は本発明の第4実施例を示す縦断面概要
図、第7図は本発明の第5実施例を示す縦断面概要図、
第8図は本発明の第6実施例を示す横断面概要図、第9
図Aは本発明の第7実施例を示す横断面概要図、第9図
Bはその縦断面説明図、第10図は本発明の第8実施例
を示す横断面概要図、第11図A、Bは本発明の第9実
施例を夫々示す横断面概要図、第12図A、Bは本発明
の第10実施例を夫々示す横断面概要図である。 6・・・断熱材。 第4図 特開昭59−21811(8) 第7図 第8凶 7〈ゴー−=〉、 [i町
FIG. 1 is a vertical cross-sectional schematic diagram showing the first embodiment of the present invention, and FIG.
The figures show the relationship between ice thickness and time and the ice growth rate and time, Figure 3 shows the relationship between maximum ice thickness and polyurethane foam thickness, and Figure 4 shows a second embodiment of the present invention. FIG. 5 is a vertical cross-sectional schematic diagram showing the third embodiment of the present invention, FIG. 6 is a longitudinal cross-sectional schematic diagram showing the fourth embodiment of the present invention, and FIG. 7 is a vertical cross-sectional schematic diagram showing the fourth embodiment of the present invention. A vertical cross-sectional schematic diagram showing the fifth embodiment,
FIG. 8 is a cross-sectional schematic diagram showing a sixth embodiment of the present invention, and FIG.
Figure A is a schematic cross-sectional view showing the seventh embodiment of the present invention, Figure 9B is an explanatory longitudinal cross-sectional view thereof, Figure 10 is a schematic cross-sectional view showing the eighth embodiment of the present invention, and Figure 11A is , B are schematic cross-sectional views showing a ninth embodiment of the present invention, and FIGS. 12A and 12B are schematic cross-sectional views showing a tenth embodiment of the present invention, respectively. 6...Insulation material. Figure 4 JP-A-59-21811 (8) Figure 7 Figure 8 7〈Go-=〉, [i-cho

Claims (1)

【特許請求の範囲】[Claims] 水面または水面を、氷よりも小さい熱伝導率を有する断
熱材で覆うことを特徴とする氷厚成長防止方法。
A method for preventing ice thickness growth, which comprises covering a water surface or a water surface with a heat insulating material having a lower thermal conductivity than ice.
JP12897782A 1982-07-26 1982-07-26 Prevention of growth of ice thickness Pending JPS5921811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12897782A JPS5921811A (en) 1982-07-26 1982-07-26 Prevention of growth of ice thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12897782A JPS5921811A (en) 1982-07-26 1982-07-26 Prevention of growth of ice thickness

Publications (1)

Publication Number Publication Date
JPS5921811A true JPS5921811A (en) 1984-02-03

Family

ID=14998075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12897782A Pending JPS5921811A (en) 1982-07-26 1982-07-26 Prevention of growth of ice thickness

Country Status (1)

Country Link
JP (1) JPS5921811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059784A1 (en) * 2012-10-15 2014-04-24 大连理工大学 Butt joint truncated cone type floating production storage and offloading system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059784A1 (en) * 2012-10-15 2014-04-24 大连理工大学 Butt joint truncated cone type floating production storage and offloading system

Similar Documents

Publication Publication Date Title
US3750412A (en) Method of forming and maintaining offshore ice structures
US6099208A (en) Ice composite bodies
US4464082A (en) Chilled gas pipeline installation and method
US3798912A (en) Artificial islands and method of controlling ice movement in natural or man-made bodies of water
US4055052A (en) Arctic island
US4187039A (en) Method and apparatus for constructing and maintaining an offshore ice island
US4456072A (en) Ice island structure and drilling method
US4639167A (en) Deep water mobile submersible arctic structure
JPH0224968B2 (en)
JPS5921811A (en) Prevention of growth of ice thickness
NO145926B (en) PROCEDURE FOR THE MANUFACTURE OF LARGE ISOLES
Rafferty Glaciers, sea ice, and ice formation
EP0699253A1 (en) Universal, environmentally secure, wave defense systems using modular caissons
US3889473A (en) Geothermal channel and harbor ice control system
US3675429A (en) Arctic ice platform
Hnatiuk Exploration methods in the Canadian Arctic
Grantz et al. Summary report of the sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States Beaufort Sea, Alaska area
KR850001190B1 (en) Method for producing a large ice block
Gerwick Jr Effect of global warming on Arctic coastal and offshore engineering
JPS6033936A (en) Frost damage preventive pile
Are et al. Cryogenic processes of Arctic land-ocean interactions
Noble Innovative Offshore Engineering In The Arctic
Mehari P&A in Arctic conditons
Gerwick Jr et al. Development of a structural concept to resist impacts from multiyear ice floes, ridges, and icebergs
JPS61282520A (en) Pile for permanently frozen ground