JPS59217948A - Grid for lead storage battery - Google Patents

Grid for lead storage battery

Info

Publication number
JPS59217948A
JPS59217948A JP58093147A JP9314783A JPS59217948A JP S59217948 A JPS59217948 A JP S59217948A JP 58093147 A JP58093147 A JP 58093147A JP 9314783 A JP9314783 A JP 9314783A JP S59217948 A JPS59217948 A JP S59217948A
Authority
JP
Japan
Prior art keywords
grid
weight
ratio
lead
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093147A
Other languages
Japanese (ja)
Inventor
Shiro Hirota
四郎 廣田
Ryosuke Morinari
森成 良佐
Mitsuru Koseki
満 小関
Hideo Sekiguchi
関口 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58093147A priority Critical patent/JPS59217948A/en
Publication of JPS59217948A publication Critical patent/JPS59217948A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To improve initial voltage during high-rate electric discharge by specifying both the ratio of the weight of an upper parent bone having a current collecting part to the total weight of a grid and the ratio of the distance from one end of the grid to the center of the current collecting part to the total width of the grid. CONSTITUTION:A grid for a lead storage battery is formed by a material made of lead or a lead alloy. The ratio of the weight of an upper parent bone having a current collecting part to the total weight of the grid is supposed to be G(%). The ratio of the distance from one end of the grid to the center of the current collecting part to the total width of the grid is supposed to be l(%). The relationship between G and l is adjusted to be within the range surrounded by a quadrilateral determined by four vertexes A(0, 30), B(0, 22), C(50, 16) and D(50, 11) when l is plotted as obscissa and G is plotted as ordinate. By the means mentioned above, the total loss of the grid can be minimized without increasing the weight of the grid and without giving any influence on the retention of an active material. Consequently, the internal resistance of the battery is decreased thereby enabling initial voltage during high-rate electric discharge to be increased.

Description

【発明の詳細な説明】 本発明は、鉛または組合金製の材料から作られる鉛蓄電
池の格子体、とくに集電部を備える上部親骨の重量に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the weight of a lead-acid battery lattice made of lead or alloy material, in particular of the upper rib with the current collector.

従来、鉛蓄電池の格子体は、鉛蓄電池の軽量化に対して
、使用する鉛量を減少することで対応してきた。しかし
、単に鉛量を減少させただけでは、集電効率の低下によ
り、とくに高率放電時の電圧特性において問題があった
。性能の維持、向上をはかり且つ軽量化を通電するため
には、格子体の形状、格子体各部への重量配分を検討し
、電気抵抗の増加を押えながら鉛■を減少させることが
必要となっている。
Conventionally, lead-acid battery lattice bodies have responded to the weight reduction of lead-acid batteries by reducing the amount of lead used. However, simply reducing the amount of lead causes problems, particularly in voltage characteristics during high rate discharge, due to a decrease in current collection efficiency. In order to maintain and improve performance while reducing weight and conduct electricity, it is necessary to consider the shape of the grid and the weight distribution to each part of the grid, and reduce lead while suppressing the increase in electrical resistance. ing.

製造面においては、鋳造法に対して、より格子体の薄形
化が可能であり、生産性も高いエキスバンド法が行なわ
れているが、エキスバンド法、鋳造法いづれIこせよ、
単に薄形化、軽量化をすると、格子体各部の断面積が減
少し、そのため電気抵抗が増大し、電池性能の劣化、と
くに高率放電時の電圧が低下するという欠点があった0 そのため、従来から集電部に近い部分の1mを増し、遠
い部分の重量を減少させることによって集電効率を改良
する提案もなされているが、格子体重量を一定にし、電
気抵抗を最小にし、系統的に高率放電時の初期電圧を上
昇させる考察はなされておらず、したかって、格子体の
電気抵抗を減少させることが不十分てあり、電池性能の
向上をはかり且つ電池の軽量化を達成することを困難に
していた。
In terms of manufacturing, compared to the casting method, the expanded method is used, which allows the lattice to be made thinner and has higher productivity.
Simply making the battery thinner and lighter reduces the cross-sectional area of each part of the lattice, which increases the electrical resistance, resulting in deterioration of battery performance, especially a drop in voltage during high-rate discharge. Conventionally, proposals have been made to improve current collection efficiency by increasing the length of the part close to the current collector by 1 m and reducing the weight of the farthest part, but it is necessary to keep the weight of the grid constant, minimize the electrical resistance, and systematically However, no consideration has been given to increasing the initial voltage during high-rate discharge, and therefore, it has been insufficient to reduce the electrical resistance of the lattice body, thereby improving battery performance and reducing the weight of the battery. It made things difficult.

本発明の目的は、上記の問題を解決するため、格子体の
全重量を一定とした場合、集電部を備えた上部親骨の重
量の格子体全重量に対する比を系統的に考察を加え、格
子体の電気抵抗を減少させ、とくに高率放電時の初期電
圧を上昇させた鉛蓄電池の格子体を提供することである
An object of the present invention is to solve the above-mentioned problems by systematically considering the ratio of the weight of the upper rib provided with the current collector to the total weight of the lattice body, assuming that the total weight of the lattice body is constant. It is an object of the present invention to provide a lattice body for a lead-acid battery in which the electrical resistance of the lattice body is reduced and the initial voltage particularly during high rate discharge is increased.

本発明によって鉛蓄電池の格子体の電気抵抗を減少する
ことができる基本原理を図面を用1.Xながら詳細に説
明する。
The basic principle by which the electrical resistance of the lattice body of a lead-acid battery can be reduced by the present invention is explained with reference to the drawings.1. This will be explained in detail using X.

高率放電の初期において電流分布は、蓄電池内で均一で
あることを見い出した。その原因1ま、電解液の抵抗が
、格子体の抵抗に比べて非常に大きいためと考えられ、
格子体は各部で均一ζこ電流を受授するものと考えてよ
0゜第1図1よ、格子点0とその周囲の格子点1〜4を
示したものである。格子点0と周囲の格子点1〜4の間
は、格子要素5の断面積と長さによって電気抵抗が定ま
るが、格子点0と格子点1〜4の間の抵抗をそれぞれ[
、〜r4とし、各格子点θ〜4の電位をそれぞれV。−
■4とし、相手板から流入(流出)する電流をi。とす
れば、格子点0て11キルヒホツフの法則により、 (V!  VO) / r++ (v2−vo) / 
r2+(V3  V(1) /rs+ (V4  vo
) / r< + Io?0の式が成立する。この電流
i。は、各格子点での和が端子間電流I。となることに
注意すれば、格子点の数をnとすると 1n=Io/n で求めることができる。このような、電位V。〜■4を
未知数とした方程式が各格子点で成立するからn元の連
立方程式となる。
It was found that the current distribution is uniform within the storage battery at the beginning of high rate discharge. The first reason is thought to be that the resistance of the electrolyte is much larger than the resistance of the grid.
Assume that the lattice body receives a uniform ζ current at each part. Figure 1 shows lattice point 0 and surrounding lattice points 1 to 4. The electrical resistance between grid point 0 and surrounding grid points 1 to 4 is determined by the cross-sectional area and length of grid element 5, but the resistance between grid point 0 and surrounding grid points 1 to 4 is determined by [
, ~r4, and the potential of each lattice point θ~4 is V. −
■4, and the current flowing in (outflowing) from the other board is i. Then, at lattice point 0 and 11, by Kirchhoff's law, (V! VO) / r++ (v2-vo) /
r2+(V3 V(1) /rs+ (V4 vo
) / r< + Io? 0 holds true. This current i. The sum at each grid point is the terminal current I. If it is noted that the number of lattice points is n, it can be calculated as 1n=Io/n. Such a potential V. ~■ Since the equation with 4 as an unknown is established at each grid point, it becomes a simultaneous equation of n elements.

次に格子の電気的な損失を考える。損失Pは、電圧v1
抵抗rとによって、一般に p−V2/r で求めることができる。つまり、格子点0と1の間の損
失P、は、 P+ = (V+  Vo)”/r+ となる。格子体の全損失PT  は、各格子点間ののと
なる。特に、この全損失は、実際の電池の内部抵抗値と
直線関係かある。また、実際の電池の内部抵抗値は高率
放電時の初期fl!Eと直線関係がある。第2図に、算
出した格子体の全損失pTと一15°C,150A放電
時の5砂目電圧■5の関係を示す。このように、格子体
の全損失PTと高率放電時の初期電圧は直線関係となる
。この結果は、上記方法の妥当性を証明するとともに、
この全損失PTを比較することにより内部抵抗が小さく
、高率放電時の初期電圧の高い格子体を見い出すことが
できることを示している。
Next, consider the electrical loss of the grid. Loss P is voltage v1
Depending on the resistance r, it can generally be determined as p-V2/r. In other words, the loss P between lattice points 0 and 1 is P+ = (V+ Vo)''/r+. The total loss PT of the lattice body is between each lattice point. In particular, this total loss is , there is a linear relationship with the internal resistance value of the actual battery.Also, the internal resistance value of the actual battery has a linear relationship with the initial fl!E during high rate discharge. The relationship between the loss pT and the 5-grain voltage during discharge at 15°C and 150A is shown.In this way, there is a linear relationship between the total loss PT of the grid and the initial voltage during high-rate discharge.This result is , prove the validity of the above method, and
It is shown that by comparing the total loss PT, it is possible to find a lattice body with a small internal resistance and a high initial voltage during high rate discharge.

第3図は、格子体の全重量を一定にし、格子体の全重量
に対する、集電部を備える上部親骨の重量比G(%)と
、上記方法によって得られた格子体の全損失PTの関係
を示したものである。ここに示したものは、エキスバン
ド加工によるものであり、上部親骨の全長に対する上部
親骨の端から集電部の中央までの距離が5%のものであ
る。第3図かられかるように重量化26チのものが格子
体の全損失Pアが最小となるが、21〜29%の範囲に
あれば、最適といえる。これは、集電部を備えた上部親
骨は、重量を増加して電気抵抗を減少させた方かよいか
、」二部用・目に重量を配分しすぎると、格子網目部の
型苗が減少しすぎて電気抵抗が増加(7、全体として格
子体の全損失が増大する結果となる。
Figure 3 shows the weight ratio G (%) of the upper main rib provided with the current collector to the total weight of the lattice body, and the total loss PT of the lattice body obtained by the above method, while keeping the total weight of the lattice body constant. This shows the relationship. The one shown here is by extended band processing, and the distance from the end of the upper rib to the center of the current collecting part is 5% of the total length of the upper rib. As can be seen from FIG. 3, the total loss Pa of the lattice body is the minimum when the weight is 26 inches, but it can be said to be optimal if it is in the range of 21 to 29%. Is it better to increase the weight of the upper rib with the current collecting part to reduce the electrical resistance? If too much weight is distributed between the two parts, the molding of the lattice mesh part will decrease. Too much electrical resistance increases (7), resulting in an increase in the total loss of the grid as a whole.

第4図は、上部親骨の全長に対する上部IQ骨の一端か
ら集電部の中央までの距R1(の比/ [qb+、上記
方法によって格子体の全損失PTを最適化したときの、
格子体上部親骨の全格子体重量に対する比G(%)との
関係を示したものである。4点A (0,ao)、B(
0,22)、C(so、  +6)D (50,11)
を頂点とする四角形の範囲内にあるa (%lと/ f
ilを有すれば、最適化ができる。
Figure 4 shows the ratio of the distance R1 from one end of the upper IQ bone to the center of the current collector to the total length of the upper main rib/[qb+, when the total loss PT of the lattice body is optimized by the above method.
This figure shows the relationship between the ratio G (%) of the upper rib of the lattice body to the total weight of the lattice body. 4 points A (0, ao), B (
0,22), C(so, +6)D (50,11)
a (%l and / f
Having il allows optimization.

第5図は、エキスバンド加工Iこよる上部親骨の全長に
対する上部親骨の一端から集電部の中央までの距離の比
/(41が5係のものに対して、本発明により改良し、
格子体の全損失を最小にした上部親骨をもつ格子体を用
いた電池と、従来品を用いた電池との一15°C,15
0A放電時の5秒目電圧の比較である。それぞれ、上部
親骨の重量比は、26チ、11%である。この場合、+
2V電池で0.12 Vの5秒目電圧の改善を達成する
ことができた。また、本発明はエキスバンド加工を用い
た格子体に限定されるものではないことは明らかである
FIG. 5 shows the ratio of the distance from one end of the upper rib to the center of the current collecting part to the total length of the upper rib due to the extended band processing I/(41 is improved by the present invention for the 5th section,
A battery using a lattice body with an upper rib that minimizes the total loss of the lattice body and a battery using a conventional product at 15°C, 15
This is a comparison of voltages at the 5th second during 0A discharge. The weight ratio of the upper rib is 26 cm and 11%, respectively. In this case, +
We were able to achieve a 5 second voltage improvement of 0.12 V with a 2V battery. Furthermore, it is clear that the present invention is not limited to grid bodies using expanded processing.

本発明は、上述したよう番こ、格子体自体の重量を増加
することなく、また活物質の保持などに影響を与えるこ
となく、格子体の全損失を最小とする乙とが可能であり
、その結果電池の内部抵抗を減少させ、高率放電時の初
期電圧を向上させることができる等工業的価値基だ大な
るものである。
The present invention makes it possible to minimize the total loss of the lattice body without increasing the weight of the lattice body itself or affecting the retention of the active material, as described above. As a result, the internal resistance of the battery can be reduced and the initial voltage during high rate discharge can be improved, which has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鉛蓄電池の格子体の説明図、第2図は鉛蓄電池
の格子体の全損失PTと一15°C1150A放電時の
5秒目電圧■、との関係図、第3図は鉛蓄電池の格子体
の全重量を一定にしたときの格子体の全重量に対する集
電部を備える上部親骨の重量比Gと格子体の全損失PT
の関係図、第4図は上部親骨の全長に対する上部親骨の
一端から集電部の中央までの距離の比lと格子体の全損
失PTを最小としたときの、格子体」二部親骨の全格子
体重量に対する比Gとの関係図、第5図は本発明により
最適重量比率とした上部親骨をもつ格子体を用いた電池
と従来の最適重量比率になっていない上部親骨をもつ格
子体を用いた電池の一15°G、 +50 A放電時の
5秒目電匝■。 を示した比較図である。 1〜4は格子点、5は格子要素 特許出願人 第3図 Cr(%)
Figure 1 is an explanatory diagram of the lattice body of a lead-acid battery, Figure 2 is a relationship diagram between the total loss PT of the lattice body of a lead-acid battery and the voltage at the 5th second when discharging at 1150A at -15°C, and Figure 3 is an illustration of the lattice body of a lead-acid battery. When the total weight of the grid body of the storage battery is constant, the weight ratio G of the upper rib with the current collector to the total weight of the grid body and the total loss PT of the grid body
Figure 4 shows the relationship between the lattice body and the two-part rib when the ratio l of the distance from one end of the upper rib to the center of the current collector to the total length of the upper rib and the total loss PT of the lattice body are minimized. Figure 5 shows the relationship between the ratio G and the total weight of the lattice, and shows a battery using a lattice body with an upper rib that has an optimal weight ratio according to the present invention and a conventional lattice body that has an upper rib that does not have an optimal weight ratio. 5 seconds of discharge at 15°G and +50A using a battery. FIG. 1 to 4 are lattice points, 5 is lattice element Patent applicant Figure 3 Cr (%)

Claims (1)

【特許請求の範囲】[Claims] 鉛または組合金製の材料から作られる鉛蓄電池の格子体
において、格子体の全重量に対して集電部を備える上部
親骨の重量比をG(チ)きし、格子体の全幅に対する格
子体の一方の幅部から集電部の中央までの距離の比をJ
 +11とするとき、lを横軸に、Gを縦軸とした場合
、4点A(0゜30)、B (0,22)、 C(50
,16)、D (50,11)を頂点とする四角形で囲
まれた範囲のGとlを有することを特徴とする鉛蓄電池
の格子体。
In the lattice body of a lead-acid battery made from a material made of lead or alloy, the weight ratio of the upper main rib with the current collector to the total weight of the lattice body is G (chi), and the lattice body to the total width of the lattice body is The ratio of the distance from one width part to the center of the current collector part is J
+11, if l is on the horizontal axis and G is on the vertical axis, then there are 4 points A (0°30), B (0,22), C (50
, 16), a lead-acid battery lattice body characterized by having G and l in a range surrounded by a rectangle with vertices at D (50, 11).
JP58093147A 1983-05-26 1983-05-26 Grid for lead storage battery Pending JPS59217948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093147A JPS59217948A (en) 1983-05-26 1983-05-26 Grid for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093147A JPS59217948A (en) 1983-05-26 1983-05-26 Grid for lead storage battery

Publications (1)

Publication Number Publication Date
JPS59217948A true JPS59217948A (en) 1984-12-08

Family

ID=14074417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093147A Pending JPS59217948A (en) 1983-05-26 1983-05-26 Grid for lead storage battery

Country Status (1)

Country Link
JP (1) JPS59217948A (en)

Similar Documents

Publication Publication Date Title
US5582936A (en) Lead-acid batteries with optimum current collection at grid lugs
US3923545A (en) Grid structure for high rate lead/acid battery
KR100307175B1 (en) Lead acid battery
JP5145861B2 (en) Lead acid battery
JPS59217948A (en) Grid for lead storage battery
JPS6030057A (en) Grid of lead-acid battery
JPS60117555A (en) Grid of lead-acid battery
JPS6030058A (en) Grid of lead-acid battery
JPH01204364A (en) Expanded grid for lead-acid battery and its manufacture
US6579646B2 (en) Storage battery
JPS60117556A (en) Grid of lead-acid battery
JPH10302782A (en) Cathode pole plate for lead acid battery
JPS60117557A (en) Grid of lead-acid battery
JPS6010560A (en) Substrate for lead storage battery plate
JP2000215898A5 (en)
JP2000215898A (en) Lead-acid battery grid body
JP2765020B2 (en) Manufacturing method of sealed lead-acid battery
JPS6222225B2 (en)
JPS59217949A (en) Grid for lead storage battery
JPH0554893A (en) Grating for lead-acid battery
JPS5951107B2 (en) lead acid battery
JPH07326360A (en) Expanded grid body for lead-acid battery
JP4765154B2 (en) Lead acid battery
RU2299498C2 (en) Current lead for lead-acid battery electrode
JPH0145709B2 (en)