JPH01204364A - Expanded grid for lead-acid battery and its manufacture - Google Patents

Expanded grid for lead-acid battery and its manufacture

Info

Publication number
JPH01204364A
JPH01204364A JP63028209A JP2820988A JPH01204364A JP H01204364 A JPH01204364 A JP H01204364A JP 63028209 A JP63028209 A JP 63028209A JP 2820988 A JP2820988 A JP 2820988A JP H01204364 A JPH01204364 A JP H01204364A
Authority
JP
Japan
Prior art keywords
lead
sheet
expanded
current collecting
lead alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63028209A
Other languages
Japanese (ja)
Other versions
JP2560770B2 (en
Inventor
Yoshinari Morimoto
森本 佳成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63028209A priority Critical patent/JP2560770B2/en
Publication of JPH01204364A publication Critical patent/JPH01204364A/en
Application granted granted Critical
Publication of JP2560770B2 publication Critical patent/JP2560770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To increase durability by forming a grid with a lead alloy in which the content of antimony is 2wt.% or less, and forming knots in a network apart from a current collecting part. CONSTITUTION:A grid is formed by expanding a rolled sheet made of a lead alloy, in which the content of antimony is 2wt.% or less, so that knots 3b (crossed parts of bones 3a) are apart from a current collecting part 1. Since the content of antimony in the lead alloy is 2wt.% or less, suitable softness resistant to distortion is obtained. Strength in the connecting part of the current collecting part 1 and a network 3 is sufficiently increased and durability in current collection is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉛蓄電池の極板に用いられる改良されたエキス
パンド格子体及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved expanded lattice used in the electrode plates of lead-acid batteries and a method for manufacturing the same.

[従来技術] 最近は、鉛蓄電池用の極板として、長さ方向及び幅方向
の両方向に所定の位置関係をもって多数のスリットを入
れた鉛合金からなる圧延シー1−を幅方向に展張するエ
キスパンド加工を行なって形成したエキスパンド格子体
に活物質を充填したものが用いられるようになった。こ
の種の格子体は、従来子としてメンテナンス・フリー用
の鉛蓄電池の極板用として、主にPb−Ca系鉛合金か
らなるものが用いられていた。
[Prior Art] Recently, as electrode plates for lead-acid batteries, expanders have been developed, in which a rolled sheet 1- made of a lead alloy with a number of slits in predetermined positional relationships in both the length and width directions is rolled out in the width direction. Expanded lattice bodies formed by processing and filled with active materials have come to be used. This type of lattice body, which is mainly made of a Pb--Ca lead alloy, has conventionally been used for the electrode plates of maintenance-free lead-acid batteries.

上記のエキスパンド格子体は第5図に示すように、幅方
向Yの一端(上部)側に長さ方向Xに延びる非展開部か
らなる集電部1を備え、他端(下部)側に側縁部2を備
えて、集電部1と側縁部2との間に展開部からなる網状
部3が形成されている。この網状部3は骨部3aと骨部
3aが交差する結節部3bとからなっている。骨部3a
の骨幅Wは前記圧延シートの厚みに応じて定まるもので
あり、従来は厚みの−様なシー1〜を用いているので、
骨幅Wは各骨部3aとも同じになっている。
As shown in FIG. 5, the above-mentioned expanded lattice body has a current collecting part 1 consisting of a non-expandable part extending in the length direction A net-like portion 3 including a developed portion is formed between the current collecting portion 1 and the side edge portion 2. This mesh portion 3 is composed of a bone portion 3a and a tubercle portion 3b where the bone portion 3a intersects. Bone part 3a
The bone width W is determined according to the thickness of the rolled sheet, and conventionally, sheets 1 to 1 with a thickness of - are used.
The bone width W is the same for each bone portion 3a.

そして、集電部1に連接して第1段目の結節部3bが形
成されている。このにうな格子体の網状部3に活物質を
充填したものが蓄電池の極板として用いられている。
A first-stage knot portion 3b is formed in connection with the current collecting portion 1. The mesh portion 3 of this lattice body filled with an active material is used as the electrode plate of a storage battery.

[発明が解決すべぎ課題] 上記の極板において、例えば正極活物質は温度変化や電
池の充放電に伴って膨張・収縮を行うので、網状部3の
骨部3aや結節部3bに歪力が加わる。Ii!i節部3
bはその構成上、骨部3aに比し上記の歪力による歪を
生じ易く、電池の深い充放電や高温度での使用を続けた
り、長期間の使用に−より充放電ザイクルを繰り返すと
、集電部1の弱体化とともに集電部1に連接する結節部
3bの部分に生ずる永久歪により該結節部3bが損傷さ
れて、集電部1と網状部2との間の良好な導電性が損わ
れることがある。このために極板における良好な集電が
行なわれなくなって、電池の容量が低下したりズテ命が
短縮される等の耐久性の問題があっだ。これを改善すべ
く、近時、アンチモンを含有する鉛合金シートを用いた
エキスパンド格子体が開発されたが未だ十分ではない。
[Problems to be Solved by the Invention] In the above electrode plate, for example, the positive electrode active material expands and contracts with temperature changes and charging and discharging of the battery, so strain is applied to the bone portions 3a and tuberosities 3b of the mesh portion 3. is added. Ii! i section 3
Due to its structure, portion b is more likely to be distorted by the above strain force than bone portion 3a, and if the battery is repeatedly charged and discharged due to deep charging and discharging, continued use at high temperatures, or repeated charging and discharging cycles due to long-term use. As the current collector 1 weakens, the node 3b is damaged due to permanent strain generated in the node 3b connected to the current collector 1, and good conduction between the current collector 1 and the mesh part 2 is impaired. Sexuality may be impaired. As a result, good current collection at the electrode plates is not achieved, resulting in durability problems such as a decrease in battery capacity and a shortened battery life. In order to improve this, an expanded lattice using a lead alloy sheet containing antimony has recently been developed, but it is still not sufficient.

本発明の目的は上記の問題を改善した耐久性の良好な鉛
蓄電池用エキスパンド格子体及びその製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an expanded lattice for lead-acid batteries with good durability and a method for manufacturing the same, which improves the above-mentioned problems.

1課題を解決するための手段] 上記の目的を達成するために、請求項1に記載した発明
の鉛蓄電池用エキスパンド格子体は、鉛合金からなり、
幅方向の一端側に長さ方向に延びる非展開部からなる集
電部1を備え、他端側に長さ方向に延びる側縁部2を備
えて、前記集電部1と側縁部2との間に展開された網状
部3が形成されてなる鉛蓄電池用エキスパンド格子体に
おいて、前記鉛合金はアンチモン含有率が2重量パーセ
ント以下の鉛合金からなり、前記網状部3は該網状部を
形成する骨部3aが交差する結節部3bが前記集電部1
に連接して位置しないように形成したものである。
1. Means for Solving the Problem] In order to achieve the above object, an expanded lattice body for a lead-acid battery according to the invention set forth in claim 1 is made of a lead alloy,
A current collecting part 1 consisting of a non-deployable part extending in the length direction is provided at one end in the width direction, and a side edge 2 extending in the length direction is provided at the other end. In the expanded lattice body for a lead-acid battery, the lead alloy is made of a lead alloy having an antimony content of 2% by weight or less, and the mesh part 3 is formed between the mesh part 3 and the lead alloy. The tubercle part 3b where the bone parts 3a to be formed intersect is the current collecting part 1.
It is formed so that it is not located in conjunction with the

また、請求項3に記載した発明は、上記のエキ、−5− スパント格子体を製造する方法であって、この方法にお
いては、アンチモン含有率が2重量パーセント以下の鉛
合金からなるシートに、該シートの長さ及び幅の両方向
にそれぞれ相互に所定の位置関係をもつ所定のパターン
で多数のスリットを入れて、集電部1を形成する側に隣
接するスリット切込部分を前記シートの幅方向に展張さ
せ、前記シートの他のスリット切込部分は該シートの面
に直角方向に展張させて後、前記両方向への展張部分が
同一平面をなすように整形する。
Moreover, the invention described in claim 3 is a method for manufacturing the above-mentioned spunted lattice, in which a sheet made of a lead alloy having an antimony content of 2% by weight or less, A large number of slits are formed in a predetermined pattern having a predetermined positional relationship with each other in both the length and width directions of the sheet, and the slit cut portion adjacent to the side where the current collector 1 is formed is cut into the width of the sheet. The other slit cut portions of the sheet are stretched in a direction perpendicular to the surface of the sheet, and then shaped so that the stretched portions in both directions form the same plane.

更に、請求項2に記載した発明のように、前述のエキス
パンド格子体において、網状部3における骨部3aの骨
幅Wは集電部1に近接するにしたがって広幅どなり、側
縁部2に近接するにしたがって狭幅となるように形成す
ると効果的である。
Furthermore, as in the invention set forth in claim 2, in the above-mentioned expanded lattice body, the bone width W of the bone portions 3a in the net-like portion 3 becomes wider as it approaches the current collecting portion 1, and becomes wider as it approaches the side edge portion 2. It is effective to form it so that it becomes narrower as the width increases.

請求項4に記載した発明は、上記のように網状部3にお
ける骨部3aの骨幅分布を異にするエキスパンド格子体
を製造する方法であって、この方法においては、前述の
製造方法における鉛合金のシー1−として、集電部1を
形成する側の厚みを厚くし、側縁部2を形成する側に至
るにしたがって厚みを薄クシたシートを用いる。
The invention as set forth in claim 4 is a method for manufacturing an expanded lattice body in which the bone width distribution of the bone portions 3a in the mesh portion 3 is different as described above, and in this method, the lead in the manufacturing method described above is As the alloy sheet 1-, a sheet is used which is thicker on the side where the current collector 1 is to be formed and thinner as it approaches the side where the side edge 2 is to be formed.

[発明の作用] 上記の構成になる鉛蓄電池用エキスパンド格子体は、ア
ンチモン含有率が2重量パーセント以下の鉛合金からな
るので、前述の歪力に耐える適度の柔軟性が得られる。
[Operation of the Invention] Since the expanded lattice body for a lead-acid battery having the above-mentioned structure is made of a lead alloy having an antimony content of 2% by weight or less, it can have appropriate flexibility to withstand the above-mentioned strain force.

そして、網状部3における結節部3bが集電部1に連接
して位置しないように形成し、また、網状部3における
骨部3aの骨幅Wが集電部1に近接するにしたがって広
幅になり、側縁部2に近接するにしたがって狭幅になる
ようにも形成したので、本格子体を用いた蓄電池極板ば
、集電部1と網状部3との連結部分の強度が十分大きく
て、集電作用の耐久性が良好になる。
The knots 3b in the mesh part 3 are formed so as not to be located in connection with the current collecting part 1, and the bone width W of the bone part 3a in the mesh part 3 becomes wider as it approaches the current collecting part 1. In addition, since it is formed so that the width becomes narrower as it approaches the side edge 2, the strength of the connecting portion between the current collecting part 1 and the mesh part 3 of the storage battery electrode plate using this lattice is sufficiently large. Therefore, the durability of the current collecting function is improved.

更に、網状部3が上記のような骨幅分布を有すると、集
電時における格子体の幅方向の電圧降下分布が均一化さ
れて良好な集電が行なわれる。以上により寿命特性の良
好な鉛蓄電池が得られる。
Furthermore, when the mesh portion 3 has the bone width distribution as described above, the voltage drop distribution in the width direction of the grid body during current collection is made uniform, and good current collection is performed. Through the above steps, a lead-acid battery with good life characteristics can be obtained.

そして、前述の製造方法を用いると、網状部3における
結節部3bが集電部1に連接して位置しないように形成
されたエキスパンド格子体が容易に製造される。また、
集電部1を形成する側の厚みを厚くし、側縁部2を形成
する側に至るにしたがって厚みを薄くした鉛合金シート
を用いる請求項4の製造方法によると、網状部3におけ
る骨部3aの骨幅Wが前述のように異なっているエキス
パンド格子体が容易に製造される。
By using the above-described manufacturing method, an expanded lattice body in which the knots 3b of the net-like portion 3 are not located in connection with the current collecting portion 1 can be easily manufactured. Also,
According to the manufacturing method of claim 4, in which the lead alloy sheet is thickened on the side where the current collecting part 1 is formed and becomes thinner toward the side where the side edge part 2 is formed, the bone part in the mesh part 3 is used. Expanded lattice bodies in which the bone widths W of 3a are different as described above can be easily manufactured.

[実施例] 以下、本発明の二つの実施例を図面により説明する。第
1図及び第2図において、第5図の格子体と同一部分に
は同符号をイ」シて説明を簡略にする。第1の実施例の
格子体は、アンチモン含有率が2重量パーセント以下の
鉛合金からなる圧延シートをエキスパンド加工して、第
1図に示したよう(こ、結節部(骨部が交差する部分)
3bが集電部1に連接して位置しないように形成されて
いる。
[Examples] Two embodiments of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, the same parts as the grid body in FIG. 5 are designated by the same reference numerals to simplify the explanation. The lattice body of the first embodiment was made by expanding a rolled sheet made of a lead alloy with an antimony content of 2% by weight or less. )
3b is formed so that it is not located in connection with the current collecting section 1.

また、第2の実施例の格子体は、上記の構成に加えて、
第2図に示したように、網状部3を形成する骨部3aの
骨幅Wは集電部1に近接する部分を広幅とし、側縁部2
に近接するにしたがって狭幅になるように形成しである
In addition to the above configuration, the lattice body of the second embodiment also has the following features:
As shown in FIG. 2, the bone width W of the bone portion 3a forming the mesh portion 3 is wide at the portion close to the current collecting portion 1, and at the side edge 2.
It is formed so that the width becomes narrower as it approaches.

次に、上記実施例の格子体を得るについて行なった種々
の格子体の実験結果について述べる。まず、格子体の原
材料となる鉛合金シートとしては、アンチモン(Sb 
)の含有率がそれぞれ重量比で1%、2%、2.5%と
異なり、残部が重量比で、ヒ素01%、スズ0,03%
、ビスマス002%。
Next, the results of experiments on various lattice bodies conducted to obtain the lattice bodies of the above embodiments will be described. First, antimony (Sb
) content is 1%, 2%, and 2.5% by weight, respectively, and the remainder is 01% arsenic and 0.03% tin by weight.
, bismuth 002%.

セレン50ρpm、及び鉛からなる3種類の組成の異な
るものを用いた。
Three different compositions consisting of 50 ρpm of selenium and lead were used.

また別に、シートの形態としては、厚みが1.0〜1.
1111mと略均−なシートRと、集電部1となる非展
開部の厚みを厚り1.6〜1.7111111とし、集
電部1と対向する側縁部2となる側の厚みを薄り1.O
〜1.1mmとして、網状部3となる展開部の厚みを非
展開部側から側縁部側に至るにしたがって次第に薄肉に
したシートVとの2種類の異なるものを用いた。
Separately, the sheet has a thickness of 1.0 to 1.
The sheet R is approximately uniform at 1111 m, the thickness of the non-deployed part that becomes the current collector 1 is 1.6 to 1.7111111, and the thickness of the side that becomes the side edge 2 facing the current collector 1 is 1.6 to 1.7111111. Thin 1. O
-1.1 mm, and two different types of sheet V were used, in which the thickness of the developed part that becomes the net-like part 3 was gradually made thinner from the non-developed part side to the side edge side.

次に示す表1は、上記のシー1− Rでsb含有率を異
にするものを用いて制作したエキスパンド格子体の破損
率を示したものである。この破損率と−9= は、格子体の非展開部(集電部1)から3段目の結節部
3b以下の部分を固定し、集電部1から突出する耳部1
aの面に押圧力を加えて、格子体の集電部1の側を前記
固定部分に対して1秒間で606の角度屈曲させるテス
トを3回行なって、非展開部とR開部の境目での破損の
洩合を示したものである。
Table 1 below shows the failure rates of expanded lattice bodies produced using the above-mentioned Sea 1-R with different sb contents. This damage rate and -9= are determined by fixing the part below the third stage node 3b from the non-deployed part (current collecting part 1) of the lattice, and
A test was performed three times in which the current collecting part 1 side of the grid body was bent at an angle of 606 degrees for 1 second by applying a pressing force to the surface a, and the boundary between the non-deployed part and the R opening part was This figure shows the leakage of damage caused by the damage.

表  1 上表における加工形態Aとは、格子体を網状部3の結節
部3bが集電部1に連接して位置するように形成したも
の、加工形態Bとは、結節部3bが集電部1に連接して
位置しないように形成したものである。
Table 1 Processing form A in the above table means that the grid body is formed such that the nodules 3b of the net-like part 3 are connected to the current collecting part 1, and processing form B means that the nodal parts 3b of the mesh part 3 are located so that they are connected to the current collecting part 1. It is formed so that it is not located in connection with part 1.

上表に示したように、加工形態Aのものはsb含有率を
異にするいずれのシー1へを用いたものも破損率が高い
のに対して、加工形態Bのもので、sb含有率が2重量
%以下のシートを用いたものは前者に比し破損率が非常
に低いという結果が得られた。Sb含有率が2.5重量
%のシートを用いたものは、加工形態A、B共に破損率
が高いが、これはこのシートがSb含有率のJ:り低い
他の2種のシートに比し硬質となるため、屈曲テストに
耐える強度が低いものと思われる。
As shown in the table above, processing form A has a high breakage rate when using seams with different sb contents, whereas processing form B has a high breakage rate. The results showed that sheets using sheets with a content of 2% by weight or less had a much lower failure rate than the former. The sheet using a sheet with an Sb content of 2.5% by weight has a high breakage rate for both processed forms A and B, but this is because this sheet has a lower Sb content than the other two types of sheets. Since it is hard, it is thought that its strength to withstand bending tests is low.

次に示す表2は、Sb含有率が゛いずれも1重量%で、
前述の厚み特性を異にするシートRと、シートVを用い
て、加工形態をいずれもBとした二つのエキスパンド格
子体について、前述と同要領の屈曲テストを行なって得
られた破損率を示したものである。
Table 2 below shows that the Sb content is 1% by weight,
The breakage rates obtained by conducting the same bending test as described above for two expanded lattice bodies with processing form B using sheet R and sheet V having different thickness characteristics as described above are shown. It is something that

表  2 上表に見られるように、シートVを用いた格子体はシー
トRを用いた格子体に比し破損率が極めて低く、広い温
度範囲で十分な強度を有している。
Table 2 As seen in the above table, the lattice body using Sheet V has an extremely lower failure rate than the lattice body using Sheet R, and has sufficient strength over a wide temperature range.

次に、Sb含有率が1重量%のシートRを用いて得た加
工形態Bの格子体と、Sb含有率が同じのシー1− V
を用いて得た同形態の格子体とによりそれぞれ陽極板を
形成して、いずれも5時間率容量が43A11の単セル
蓄電池R′及びV−を製作し、これらの電池に40A3
0分の放電と2.5A10時間充電を繰り返し行うナイ
クル・テストを行なった結果を第4図に示した。同図の
縦軸は初期容量に対する容量変化率である。同図に見ら
れるように、電池V−は電池R−よりも多数回の充放電
ザイクルに対する耐久性が良好である。寿命周期の電池
R−における陽極板の劣化主原因は格子体の非展開部と
展開部との境目付近での腐食であった。
Next, a lattice body of processed form B obtained using sheet R with an Sb content of 1% by weight and a sheet 1-V with the same Sb content
Single cell storage batteries R' and V-, each with a 5-hour rate capacity of 43A11, were manufactured by forming anode plates with the same type of lattice body obtained using 40A3.
Figure 4 shows the results of a Nicle test in which the battery was repeatedly discharged for 0 minutes and charged at 2.5A for 10 hours. The vertical axis in the figure is the rate of change in capacity with respect to the initial capacity. As seen in the figure, battery V- has better durability against many charge/discharge cycles than battery R-. The main cause of deterioration of the anode plate in battery R-, which had a life cycle, was corrosion near the boundary between the non-deployed part and the developed part of the grid.

以上述べた種々の実験結果かられかるように、前記両実
雄側に当たる格子体は、強度が大きく耐久性が良好であ
る。
As can be seen from the various experimental results described above, the lattice bodies on both male and female sides have high strength and good durability.

次に、第1図に示した実施例の格子体を製造する方法の
実施例について述べる。格子体の原材料の鉛合金シート
としては、Sb含有率が2重量パーセント以下の前記シ
ートRを用い、第3図(A)に示したように、該シート
Rにカッタを用いて長さ方向×及び幅方向Yの両方向に
それぞれ相互に所定の位置関係をもつ所定のパターンで
多数のスリットS、S+ 、82を入れる。図示のよう
に集電部1となる部分に隣接するスリットS1.S2は
、他の部分のスリットSと形状・寸法及び相互の位置関
係等を若干具にしている。即ち、スリットS1は他のス
リットSに比し個々の長さを比較的短く、且つ長さ方向
の個々の相互間隔を比較的広くしである。そして、スリ
ットS2は、スリットS1相互間の位置に平らな頂部を
もち、スリット81両端部分の下方位置に前記頂部に連
なる裾部をもつ形のほぼ山形をなすように形成しである
Next, an example of a method for manufacturing the lattice body of the example shown in FIG. 1 will be described. As the lead alloy sheet for the raw material of the lattice body, the sheet R having an Sb content of 2% by weight or less is used, and as shown in FIG. 3(A), the sheet R is cut with a cutter in the longitudinal direction. A large number of slits S, S+, 82 are formed in a predetermined pattern having a predetermined positional relationship with each other in both the width direction Y and the width direction Y, respectively. As shown in the figure, the slit S1 adjacent to the portion that becomes the current collector 1. S2 has a slightly different shape, size, mutual positional relationship, etc. from the slit S in other parts. That is, the slits S1 have relatively short individual lengths compared to the other slits S, and have relatively wide intervals between each slit in the length direction. The slit S2 has a flat top at a position between the slits S1, and is formed into a substantially chevron-shaped shape with a hem portion connected to the top at a position below both ends of the slit 81.

上記のようにスリットを入れた第3図(A)のシートR
は、区域R1の部分(スリッ1〜S2の裾部より上の部
分)を第3図(B”)に示すようにY方向に引張って展
張し、残りの区域R2の部分は側縁部2をシート面と直
角の7方向に引張って展張することにより、第3図(C
)に示したように、Y方向に延びる非展開部4及び該非
展開部に連続した骨部3aと、該骨部3aに結節部3b
で連結されていてZ方向に延びる網状部3とからなる格
子体が得られる。この後、上記の網状部3と非展開部4
とが同一平面をなすように整形し、且つ、非展開部4の
部分を鎖線りの部分でカットすることにより集電部1及
び耳部1aを形成して、第1図に示した実施例のエキス
パンド格子体が得られる。かかる格子体の骨幅Wは、第
3図(C)かられかるように、シートRの厚みにより定
まる。即ち、本実施例では各骨部3aの骨幅Wは一様に
なっている。
Sheet R in Figure 3 (A) with slits made as above
The area R1 part (the part above the hem of the slits 1 to S2) is stretched in the Y direction as shown in FIG. Figure 3 (C
), a non-deployment portion 4 extending in the Y direction, a bone portion 3a continuous to the non-deployment portion, and a tubercle portion 3b on the bone portion 3a.
A lattice body consisting of net-like portions 3 connected with each other and extending in the Z direction is obtained. After this, the above-mentioned net-like part 3 and non-deployed part 4 are
The current collecting part 1 and the lug part 1a are formed by shaping the non-deployable part 4 so that they are on the same plane, and cutting the part of the non-deployed part 4 along the chain line part, thereby forming the embodiment shown in FIG. An expanded lattice of The bone width W of such a lattice body is determined by the thickness of the sheet R, as shown in FIG. 3(C). That is, in this embodiment, the bone width W of each bone portion 3a is uniform.

次に、第2図に示した実施例の格子体を製造する方法の
実施例について述べる。この場合は、エキスパンド加工
に用いる鉛合金シートとして前述の製造方法におりるシ
ートRに代えて、Sb含有率が2重量パーセント以下の
前記シートVを用いる。そして、該シートVに対するス
リットの入れ方及び展張の仕方は前述の製造方法と同様
にすることにより、骨部3aの骨幅Wが、前記シー1−
■の厚みの変化に対応して、集電部1に近接するにした
がって広幅となり、側縁部2に近接するにしたがって狭
幅となっている第2図に示した実施例の格子体が得られ
る。
Next, an example of a method for manufacturing the lattice body of the example shown in FIG. 2 will be described. In this case, the sheet V having an Sb content of 2% by weight or less is used in place of the sheet R used in the above manufacturing method as the lead alloy sheet used for expanding. Then, by making the slits in the sheet V and stretching them in the same manner as in the manufacturing method described above, the bone width W of the bone portion 3a is adjusted to the width of the sheet 1-
Corresponding to the thickness change in (2), the grid body of the embodiment shown in FIG. It will be done.

[発明の効果] 本発明は上述のように構成されているので、以下に述べ
るような効果を有する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

格子体を形成する鉛合金を、アンチモン含有率が2重量
パーセント以下の鉛合金とし、網状部における結節部が
集電部に連接して位置しないように形成したので、集電
部(非展開部)と網状部(展開部)の境目部分の強度が
大きい耐久性の良好な鉛蓄電池用エキスパンド格子体を
提供することができる。
The lead alloy forming the lattice body was a lead alloy with an antimony content of 2% by weight or less, and the nodules in the net-like part were formed so as not to be connected to the current collecting part. It is possible to provide an expanded lattice body for a lead-acid battery with good durability and high strength at the boundary portion between the mesh part and the mesh part (expanded part).

また、上記の構成に加えて、網状部における骨部の骨幅
を集電部に近接するにしたがって広幅とし、側縁部に近
接するにしたがって狭幅とすることにより、上記境目部
分の強度が一層大きい耐久性の極めて良好な格子体を提
供することができる。
In addition to the above configuration, the strength of the boundary portion is increased by making the bone width of the mesh portion wider as it approaches the current collector and narrower as it approaches the side edge. It is possible to provide a grid with greater durability and extremely good durability.

従って、かかる格子体を極板に用いることにより、鉛蓄
電池のか命特性を改善することができる。
Therefore, by using such a grid for the electrode plate, the life characteristics of a lead-acid battery can be improved.

そして、請求項3の製造方法によれば、網状部おける骨
部が交差する結節部が集電部に連接して位置しないよう
に形成された鉛蓄電池用エキスパンド格子体を容易に製
造することができる。
According to the manufacturing method of claim 3, it is possible to easily manufacture an expanded lattice body for a lead-acid battery, which is formed so that the nodule parts where the bone parts intersect in the mesh part are not located in connection with the current collecting part. can.

また、請求項4の製造方法によれば、上記の構成に加え
て、網状部にお【づる骨部の幅形態が前述のように異な
っている鉛蓄電池用エキスパンド格子体を容易に製造す
ることができる。
Further, according to the manufacturing method of claim 4, in addition to the above-mentioned configuration, it is possible to easily manufacture an expanded lattice body for a lead-acid battery in which the widths of the rib portions extending in the mesh portion are different as described above. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の格子体の異なる実
施例を示す正面図、第3図(A)、(B)、(C)は本
発明の格子体製造方法の実施例を示す説明図、第4図は
陽極板にそれぞれ本発明の異なる実施例の格子体を用い
た二つの鉛蓄電池の寿命特性を併せ示す特性曲線図、第
5図は従来の格子体の例を示す正面図である。 1・・・非展開部からなる集電部、2・・・側縁部、3
・・・展開部からなる網状部、3a・・・骨部、3b・
・・結節部。
FIGS. 1 and 2 are front views showing different embodiments of the lattice body of the present invention, and FIGS. 3(A), (B), and (C) show examples of the lattice manufacturing method of the present invention. An explanatory diagram, FIG. 4 is a characteristic curve diagram showing the life characteristics of two lead-acid batteries each using a grid body of a different embodiment of the present invention on the anode plate, and FIG. 5 is a front view showing an example of a conventional grid body. It is a diagram. 1... Current collecting part consisting of a non-deployed part, 2... Side edge part, 3
... Reticular part consisting of expanded parts, 3a... Bone part, 3b.
... Nodule.

Claims (4)

【特許請求の範囲】[Claims] (1)鉛合金からなり、幅方向の一端側に長さ方向に延
びる非展開部からなる集電部(1)を備え他端側に長さ
方向に延びる側縁部(2)を備えて、前記集電部(1)
と側縁部(2)との間に展開された網状部(3)が形成
されてなる鉛蓄電池用エキスパンド格子体において、 前記鉛合金はアンチモン含有率が2重量パーセント以下
の鉛合金からなり、前記網状部(3)は該網状部を形成
する骨部(3a)が交差する結節部(3b)が前記集電
部(1)に連接して位置しないように形成されているこ
とを特徴とする鉛蓄電池用エキスパンド格子体。
(1) It is made of a lead alloy, and has a current collecting part (1) consisting of a non-deployable part extending in the length direction on one end side in the width direction, and a side edge part (2) extending in the length direction on the other end side. , the current collector (1)
In the expanded lattice body for a lead-acid battery, the expanded grid part (3) is formed between the side edge part (2) and the side edge part (2), wherein the lead alloy is made of a lead alloy having an antimony content of 2% by weight or less, The net-like portion (3) is formed such that nodule portions (3b) where the bone portions (3a) forming the net-like portion intersect are not located in connection with the current collecting portion (1). Expanded grid for lead-acid batteries.
(2)網状部(3)における骨部(3a)の幅(w)は
集電部(1)に近接するにしたがって広幅となり、側縁
部(2)に近接するにしたがって狭幅となるように形成
されている請求項1記載の鉛蓄電池用エキスパンド格子
体。
(2) The width (w) of the bone portion (3a) in the mesh portion (3) becomes wider as it approaches the current collecting portion (1), and becomes narrower as it approaches the side edge portion (2). The expanded lattice body for a lead-acid battery according to claim 1, wherein the expanded lattice body is formed in a lead-acid battery.
(3)アンチモン含有率が2重量パーセント以下の鉛合
金からなるシートに、該シートの長さ及び幅の両方向に
それぞれ相互に所定の位置関係をもつ所定のパターンで
多数のスリットを入れて、集電部(1)を形成する側に
隣接するスリット切込部分を前記シートの幅方向に展張
させ、前記シートの他のスリット切込部分は該シートの
面に直角方向に展張させて後、前記両方向への展張部分
が同一平面をなすように整形することを特徴とする請求
項1記載の鉛蓄電池用エキスパンド格子体の製造方法。
(3) A sheet made of a lead alloy with an antimony content of 2% by weight or less is made with a large number of slits in a predetermined pattern having a predetermined positional relationship with each other in both the length and width directions of the sheet. The slit cut portion adjacent to the side where the electrical part (1) will be formed is expanded in the width direction of the sheet, and the other slit cut portion of the sheet is expanded in the direction perpendicular to the surface of the sheet, and then the 2. The method of manufacturing an expanded lattice for a lead-acid battery according to claim 1, wherein the expanded lattice is shaped so that the extending portions in both directions form the same plane.
(4)鉛合金からなるシートは、集電部(1)を形成す
る側の厚みを厚くし、側縁部(2)を形成する側に至る
にしたがって厚みを薄くしたシートを用いる請求項3記
載の鉛蓄電池用エキスパンド格子体の製造方法。
(4) The sheet made of lead alloy is thicker on the side where the current collecting part (1) is formed and becomes thinner toward the side where the side edge part (2) is formed. The method for manufacturing the expanded lattice body for lead-acid batteries described above.
JP63028209A 1988-02-09 1988-02-09 Expanded grid for lead-acid battery and manufacturing method thereof Expired - Fee Related JP2560770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028209A JP2560770B2 (en) 1988-02-09 1988-02-09 Expanded grid for lead-acid battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028209A JP2560770B2 (en) 1988-02-09 1988-02-09 Expanded grid for lead-acid battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01204364A true JPH01204364A (en) 1989-08-16
JP2560770B2 JP2560770B2 (en) 1996-12-04

Family

ID=12242263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028209A Expired - Fee Related JP2560770B2 (en) 1988-02-09 1988-02-09 Expanded grid for lead-acid battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2560770B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249391A (en) * 1990-02-28 1991-11-07 Riken Corp Turning rotor device
JPH046164U (en) * 1990-04-27 1992-01-21
JP2004342477A (en) * 2003-05-16 2004-12-02 Japan Storage Battery Co Ltd Battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
JP2007123105A (en) * 2005-10-28 2007-05-17 Gs Yuasa Corporation:Kk Grid body of lead-acid battery
US7976588B2 (en) 2001-11-21 2011-07-12 GS Yussa International Ltd. Storage battery with expanded grid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249391A (en) * 1990-02-28 1991-11-07 Riken Corp Turning rotor device
JPH046164U (en) * 1990-04-27 1992-01-21
US7976588B2 (en) 2001-11-21 2011-07-12 GS Yussa International Ltd. Storage battery with expanded grid
US8039153B2 (en) 2001-11-21 2011-10-18 GS Yhasa International, Ltd. Storage battery having expanded grid member
JP2004342477A (en) * 2003-05-16 2004-12-02 Japan Storage Battery Co Ltd Battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
JP2007123105A (en) * 2005-10-28 2007-05-17 Gs Yuasa Corporation:Kk Grid body of lead-acid battery

Also Published As

Publication number Publication date
JP2560770B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
TW459417B (en) Expanded grid for electrode plate of lead-acid battery
US6833218B2 (en) Direct cast lead alloy strip for expanded metal battery plate grids
JPH01204364A (en) Expanded grid for lead-acid battery and its manufacture
JP5521503B2 (en) Lead acid battery
JPH0481307B2 (en)
US3881952A (en) Lead-acid battery plates with expanded lead sheet grids
JP4062817B2 (en) Lead acid battery and manufacturing method thereof
JP4092816B2 (en) Lattice body for lead acid battery and method for manufacturing the same
JP3178064B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP4385557B2 (en) Expanded grid for battery and lead-acid battery using the same
JP4006888B2 (en) Manufacturing method of lead acid battery
JPS6055954B2 (en) Manufacturing method of expanded lattice for lead-acid battery plates
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP4224756B2 (en) Lead acid battery
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JP3427401B2 (en) Expanded grid for storage battery and method of manufacturing the same
JPH07320743A (en) Electrode plate for lead-acid battery
JP2000215898A5 (en)
GB2072930A (en) Grid plate
JPS6351055A (en) Manufacture of grid body for lead storage battery
JPH02220365A (en) Manufacture of spiral electrode group for alkaline battery
JPH11339812A (en) Lead-acid battery
JPH09289025A (en) Grid for lead-acid battery
JPS6041831B2 (en) Manufacturing method of electrode grid for lead-acid batteries
JPS58218758A (en) Plate for lead storage battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees