JPS5921781B2 - Method of manufacturing foam rubber - Google Patents

Method of manufacturing foam rubber

Info

Publication number
JPS5921781B2
JPS5921781B2 JP55166009A JP16600980A JPS5921781B2 JP S5921781 B2 JPS5921781 B2 JP S5921781B2 JP 55166009 A JP55166009 A JP 55166009A JP 16600980 A JP16600980 A JP 16600980A JP S5921781 B2 JPS5921781 B2 JP S5921781B2
Authority
JP
Japan
Prior art keywords
latex
hose
foaming machine
foam
foam rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55166009A
Other languages
Japanese (ja)
Other versions
JPS5789942A (en
Inventor
隆夫 中村
一尚 堀
康 江波
信弘 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP55166009A priority Critical patent/JPS5921781B2/en
Publication of JPS5789942A publication Critical patent/JPS5789942A/en
Publication of JPS5921781B2 publication Critical patent/JPS5921781B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は非ゲルラテツクスフオームラバーの製造方法に
関し、更に詳述すれば、密閉式起泡機によりラテックス
配合液と空気を撹拌、起泡し、非ゲルラテツクスフオー
ムラバーを製造する場合に、ラテックス配合液が高粘度
の場合でも密度の低い起泡物を安定に吐出させることが
でき、これにより0.29/cnt以下の低密度のフオ
ームラバーを製造することを可能とした非ゲルラテツク
スフオームラバーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing non-gel latex foam rubber, and more specifically, the present invention relates to a method for producing non-gel latex foam rubber. When manufacturing rubber, even if the latex compound liquid has a high viscosity, it is possible to stably discharge a foamed product with a low density, which makes it possible to manufacture foam rubber with a low density of 0.29/cnt or less. The present invention relates to a method for producing non-gel latex foam rubber.

非ゲルラテツクスフオームラバーはゲルタイプと異なり
、ゲル化工程において水と固形分との急激な分離を起さ
ないため、充填剤が多量に投入でき、コスト的に有利で
ある上、物理的特性、特に引張り特性に優れており、主
にカーペットの裏打ち用として使用されている。
Unlike gel-type rubber, non-gel latex foam rubber does not cause rapid separation of water and solids during the gelling process, so a large amount of filler can be added, which is advantageous in terms of cost and physical properties. It has particularly excellent tensile properties and is mainly used as a carpet lining.

しかし、非ゲルラテツクスフオームラバーは、起泡物を
ゲル化、凝固することなく直ちに加熱して乾燥、加硫す
るため、加熱時の起泡物の安定性が必要であり、このた
めラテックス配合液の固形分量を上げ、更に増粘剤の添
加によつてラテックス配合液の粘度を高くすることが行
なわれているが、ラテックス配合液の固形分が大きく、
粘度が高いと泡立てが非常に困難となり、密度の大きい
起泡物しか得ることができず、フォーム製品も0.29
/粛以上の密度のものしか安定して製造できない。
However, with non-gel latex foam rubber, the foamed material must be stable during heating because it is immediately heated, dried, and vulcanized without gelling or solidifying. Although efforts have been made to increase the viscosity of latex blended liquids by increasing the solid content of the liquid and further adding thickeners, the solid content of latex blended liquids is large and
If the viscosity is high, it will be very difficult to foam, and only foams with a high density can be obtained, and foam products with a density of 0.29
Only products with densities higher than 1.5mm can be manufactured stably.

例えば、第1図に示したような円筒状ステーター1内に
円柱状ローター2を回転可能に配設し、ステーター1内
壁及びローター2外壁にそれぞれ撹拌用ピン3、3’を
多数突設してなる密閉式ピンミキサタイプの起泡機(ユ
ーロマテイツクタイプ)4にラテックス配合液及び空気
をそれぞれその導入口5、6から起泡機4内に導入し、
ローター2を回転させてラテックス配合液と空気とを撹
拌、起泡させ、起泡機4の吐出口7に内径30〜50m
mのホース8を取り付けてホース出口より起泡物を吐出
させる場合、ラテックス配合液の固形分が70〜80%
と大きく、かつ粘度が500〜5000cpsと高いと
、安定した状態で泡をつくることができるのは密度O、
3y/crit以上のフォーム製品を製造する場合であ
り、それ以下の密度のフォーム製品を得ようとしても安
定した起泡物が得られない。この場合、起泡物の密度を
更に低下させるために空気の投入量を増加しても空気と
ラテックス配合液とが分離した状態で吐出され、起泡物
の密度は低下しない。このような分離現象は、起泡機に
よつて泡立てようとするラテツクス配合液の流量が多く
なると(必然的に空気の流量も多くしなければならない
)、より顕著になる。また、起泡物の密度を低下させる
方法として、ラテツクス配合液の固形分を低くし、液の
粘度を下げることも提案され、この場合には起泡物の密
度を低下させることができ、比較的低密度のフオームラ
バ一を得ることができるが、ラテツクス配合液の固形分
の低下に伴ない、乾燥、加硫に要する熱エネルギーが大
きくなると共に、乾燥、加硫時の起泡物の安定性が低下
し、製造されるフオームラバ一の物性も低下し、また充
填剤の配合部数を多くすることができない等の問題が生
じ、コスト的、プロセス的に実際的ではないという欠点
を有する。
For example, a cylindrical rotor 2 is rotatably disposed within a cylindrical stator 1 as shown in FIG. A latex blended liquid and air are introduced into the foaming machine 4 of a closed type pin mixer type (Euromatic type) from the inlet ports 5 and 6, respectively.
The rotor 2 is rotated to stir and foam the latex mixture and air, and the inner diameter is 30 to 50 m.
When attaching hose 8 of 1.5 m and discharging foamed material from the hose outlet, the solid content of the latex compound liquid is 70 to 80%.
If the foam is large and has a high viscosity of 500 to 5000 cps, it is possible to create bubbles in a stable state with a density of O,
This is the case when producing a foam product with a density of 3 y/crit or more, and even if an attempt is made to obtain a foam product with a density lower than that, a stable foam product cannot be obtained. In this case, even if the amount of air input is increased in order to further reduce the density of the foamed product, the air and the latex blended liquid are discharged in a separated state, and the density of the foamed product does not decrease. Such a separation phenomenon becomes more noticeable as the flow rate of the latex mixture to be foamed by the foaming machine increases (inevitably, the flow rate of air must also increase). In addition, as a method of reducing the density of the foamed product, it has been proposed to lower the solid content of the latex compound liquid and lower the viscosity of the liquid.In this case, the density of the foamed product can be reduced, and compared to However, as the solid content of the latex mixture decreases, the thermal energy required for drying and vulcanization increases, and the stability of the foam during drying and vulcanization increases. This method has disadvantages in that it is impractical in terms of cost and process, as it causes problems such as a decrease in the physical properties of the foam rubber produced, and the inability to increase the amount of filler blended.

このように、非ゲルラテツクスフオームラバ一は、通常
密度0.2f!/d以上のものしか安定して製造し得ず
、それ以下の密度を有するフオーム製品を得るのは困難
で、このため非ゲルラテツクスフオームラバ一をマツト
レス、座布団などのクツシヨン剤として使用しようとし
ても、フオーム密度が0.2g/d以上であるために製
品重量が大きくなり、日常の使用に不便をきたすと共に
、製品が高価になり、またいずれにしてもフオームラバ
一の硬さが大きく、クツシヨン材として一般的に不適で
ある等の問題を有していた。
Thus, non-gel latex foam rubber usually has a density of 0.2f! It is difficult to obtain foam products with a density lower than that, and for this reason, attempts have been made to use non-gel latex foam rubber as cushioning agents for pinerests, cushions, etc. However, since the foam density is 0.2 g/d or more, the weight of the product becomes large, making it inconvenient for daily use and making the product expensive. It had problems such as being generally unsuitable as a material.

本発明は上記事情を改善したもので、フオーム密度が低
く、マツトレス、座布団等のクツシヨン材としても好適
に使用し得る非ゲルラテツクスフオームラバ一を簡単か
つ確実に、しかも安価に製造する方法を提供することを
目的とする。
The present invention has improved the above-mentioned situation, and provides a method for simply, reliably, and inexpensively manufacturing non-gel latex foam rubber that has a low foam density and can be suitably used as cushioning material for pinerests, cushions, etc. The purpose is to provide.

即ち、本発明者らは低密度の非ゲルラテツクスフオーム
ラバ一の製造方法につき鋭意検討を行なつた結果、密閉
式ピンミキサタイプ等の密閉式起泡機にラテツクス配合
液と空気とを導入してラテツクス配合液を起泡し、この
起泡物を吐出させ、乾燥、加硫して非ゲルラテツクスフ
オームラバ一を製造するに際し、起泡機吐出口にオリフ
イス又はバルブを設けたり、起泡機吐出口に小径のホー
スを取り付けるなどして起泡物吐出通路に絞りを与え、
起泡機の内部圧力を高くして起泡を行なわせると共に、
吐出通路出口の径を大きくして起泡物を吐出通路出口か
ら低速度で吐出させること、特に好ましくは起泡機の内
部圧力を2kg/Cd以上、特に2〜8kg/C7ll
とし、吐出通路出口の流速を1.2m/Sec以下とす
ることにより、ラテツクス配合液が500〜5000c
psという高粘度の場合でも密度の低い起泡物を安定し
て連続的に吐出させることができ、これによつて密度0
.29/d以下の低密度非ゲルラテツクスフオームラバ
一をも確実に製造することができ、上記目的が達成され
ることを知見し、本発明をなすに至つたものである0以
下、本発明につき第2図乃至第5図を参照して詳述する
That is, the inventors of the present invention have conducted intensive studies on the manufacturing method of low-density non-gel latex foam rubber, and as a result, introduced a latex mixture and air into a closed foaming machine such as a closed pin mixer type. When producing a non-gel latex foam rubber by foaming a latex blended liquid and discharging the foamed product, drying and vulcanizing, an orifice or valve is provided at the discharge port of the foaming machine, or Attach a small diameter hose to the foam machine discharge port to restrict the foam discharge passage.
In addition to increasing the internal pressure of the foaming machine to perform foaming,
The diameter of the outlet of the discharge passage is increased to discharge the foamed material from the outlet of the discharge passage at a low speed, particularly preferably the internal pressure of the foaming machine is 2 kg/Cd or more, particularly 2 to 8 kg/C7ll.
By setting the flow velocity at the outlet of the discharge passage to 1.2 m/Sec or less, the latex mixed liquid is
Even when the viscosity is as high as
.. It was discovered that low density non-gel latex foam rubber with a density of 29/d or less can be reliably produced and the above object is achieved, and the present invention has been completed. This will be explained in detail with reference to FIGS. 2 to 5.

本発明に係る非ゲルラテツクスフオームラバ一の製造方
法は、密閉式起泡機にラテツクス配合液と空気とを導入
し、ラテツクス配合液を起泡すると共に、この起泡物を
吐出させる場合にその吐出通路に絞りを与え、これによ
つて起泡機の内部圧力を高め、かつ吐出通路出口の径を
大きくして比較的低速度で吐出通路出口から起泡物を吐
出させるもdで、第2図乃至第5図はそれぞれ本発明方
法の実施に使用する装置の一例を示したものであり(な
お、第2図乃至第5図の装置において、起泡機の構成は
第1図の起泡機と同一であるため、同一機成部品に同一
の参照符号を付し、その説明を省略する。
The method for producing non-gel latex foam rubber according to the present invention involves introducing a latex mixture and air into a closed foaming machine, foaming the latex mixture, and discharging the foamed product. A throttle is provided to the discharge passage, thereby increasing the internal pressure of the foaming machine, and the diameter of the outlet of the discharge passage is increased to discharge the foamed material from the outlet of the discharge passage at a relatively low speed. Figures 2 to 5 each show an example of the apparatus used to carry out the method of the present invention (in the apparatuses shown in Figures 2 to 5, the configuration of the foaming machine is the same as that in Figure 1). Since it is the same as the foaming machine, the same mechanical parts are given the same reference numerals and the explanation thereof will be omitted.

)、吐出通路の絞り方法を示したものである。この点に
つき更に説明すると、第2図の装置においては、起泡機
4の吐出口7にオリフイス9を取り付け、これに更に全
長に亘つて同一内径の吐出ホース10を取り付け、起泡
機吐出口7、オリフイス9及び吐出ホース10から形成
される起泡物吐出通路11をオリフイス9の配設によつ
て絞るようにしたものであり、第3図の装置においては
、第2図の装置においてオリフイス9の代りにバルブ9
′を配設することにより吐出通路11に絞りを加えたも
のである。
), which shows the method of throttling the discharge passage. To further explain this point, in the device shown in FIG. 7. The foamed material discharge passage 11 formed by the orifice 9 and the discharge hose 10 is narrowed by the arrangement of the orifice 9. Valve 9 instead of 9
By arranging ', a restriction is added to the discharge passage 11.

また、第4図の装置は、起泡機吐出口7にバルブ9′を
設けかつ入口側から出口側に向うに従い漸次内径の大き
くなる吐出ホース10′を取り付けることにより、吐出
通路11出口での起泡物の吐出速度をより遅くしたもの
であり(なお、吐出ホース10′の長さは0.5m以上
とすることが好ましく、また内径の広がりは長さ1m当
り直径502m1以下の割合で広げるようにすることが
好ましい。なおまた、吐出ホース10′の入口側内径を
より狭くして絞りを与えるようにすることもできる。)
、第5図の装置は、起泡機吐出口7に小径の第1ホース
10aを取り付けると共に、この第1ホース10aにそ
れより大径の第2ホース10bを取り付け、更に第2ホ
ース10bにそれより大径の第3ホース10cを取り付
けたもので、このように内径の互に異なる複数本のホー
スを径の小さい順に順次連結し、最も内径の小さいホー
スを起泡機吐出口7に取り付けることにより、最小内径
のホース10aによつて吐出通路11に絞りを与えるよ
うにしたものであつて、かつ大径のホースを連結してあ
るのは吐出通路出口での起泡物の吐出速度を遅くしたも
のである(なお、各ホース10a,b,cの長さはそれ
ぞれ0.5m以上とすることが好ましい)。この場合、
入口側から出口側に向うに従い漸次内径の大きくなる吐
出ホース10′の入口端内径、或いは最小内径のホース
10aの内径を第4,5図にそれぞれ示すように起泡機
吐出口7よりも小径に形成することにより、更に絞り効
果を高めることができる。なお、絞り方法は上記方法に
限定されるものではなく、種々の変更が可能であり、ま
た上述した絞り方法を適宜組合せることもできる。本発
明はこのように起泡物の吐出通路を絞り、吐出流路の出
口側を広く形成し、起泡機の内部圧力を高めると共に、
吐出通路出口から起泡物を低圧、低速度で吐出させるよ
うにしたものであり、これにより泡つぶれなどの発生し
ない状態で低密度の起泡物を安定して吐出させることを
可能にし、低密度の非ゲルラテツクスフオームラバ一を
得ることを可能にしたものである。
In addition, the device shown in FIG. 4 has a valve 9' at the foaming machine discharge port 7 and a discharge hose 10' whose inner diameter gradually increases from the inlet side to the outlet side, so that the discharge passage 11 can be The foamed material is discharged at a slower speed (the length of the discharge hose 10' is preferably 0.5 m or more, and the inner diameter is expanded at a rate of 502 m1 or less in diameter per 1 m of length). (Furthermore, it is also possible to make the inner diameter of the discharge hose 10' narrower on the inlet side to provide a restriction.)
In the apparatus shown in FIG. 5, a first hose 10a with a small diameter is attached to the foaming machine discharge port 7, a second hose 10b with a larger diameter is attached to the first hose 10a, and a second hose 10b with a larger diameter is attached to the second hose 10b. A third hose 10c with a larger diameter is attached, and in this way, a plurality of hoses with different inner diameters are connected in order of decreasing diameter, and the hose with the smallest inner diameter is attached to the foaming machine discharge port 7. Therefore, the discharge passage 11 is restricted by the hose 10a with the minimum inner diameter, and the hose with a large diameter is connected to slow down the discharge speed of foamed material at the outlet of the discharge passage. (The length of each hose 10a, b, c is preferably 0.5 m or more). in this case,
The inner diameter of the inlet end of the discharge hose 10', which gradually increases in inner diameter from the inlet side to the outlet side, or the inner diameter of the hose 10a with the minimum inner diameter is set to a diameter smaller than the foaming machine outlet 7, as shown in FIGS. 4 and 5, respectively. The aperture effect can be further enhanced by forming the aperture. Note that the squeezing method is not limited to the above method, and various changes can be made, and the squeezing methods described above can be combined as appropriate. In this way, the present invention constricts the discharge passage of the foamed material, widens the outlet side of the discharge passage, increases the internal pressure of the foaming machine, and
The foamed material is discharged from the outlet of the discharge passage at low pressure and low speed. This makes it possible to stably discharge low-density foamed material without causing bubble collapse, etc. This made it possible to obtain a non-gel latex foam rubber with a high density.

これに対し、第1図に示したように単に起泡機吐出口に
全長に亘つて同一内径のホースを連結してもこのような
効果は得られない。ホースの口径を小さくしても、ラテ
ツクス配合液と空気の流量を増加させた場合はホース先
端(流路出口)で泡つぶれが発生し、起泡物の密度が大
きいものとなる。これはホース先端での起泡物の吐出流
速が大きくなつて泡がつぶれるものであり、このような
起泡物の吐出流速が大きくなる状態に対しては第4,5
図に示したようなホースの連結方法を採用し、起泡物の
吐出速度を低下させることが好ましい。吐出通路の絞り
の程度は、起泡機の大きさや起泡機に送り込むラテツク
ス配合液及び空気の量、更に所望するフオームラバ一密
度等によつて相違するが、起泡機の内部圧力が2kg/
Cd以上、より好ましくは2〜8kg/C7llになる
ように絞り、かつ吐出通路出口において起泡物が流速1
.2m/Sec以下で流れるようにすることが好ましく
、これによリラテツクス配合液が高粘度の場合にも低密
度の起泡物を確実に吐出させることができ、密度0.2
9/CTl以下のフオームラバ一を確実に製造すること
ができる。
On the other hand, such an effect cannot be obtained even if a hose having the same inner diameter is simply connected to the discharge port of the foaming machine over its entire length as shown in FIG. Even if the diameter of the hose is reduced, if the flow rate of the latex mixture and air is increased, bubbles will collapse at the end of the hose (flow path outlet), resulting in a high density of foamed material. This is because the discharge flow rate of the foamed material at the tip of the hose increases and the foam collapses.
It is preferable to use the hose connection method shown in the figure to reduce the discharge speed of the foamed material. The degree of constriction of the discharge passage varies depending on the size of the foaming machine, the amount of latex mixture and air sent into the foaming machine, and the desired foam rubber density, etc.
Cd or more, preferably 2 to 8 kg/C7 ll, and the foamed material has a flow rate of 1 at the outlet of the discharge passage.
.. It is preferable to flow at a rate of 2 m/Sec or less, so that even if the Relatex compounded liquid has a high viscosity, a low-density foam can be reliably discharged.
Foam rubber having a value of 9/CTl or less can be manufactured reliably.

これに対し、起泡機内部の圧力が2k9/dより低いと
泡と空気が分離して吐出される現象が発生して低密度の
起泡物を安定して吐出できない場合が生じる。なお、8
kg/dより高くしても差支えないが、この場合は高耐
圧性の装置が必要となる。また、吐出通路出口における
起泡物の流速が1.2m/Secよりも早い場合は通路
出口で泡つぶれが発生して起泡物の密度が大きくなり、
0.2f1/Crl以下の低密度のフオームラバ一を得
ることができない場合が生じる。より具体的に例示する
と、後述する実施例に示す起泡機を用いる場合、ラテツ
クス流量1k9/Mmの時は起泡機内圧41<9/Cr
l以上、ラテツクス流量2k9/Mi!lの時は内圧5
1<9/Cd以上、ラテツクス流量3kg/Mmの時は
内圧6kg/d以上とし、吐出通路出口における起泡物
の流速1.2m/Sec以下とすることにより、密度0
.19/d程度の起泡物を良好に製造することができる
On the other hand, if the pressure inside the foaming machine is lower than 2k9/d, a phenomenon occurs in which bubbles and air are separated and discharged, and a low-density foamed product may not be stably discharged. In addition, 8
There is no problem even if it is higher than kg/d, but in this case, a device with high pressure resistance is required. Furthermore, if the flow velocity of the foam at the outlet of the discharge passage is faster than 1.2 m/Sec, bubble collapse will occur at the outlet of the passage and the density of the foam will increase.
There may be cases where it is not possible to obtain a foam rubber with a low density of 0.2f1/Crl or less. To give a more specific example, when using the foaming machine shown in the example below, when the latex flow rate is 1k9/Mm, the internal pressure of the foaming machine is 41<9/Cr.
l or more, latex flow rate 2k9/Mi! When l, internal pressure is 5
When 1<9/Cd or more, the internal pressure is 6 kg/d or more when the latex flow rate is 3 kg/Mm, and the flow rate of the foamed material at the outlet of the discharge passage is 1.2 m/Sec or less, so that the density is 0.
.. A foamed material having a diameter of about 19/d can be produced satisfactorily.

本発明において、ラテツクス配合液の組成に特に制限は
なく、通常の非ゲルラテツクスフオームラバ一の製造に
用いる組成のものが使用でき、天然ラテツクス、SBR
ラテツクス等の合成ラテツクス、イオウ、メルカプトベ
ンゾチアゾール亜鉛塩、ジエチルジチオカルバミン酸亜
鉛等の加硫促進剤、スチレン化フエノール等の老化防止
剤、亜鉛華、クレー、タルク、炭酸カルシウム、マイカ
等の充填剤、界面活性剤などの成分を適宜混合した通常
の組成のものを用いることができる。
In the present invention, there is no particular restriction on the composition of the latex compounding liquid, and those having the composition used in the production of ordinary non-gel latex foam rubber can be used, such as natural latex, SBR, etc.
Synthetic latex such as latex, sulfur, vulcanization accelerators such as mercaptobenzothiazole zinc salt, zinc diethyldithiocarbamate, anti-aging agents such as styrenated phenol, fillers such as zinc white, clay, talc, calcium carbonate, mica, etc. A conventional composition prepared by appropriately mixing components such as a surfactant can be used.

また、起泡機の種類は必ずしも上述した図面に示すタイ
プのものに限定されないが、本発明は低粘度のラテツク
ス配合液だけでなく、粘度500〜5000cpsとい
う高粘度のラテツクス配合液に対しても好適に採用され
得るもので、特に物性の優れたフオームラバ一を得るこ
とができる上、充填剤部数を多く配合でき、しかも乾燥
、加硫に要する熱エネルギーを小さくすることができる
ので安価に製造できる等の利点を有することから粘度5
00〜5000cps程度の高粘度のラテツクス配合液
に本発明方法を適用することが効果的であり、この場合
には図示したような密閉ピンミキサタイプのユーロマテ
イツクタイプ起泡機を使用することが好ましい。なおま
た、起泡物吐出以後の工程は従来の非ゲルラテツクスフ
オームラバ一の製造の場合と同じ工程が採用でき、熱風
吹付け等の所望の手段により所望温度で乾燥、加硫し、
フオームラバ一を製造する。
Furthermore, although the type of foaming machine is not necessarily limited to the type shown in the above-mentioned drawings, the present invention can be applied not only to low-viscosity latex mixtures but also to high-viscosity latex mixtures with a viscosity of 500 to 5,000 cps. It can be suitably adopted, and it is possible to obtain a foam rubber with particularly excellent physical properties, and it can be manufactured at a low cost because it can contain a large number of fillers, and the thermal energy required for drying and vulcanization can be reduced. The viscosity is 5 because it has the advantages of
It is effective to apply the method of the present invention to a latex compound liquid with a high viscosity of about 00 to 5,000 cps, and in this case, it is possible to use a closed pin mixer type euromatic foaming machine as shown in the figure. preferable. Furthermore, the steps after discharging the foam can be the same as in the case of manufacturing conventional non-gel latex foam rubber, such as drying and vulcanization at a desired temperature by a desired means such as hot air blowing,
Manufactures foam rubber.

この場合、乾燥、加硫に際して熱風を使用し、乾燥、加
硫の初期に熱風量を多くしたり(製品1イ当り20〜8
0TI?【、好ましくは40〜50イ/Mm)、熱風温
度を高くしたり(120〜150℃、好ましくは140
〜150℃)して熱風の供給エネルギー量を大きくし、
乾燥、加硫の終期に熱風量を低くしたり(製品1d当り
10〜50イ/M7!t1好ましくは20〜30イ/M
m)、熱風温度を低くしたり(80〜130℃、好まし
くは100〜120℃)して熱風の供給エネルギー量を
小さくすると、安定して乾燥、加硫を行なうことができ
、特に低密度で厚さの大きいフオームラバ一製品を得る
場合に効果的である。以上説明したように、本発明は起
泡物吐出通路を絞り、起泡機の内部圧力を好ましくは2
kg/c!11以上、特に2〜8kg/Cdに高めると
共に、通路出口において起泡物を1,2m/Sec以下
の低速度で吐出するようにしたことにより、粘度500
〜5000cpsという高粘度のラテツクス配合液を用
いる場合にも、低密度で泡つぶれなどのない良好な起泡
物を安定して連続的に吐出させることができ、0.29
/Crlt以下の低密度のシート状フオームラバ一をも
簡単かつ確実に、しかも安価に製造できるものであり、
従つてクツシヨン材として好適に使用し得る非ゲルラテ
ツクスフオームラバ一を安価に提供し得るものである。
次に、実施例と比較例を示し、本発明を更に具体的に説
明するが、本発明は下記の実施例に限定されるものでは
ない。
In this case, hot air is used during drying and vulcanization, and the amount of hot air is increased at the beginning of drying and vulcanization (20 to 8
0TI? [, preferably 40 to 50 I/Mm], or increase the hot air temperature (120 to 150 °C, preferably 140
~150℃) to increase the amount of energy supplied by hot air,
At the final stage of drying and vulcanization, reduce the hot air volume (10 to 50 i/M7!t1 preferably 20 to 30 i/M per 1 d of product)
m) By lowering the hot air temperature (80 to 130°C, preferably 100 to 120°C) and reducing the amount of energy supplied to the hot air, stable drying and vulcanization can be achieved, especially at low density. This is effective when obtaining a foam rubber product with a large thickness. As explained above, the present invention narrows down the foamed material discharge passage and preferably lowers the internal pressure of the foaming machine to 2.
kg/c! By increasing the viscosity to 11 or more, especially 2 to 8 kg/Cd, and discharging the foamed material at a low speed of 1.2 m/Sec or less at the exit of the passage, the viscosity is 500
Even when using a latex compounded liquid with a high viscosity of ~5000 cps, it is possible to stably and continuously discharge a good foamed product with low density and no bubble collapse, and 0.29 cps.
/Crlt or less low-density sheet-like foam rubber can be easily and reliably produced at low cost,
Therefore, it is possible to provide a non-gel latex foam rubber that can be suitably used as a cushion material at a low cost.
Next, the present invention will be explained in more detail by showing examples and comparative examples, but the present invention is not limited to the following examples.

なお、下記の例において、使用したラテツクス配合液の
処方及び使用起泡機は下記の通りである。
In the following examples, the formulation of the latex mixture and the foaming machine used are as follows.

ラテツクス配合液SBRラテツクスと天然ゴムラテツク
スの混合品に必要量のイオウ、加硫促進剤、老化防止剤
、亜鉛華、充填剤、及び界面活性剤を加え、ラテツクス
配合液を調製した。
Latex Compound Solution A latex compound solution was prepared by adding required amounts of sulfur, vulcanization accelerator, anti-aging agent, zinc white, filler, and surfactant to a mixture of SBR latex and natural rubber latex.

使用起泡機 ユーロマテイツクタイプ起泡機 1 ;→I閂y)− − VVJLド▲五〔実施例
1〕上記起泡機の吐出口(口径30mI)に絞り用とし
て51mφのオリフイスを取り付け、更に内径20um
φの吐出ホース5mを取り付けた。
Foaming machine used: Euromatic type foaming machine 1;
1] Attach a 51 mφ orifice for squeezing to the discharge port (bore diameter 30 mI) of the above foaming machine, and also add an orifice with an inner diameter of 20 μm.
A 5m diameter discharge hose was attached.

起泡機にラテツクスを流量2.0kg/7707!、空
気を18.01/Mm(常温、常圧での値、以下同じ)
の割合で導入、起泡し、ホースより連続的にコンベア上
に起泡物を吐出し、熱風量製品1TrI当り307r?
/i1熱風温度初期145℃、終期120℃の条件で乾
燥、加硫し、フオームラバ一を得た。このときの起泡機
内部の圧力は5.0k9/dであり、吐出ホース出口の
起泡物の流速は1.1m/Secで起泡物の吐出状態は
安定していた。
Flow rate of latex to the foaming machine is 2.0kg/7707! , air is 18.01/Mm (value at normal temperature and pressure, same below)
The foam is introduced and foamed at a rate of 307 r per 1 TrI product, and the foam is continuously discharged from a hose onto a conveyor.
/i1 Drying and vulcanization were carried out under the conditions of hot air temperature of 145° C. at the beginning and 120° C. at the final stage to obtain a foam rubber. At this time, the pressure inside the foaming machine was 5.0 k9/d, the flow rate of the foamed material at the outlet of the discharge hose was 1.1 m/Sec, and the discharge state of the foamed material was stable.

また、得られた起泡物の密度は0.109/Crlであ
り、これを乾燥、加硫することにより密度約0.075
9/Cllのフオームラバ一が得られた。〔実施例 2
〕 起泡機の吐出口に絞り用として内径12m1Lφのホー
ス5mを取り付け、その先端に更に内径20關φのホー
ス1mを取り付け、実施例1と同じ流量条件で起泡し、
フオームラバ一を得た。
The density of the obtained foamed material was 0.109/Crl, and by drying and vulcanizing it, the density was approximately 0.075.
A foam rubber of 9/Cl was obtained. [Example 2
] A 5 m hose with an inner diameter of 12 m 1 Lφ was attached to the outlet of the foaming machine for squeezing, and a 1 m hose with an inner diameter of 20 Lφ was attached to the tip of the hose, and foaming was carried out under the same flow rate conditions as in Example 1.
I got a foam mule.

このときの起泡機内部圧力は5.2kg/Cdl吐出ホ
ース出口での起泡物の流速は1.1m/Secであり、
起泡物の吐出状態は安定していた。
At this time, the internal pressure of the foaming machine was 5.2 kg/Cdl, and the flow rate of the foamed material at the outlet of the discharge hose was 1.1 m/Sec.
The discharge state of the foamed material was stable.

また、得られた起泡物の密度は0.109/dであつた
。〔実施例 3〕起泡機の吐出口に絞り用として6m1
!Lφのオリフイスを取り付け、更に内径20m1φの
ホース5mを取り付けた。
Moreover, the density of the obtained foamed material was 0.109/d. [Example 3] 6m1 for squeezing at the outlet of the foaming machine
! An Lφ orifice was attached, and a 5 m hose with an inner diameter of 20 m and 1φ was also attached.

このホースの先端側1mの部分は先端に向うにしたがつ
て内径が漸次拡大するように形成し、ホース吐出口の内
径が231m1こなるようにした。起泡機にラテツクス
を流量3.0kg/Mml空気を27.0/Mulの割
合で導入、起泡し、ホースより連続的にコンベア上に起
泡物を吐出し、実施例1と同じ条件で乾燥、加硫し、フ
オームラバ一を得た。このとき、起泡機内部圧力は6、
0K9/Cdであり、ホース出口での起泡物の流速は1
.2m/Secで、起泡物の吐出状態は安定していた。
The 1 m portion of this hose on the distal end side was formed so that the inner diameter gradually increased toward the distal end, so that the inner diameter of the hose discharge port was 231 m1. Latex was introduced into a foaming machine at a flow rate of 3.0 kg/Mml and air at a rate of 27.0/Mul, foamed, and the foam was continuously discharged from a hose onto a conveyor under the same conditions as Example 1. It was dried and vulcanized to obtain a foam rubber. At this time, the internal pressure of the foaming machine is 6,
0K9/Cd, and the flow rate of foam at the hose outlet is 1
.. The discharge state of the foamed material was stable at 2 m/Sec.

また、得られた起泡物の密度は0.109/CTilで
あつた。〔実施例 4〕起泡機の吐出口に絞り用として
内径12mmφの第1ホース5mを取り付け、この第1
ホースの先端に内径20m7!Lφの第2ホースを1m
1更にこの第2ホース先端に内径25m77!φの第3
ホース1mを取り付け、実施例3と同じ流量条件で起泡
し、同様にフオームラバ一を得た。
Moreover, the density of the obtained foam was 0.109/CTil. [Example 4] A first 5 m hose with an inner diameter of 12 mmφ was attached to the discharge port of the foaming machine for squeezing.
Inner diameter 20m7 at the end of the hose! The second hose of Lφ is 1m.
1 Furthermore, the inner diameter of this second hose tip is 25m77! 3rd of φ
A 1 m hose was attached and foaming was carried out under the same flow rate conditions as in Example 3 to obtain a foam rubber in the same manner.

このときの起泡機内部圧力は6.2kg/(177fで
あり、第3ホース出口での起泡物の流速は1.0m/S
ecで、起泡物の吐出状態は安定していた。
At this time, the internal pressure of the foaming machine was 6.2kg/(177f), and the flow rate of the foamed material at the third hose outlet was 1.0m/S.
ec, the discharge state of the foamed material was stable.

また、得られた起泡物の密度は0.10f!/C7lで
あつた。〔比較例〕起泡機の吐出口に絞り用として6m
7!Lφのオリフイスを取り付け、更に内径22u1φ
のホース5mを取り付けて、実施例3と同じ流量条件で
起泡し、同様にフオームラバ一を得た。
Moreover, the density of the obtained foamed product is 0.10f! /C7l. [Comparative example] 6 m for squeezing at the outlet of the foaming machine
7! Attach an orifice of Lφ and further increase the inner diameter to 22u1φ
A 5 m hose was attached and foaming was carried out under the same flow rate conditions as in Example 3 to obtain foam rubber in the same manner.

このときの起泡機内部圧力は6.01<g/CTIlホ
ース出口での起泡物の流速は1.3m/Secであり、
起泡物はホース出口より噴射状態で吐出した。
At this time, the internal pressure of the foaming machine was 6.01<g/CTIl, and the flow rate of the foamed material at the outlet of the hose was 1.3 m/Sec.
The foamed material was discharged as a jet from the hose outlet.

また、得られた起泡物の密度は0.30g/dであつた
Moreover, the density of the obtained foamed material was 0.30 g/d.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法に使用する起泡吐出装置の概略断面図、
第2図乃至第5図はそれぞれ本発明方法に用いる起泡吐
出装置の一例を示す概略断面図であるO1・・・・・・
ステーター、2・・・・・・ローター、3,3t・・・
・・ピン、4・・・・・・起泡機、5・・・・・・ラテ
ツクス配合液導入口、6・・・・・・空気導入口、7・
・・・・・起泡機吐出口、9・・・・・・オリフイス、
9t・・・・・バルブ、10,10′,10a,10b
,10c・・・・・・吐出ホース、11・・・・・・起
泡物吐出通路。
Figure 1 is a schematic cross-sectional view of the foaming and discharging device used in the conventional method.
2 to 5 are schematic cross-sectional views each showing an example of a foaming and discharging device used in the method of the present invention O1...
Stator, 2...Rotor, 3,3t...
... Pin, 4... Foaming machine, 5... Latex mixture inlet, 6... Air inlet, 7...
... Foaming machine discharge port, 9 ... Orifice,
9t...Valve, 10, 10', 10a, 10b
, 10c...Discharge hose, 11... Foamed material discharge passage.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉式起泡機にラテックス配合液と空気とを導入し
てラテックス配合液を起泡し、この起泡物を吐出させ、
乾燥、加硫してラテツクスフオームラバーを製造する方
法において、前記起泡物の吐出通路に絞りを与えて、起
泡機内部圧力を高めると共に、吐出通路出口から起泡物
を流速1.2m/sec以下の低速度で吐出させること
を特徴とするラテツクスフオームラバーの製造方法。
1. Introducing the latex mixture and air into a closed foaming machine to foam the latex mixture and discharge this foamed product,
In a method of manufacturing latex foam rubber by drying and vulcanizing, a restriction is provided to the discharge passage of the foamed material to increase the internal pressure of the foaming machine, and the foamed material is discharged from the outlet of the discharge passage at a flow rate of 1.2 m. A method for producing latex foam rubber, characterized by discharging at a low speed of /sec or less.
JP55166009A 1980-11-26 1980-11-26 Method of manufacturing foam rubber Expired JPS5921781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55166009A JPS5921781B2 (en) 1980-11-26 1980-11-26 Method of manufacturing foam rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55166009A JPS5921781B2 (en) 1980-11-26 1980-11-26 Method of manufacturing foam rubber

Publications (2)

Publication Number Publication Date
JPS5789942A JPS5789942A (en) 1982-06-04
JPS5921781B2 true JPS5921781B2 (en) 1984-05-22

Family

ID=15823194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55166009A Expired JPS5921781B2 (en) 1980-11-26 1980-11-26 Method of manufacturing foam rubber

Country Status (1)

Country Link
JP (1) JPS5921781B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175638A (en) * 1982-04-08 1983-10-14 Mitsui Toatsu Chem Inc Mechanical froth foaming machine for thermosetting resin
JPH0193353A (en) * 1987-10-05 1989-04-12 Nitto Denko Corp Preparation of foam

Also Published As

Publication number Publication date
JPS5789942A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
JP2527925B2 (en) Process for producing alkenyl aromatic polymer foam
Xu et al. Effects of die geometry on cell nucleation of PS foams blown with CO2
US3993721A (en) Method of forming a foamed article having a simulated wood grained surface
US3817669A (en) Apparatus for the preparation of plastic foam
JP2003504502A (en) Method for forming an article comprising closed cell microfoam from a thermoplastic resin
US6110404A (en) Method of extruding thermoplastic elastomer foam using water as a blowing agent
JP4506924B2 (en) Manufacturing method of synthetic resin molding
JPS5921781B2 (en) Method of manufacturing foam rubber
JP5647539B2 (en) Method for producing plastic resin foam
CN107685413B (en) A method of by low temperature microspheres expanded polypropylene plastics
JPS6316250B2 (en)
US2689374A (en) Aeration and curing apparatus, particularly for rubber dispersions
JPH06136176A (en) Production of foamable thermoplastic resin particle
DE69808248T3 (en) STUNNING THERMO ELASTIC SUBJECT
JP2000273232A (en) Heat-insulating foamed material composed of polypropylene resin
JP2005001357A (en) Extrusion molding method of thermoplastic resin and extrusion molded article
CA2633175A1 (en) Method for making a composite product, and a composite product
JPH04110129A (en) Extrusion molding method of polypropylene foam
JP3009493B2 (en) Manufacturing method of foamed synthetic resin hollow products
JP2004137293A (en) Method for producing thermally expanded microcapsule and apparatus for production
US2084702A (en) Method of making extruded rubber articles from aqueous dispersions of rubber
CN113201194B (en) Low-foaming high-impact PVC product and preparation method and application thereof
JPS58107317A (en) Manufacture of foamable thermoplastic resin
CN209336053U (en) Extrusion foaming piece head
KR102574107B1 (en) Apparatus for preparing elastomer composite