JPS59217194A - Ventilating and air-conditioning device using fan built in thyristor - Google Patents

Ventilating and air-conditioning device using fan built in thyristor

Info

Publication number
JPS59217194A
JPS59217194A JP58090735A JP9073583A JPS59217194A JP S59217194 A JPS59217194 A JP S59217194A JP 58090735 A JP58090735 A JP 58090735A JP 9073583 A JP9073583 A JP 9073583A JP S59217194 A JPS59217194 A JP S59217194A
Authority
JP
Japan
Prior art keywords
air
thyristor
panel
fan
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58090735A
Other languages
Japanese (ja)
Inventor
薗田 隆幸
宮川 武尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58090735A priority Critical patent/JPS59217194A/en
Publication of JPS59217194A publication Critical patent/JPS59217194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Ventilation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明け、発熱負荷の大きな制御盤、特に原子炉内部再
循環型ポンプサイリスタ盤を設置する部屋の)JVAC
’システムに係り、その内蔵ファンを利用することで、
低コスト、施工性の改善、配置の有効利用に好適な換気
空調装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to a control panel with a large heat generation load, especially a JVAC (in a room where a recirculation pump thyristor panel inside a nuclear reactor is installed).
'By using the system's built-in fan,
This invention relates to a ventilation air conditioning system suitable for low cost, improved workability, and effective use of layout.

〔発明の背景〕[Background of the invention]

従来、制御盤等の発熱負荷の大きい機器を設置している
部屋の換気空調装置としては、第1図に示す換気のみに
よる熱負荷除去方式と、第2図に示すローカルクーラ2
2を設けて発熱負荷の除去を行なう方式とがある。
Conventionally, ventilation and air conditioning systems for rooms where equipment with a large heat generation load such as control panels is installed have been implemented using a heat load removal method using only ventilation as shown in Figure 1, and a local cooler 2 system as shown in Figure 2.
There is a method in which a heat generating load is removed by providing a heat generating load.

ローカルター222を設置する場合、必要となる設備と
しては、ローカルクーラファン13(信頼性の観点から
予備機全必做とし、100チ×2台とする)、冷却コイ
ル12、冷却コイル二二ツ1−16 、給気ダクト】7
、戻りダクト18がある。
When installing the local motor 222, the necessary equipment is a local cooler fan 13 (from the viewpoint of reliability, all spare units are required, and 2 units of 100 inches), a cooling coil 12, and two cooling coils. 1-16, air supply duct】7
, a return duct 18.

また、サイリスタ盤室9内に必要換気部を満たすために
、換気用給気ダクト14、同排気タクト15が設けられ
ている。この場合、給気量は、換気回数を満足する風量
のみ給気する事が多く、サイリスタ盤10からの発熱負
荷は、elとんどローカルクーラ22によって除去され
、所ボの室温に抹てるようにする。
Furthermore, a ventilation air supply duct 14 and an exhaust duct 15 are provided in the thyristor panel chamber 9 in order to fill the necessary ventilation section. In this case, the amount of air supplied is often only the amount of air that satisfies the number of ventilations, and the heat generation load from the thyristor panel 10 is almost always removed by the el local cooler 22, so that the air temperature remains at the room temperature. Make it.

−iた、本系統の運転に伴い、冷却コイル12への冷水
の%ffiを行なわなければならす。冷水供鉗配管、冷
凍機等の付帯設備を必要とする。
-i Additionally, with the operation of this system, it is necessary to perform %ffi of cold water to the cooling coil 12. Requires additional equipment such as cold water supply piping and a refrigerator.

第1図の換気方式は、サイリスタ盤室9へ、すイリスタ
盤lOからの発熱負荷を除去するのに必要な風量を給気
するものである。この方式は、第2図におけるローカル
ター222によって除去される発熱負荷を給気に工って
負担するために、サイリスタ盤室9を含む換気系の風゛
…を大幅にアップさせることとなり、ファン5、給気処
理装置3、加熱冷却コイル4の容量がそれに伴い増加す
る。
The ventilation system shown in FIG. 1 supplies air to the thyristor panel chamber 9 in an amount necessary to remove the heat generation load from the thyristor panel 1O. In this method, the air flow in the ventilation system including the thyristor panel chamber 9 is significantly increased in order to bear the heat generation load removed by the local converter 222 in FIG. 5. The capacity of the supply air processing device 3 and heating/cooling coil 4 increases accordingly.

本発明の対象となる原子炉内部再循環型ポンプサイリス
タ盤室9に、上記2案を適用して考えると、第1図の換
気方式では、サイリスタ盤10からの発熱負荷が非常に
大きいため、給気量が大きくなり、サイリスタ盤室9の
居住性が悪くなり、コスト的に見ても好1しくない。
Applying the above two plans to the reactor internal recirculation pump thyristor panel chamber 9, which is the subject of the present invention, in the ventilation system shown in FIG. 1, the heat generation load from the thyristor panel 10 is extremely large. The amount of air supplied increases, the thyristor panel chamber 9 becomes less comfortable, and it is not favorable from a cost standpoint.

一方、第2図のローカルター222設置方式は、サイリ
スタ盤室9への給気温度が第1図換気方式の給気温度よ
り低く出来るため、ローカルターラフアン13が小さく
なるが、サイリスタ盤lOの発熱負荷を除去するたけの
冷却容量全冷却コイル12にもたせなけれdならない。
On the other hand, in the local turbine 222 installation method shown in Figure 2, the supply air temperature to the thyristor panel chamber 9 can be lower than that in the ventilation system shown in Figure 1, so the local turbine fan 13 becomes smaller; The entire cooling coil 12 must have enough cooling capacity to remove the heat generation load.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、発熱負荷の大きい!Ill n(Gl
 、特に原子炉内部再循環型ポンプサイリスタ盤を設置
する部屋の換気空調−1!1−tt−、サイリスタ盤内
蔵ファンを換気に利用し、内蔵ファンに排気タ゛クトi
接続し、内部高発熱負荷を、直接外気へ放出することで
、ローカルクーラの設置牙不安とし、低コスト、配置ス
ペースの有効利用を特偵とした換気全調装を全提供する
ことにある。
The purpose of the present invention is to reduce the heat generation load! Ill n(Gl
In particular, for ventilation air conditioning in the room where the reactor internal recirculation pump thyristor panel is installed -1!1-tt-, the built-in fan of the thyristor panel is used for ventilation, and the built-in fan is equipped with an exhaust duct i.
By connecting and discharging the internal high heat generation load directly to the outside air, the installation of a local cooler can be avoided, and the purpose is to provide a complete ventilation system that takes advantage of low cost and effective use of installation space.

〔発明の概秩〕[General rules of invention]

従来、制岬盤室等の局所的に発熱負荷の大きい部PJJ
j:、o−カルクーラを設置することでQM負負荷除去
に対処したが、本発明の対象でり61M子炉内炉内循嬢
型ポンプサイリスタ盤の発熱負荷は従来の制御盤に比べ
て非常に大きく、ローカルター2を設置すると、コスト
アップの資因となる。
Conventionally, PJJ was used in areas with locally large heat generation loads such as control panel rooms.
Although QM negative load removal was dealt with by installing an o-cal cooler, the heat generation load of the 61M sub-furnace in-furnace circulation type pump thyristor panel, which is the subject of this invention, is much higher than that of a conventional control panel. If the local tartar 2 is installed in a large area, it will cause an increase in cost.

一方、サイリスタ盤内蔵ファンは、盤内部の発熱VC,
J:る温;北上性を押えるため、内部に風牙辿し冷却す
る役割金しているが、盤からの排気は、その1ま室内に
放出されている。この排気ケ直接外気へ放出し、′!F
yc内蔵ファン全排気ファンの変わりに用いる低コスト
の換気空調装置を提案する。
On the other hand, the thyristor board built-in fan uses the heat generated VC inside the board,
J: Ruon; In order to suppress the northward tendency, the wind blows inside and plays the role of cooling, but the exhaust from the board is still released into the room. This exhaust gas is released directly into the outside air, ′! F
We propose a low-cost ventilation air conditioner that can be used in place of a full exhaust fan with a built-in YC fan.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図により説明する。 Hereinafter, an embodiment of the present invention will be explained with reference to FIG.

多大な発熱負荷音発生する原子炉内部再循環型ポンプサ
イリスタ盤10を設置する部屋への脂気は、以下のよう
になる。
The greasiness in the room where the reactor internal recirculation pump thyristor panel 10, which generates a large amount of heat generation load noise, is installed is as follows.

ルーバlを通り給気処理装[3内に導かれた外気は、サ
イリスタ盤]0への塩害を防止するためにフィルタ2全
辿り、塩濃度の回頭をされる。1だ、冬期、最低室温を
維持するため、加熱コイル20全通さnる。この加熱コ
イルに供給さ註る温水は、廃熱を利用したものを使用す
ることで、コストアップを押える仁とが出来る。給気処
理装置3から、空気は給気ファン5によってサイリスタ
盤室9へ送り込1れる。給気ファン5は、サイリスタ盤
内蔵ファン11による排気風量によって運転制御さnk
ものとするが、給気ファン5、サイリスタ盤内蔵ファン
11のトリップ、誤動作等を考慮し、室内の圧力を一定
に保つように、バイパスダクト21t[けゐものとする
In order to prevent salt damage to the thyristor panel 0, the outside air guided into the supply air processing device 3 through the louver 1 is traced throughout the filter 2, and the salt concentration is turned around. 1. In winter, all 20 heating coils are connected to maintain the minimum room temperature. By using waste heat as the hot water supplied to the heating coil, it is possible to reduce the cost increase. From the supply air processing device 3, air is sent 1 into the thyristor panel chamber 9 by the supply air fan 5. The operation of the air supply fan 5 is controlled by the exhaust air volume by the thyristor panel built-in fan 11.
However, in consideration of tripping and malfunction of the air supply fan 5 and thyristor panel built-in fan 11, a bypass duct 21t shall be installed to keep the indoor pressure constant.

給気温度は、夏期最高温度時でも、約35tZ’であり
、サイリスタ盤室9内の許谷温厖(最大40Cと考える
)内に十分押えられる。(室内に放出される発熱負荷は
、サイリスタ盤10の表向からの放熱、照明、外部から
装体を伝わって入熱′1−る等がある。) サイリスタ盤室9内に給気された空気は、室内空気とミ
ックスされ、サイリスタ盤10の下部から盤内に吸い込
1れ、盤内の熱を除去し7、内蔵ファンによって排気ダ
クト19に送り込1れ、外気へ放出される。
The supply air temperature is approximately 35 tZ' even at the highest temperature in summer, and is sufficiently suppressed within the temperature range of the thyristor panel chamber 9 (considered to be a maximum of 40 C). (Heat generation loads released into the room include heat radiation from the surface of the thyristor panel 10, lighting, heat input from the outside through the body, etc.) Air supplied into the thyristor panel chamber 9. The air is mixed with indoor air, sucked into the thyristor panel 10 from the bottom, removes heat inside the panel 7, and sent into the exhaust duct 19 by the built-in fan to be discharged to the outside air.

同、定検時には、サイリスタ盤10の停止状態を考え、
タンパ23會開け、給気ファン5による押し出し方式で
必要なたけ換気ケ行なうものとする。
At the same time, during periodic inspection, consider the stopped state of the thyristor board 10,
It is assumed that the tamper 23 is opened and the air supply fan 5 is used to push out the air as much as necessary.

本実施例の効果を、健米案であるローカルター222設
置方式と比較し考える。
The effects of this embodiment will be compared and considered with the local tar 222 installation method, which is a good idea.

ローカルクーラ22方式の場合、空気の流れは、室内→
サイリスタ盤内→呈内→戻りタクト→ローカルクーラ→
給気ダクト→室内と流れる。すlわち、サイリスタ盤内
を通ることで加熱され、ローカルター222を通り冷却
という、加熱→冷却→加熱→冷却というループを繰り返
すこととなる。
In the case of the local cooler 22 method, the air flow is from indoors to
Inside the thyristor panel → inside → return tact → local cooler →
Air supply duct → flows indoors. In other words, the heat is heated by passing through the thyristor disk, and the heat is cooled by passing through the local motor 222, repeating a loop of heating→cooling→heating→cooling.

一方、本実施例において、空気は、外気→給気処理装置
→脂気ファン→給気ダクト→室内→サイリスタ盤内→排
気ダクト→外気といった流れになり、給気→加熱→排気
(放出)というワンス、スール方式である。従って、ロ
ーカルクーラ22方式の冷却過程ヲ省いた系統とみなす
ことが出来る。
On the other hand, in this embodiment, the air flows in the following order: outside air → supply air processing device → oil fan → supply air duct → indoor → inside the thyristor panel → exhaust duct → outside air, and the flow is as follows: supply air → heating → exhaust (discharge). It is a once, once method. Therefore, it can be regarded as a system in which the cooling process of the local cooler 22 system is omitted.

設備内の比較を行なうと、ローカルクーラ22の設置場
所にもよるが、給気ダクト6と17、排気ダクト19と
戻りダクト18では大差はないと思われる。
When comparing the inside of the equipment, it seems that there is not much difference between the supply air ducts 6 and 17, and the exhaust duct 19 and return duct 18, although it depends on the installation location of the local cooler 22.

給気ファン5とローカルクーラファン13では、サイリ
スタ盤内蔵ファン11の風量がどの位1で押さえられる
か、言い換えれは、サイリスタ盤内への入口、出口の空
気温度差が何Cであるかに工り給気ファン5の風量も変
わるが、ファン台数もそれぞれ10 (1% X 2台
と同じであるし、コスト的にも、自己撒スペース的にも
差はなく、本実施例で、サイリスタ盤10の許容温度の
アップや、盤内循環空気の入口、出口温度差が大きくと
れるならは、ローカルクーラファン13のに量よりも低
減することが可能となる。しかし、ローカルクーラ22
方式では、冷却コイル12を通る冷水温度、冷却コイル
ユニット16人口空気温度(サイリスタ盤室9室温の関
保から、ローカルクーラファン13の風量は、一定の風
量は必要となり、低減することが出来ない。
The air supply fan 5 and the local cooler fan 13 determine how much air volume the thyristor panel built-in fan 11 can suppress, or in other words, how many degrees Celsius is the air temperature difference between the inlet and outlet of the thyristor panel. The air volume of the air supply fan 5 also changes, but the number of fans is 10 (1% x 2), and there is no difference in cost or self-distribution space. If the allowable temperature of the local cooler fan 13 can be increased or if the temperature difference between the inlet and outlet of the circulating air inside the panel can be increased, it will be possible to reduce the amount of the local cooler fan 13.
In this method, the temperature of the chilled water passing through the cooling coil 12, the temperature of the artificial air in the cooling coil unit 16 (the temperature of the artificial air in the thyristor panel room 9), the air volume of the local cooler fan 13 requires a certain air volume, and cannot be reduced. .

給気処理装置3と冷却コイルユニット16では、これも
風量によって異なるが、フィルタ2全設負する分たけ本
実施例の方がスペース全必要とする。
The supply air processing device 3 and the cooling coil unit 16 require more space in this embodiment since the filters 2 are all installed, although this also varies depending on the air volume.

しかし、この2つの系統?トータルで比較すれば、本実
施例が空気冷却用の設備、冷却コイル12や必要tの冷
水供給、冷凍機の料量のアップ全必要としないため、コ
スト面でかなり有効でるると言える。
But these two systems? Comparing the total, this embodiment can be said to be quite effective in terms of cost because it does not require any air cooling equipment, cooling coil 12, cold water supply of t, or increase in the amount of chiller.

本実施例全第1図の換気方式と比較すると、第1凶刃式
の場合、空気の流扛は、外気→給気処理装!(冷却コイ
ル)→給気ファン→紺亀ダクト→室内→サイリスタ盤内
→室内→排気ダクト→排気ファン→外気となる。言い換
えれば、冷却→給気→加熱→排気となり、サイリスタ盤
10により加熱される分子heらかしめ空気を冷却して
送り込むということになる。これは、本実施例及び、ロ
ーカルクーラ22方式を合わせたものと考えられ、給気
ファン5のX量の増大、排気ファン8が必要のため、フ
ァン台数が倍の4台になる等、本実施例よりも数段のコ
ストアップ及び設置スペースの確保が問題になる。
Comparing with the ventilation system shown in Figure 1 of this embodiment, in the case of the first blade type, the air flow is from outside air to air supply processing equipment! (Cooling coil) → Air supply fan → Dark blue duct → Indoor → Inside the thyristor panel → Indoor → Exhaust duct → Exhaust fan → Outside air. In other words, the sequence is cooling → supply air → heating → exhaust, and the molecular helium heated by the thyristor disk 10 is cooled and sent in. This is considered to be a combination of the present embodiment and the local cooler 22 method, and since the amount of X of the air supply fan 5 is increased and the exhaust fan 8 is required, the number of fans is doubled to four, etc. The problem is that the cost is much higher than in the embodiment and that the installation space is secured.

以上から、本実施例によれば、原子炉内部再循環型ポン
プサイリスタ盤室9のHVACシステムは従来案エリも
コスト面等において十分有効であると言える。
From the above, it can be said that according to this embodiment, the HVAC system for the reactor internal recirculation pump thyristor panel chamber 9 is sufficiently effective in terms of cost, etc., compared to the conventional system.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、以下の効果が得られる。 According to the present invention, the following effects can be obtained.

(1)  発熱負荷の大きい制御盤等の機器、特に原子
炉内部再循環型ポンプサイリスタ盤を設置する部屋にお
いて、ローカルクーラを用いずにその発熱負荷を除去す
る換気全調装!tを提供出来る。
(1) Complete ventilation adjustment to remove the heat generation load without using a local cooler in rooms where equipment such as control panels with a large heat generation load is installed, especially the reactor internal recirculation pump thyristor panel! We can provide t.

(2)同サイリスタ盤の内蔵ファンを排気ファンの代用
とし、配置スペース等の削減が図れる。
(2) The built-in fan of the thyristor panel can be used in place of the exhaust fan, reducing installation space.

(3)(1)、 (2)の削減効果で施工性が改哲出来
る。
(3) The reduction effects of (1) and (2) can improve workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉内部再循環型ポンプサイリスタ盤室換気
系の換気系のみによる熱負荷除去方式の系統図、第2図
は同換気系のローカルクーラ方式の系統図、第3図は同
換気系の本実施例の系統図でるる。
Figure 1 is a system diagram of a heat load removal method using only the ventilation system of the reactor internal recirculation pump thyristor panel room ventilation system, Figure 2 is a system diagram of a local cooler method of the same ventilation system, and Figure 3 is a system diagram of the same ventilation system. A system diagram of this embodiment of the system is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 外気取入フィルタ、加熱冷却コイル及び給気ファン
エリ成る原子炉内部再循環型ボング制両用すイリスタ盤
室換気空調装置において、サイリスタ盤内蔵の冷却ファ
ン全利用し、盤冷却後の高温の空気を@接屋外に放出す
ることにより、装置のコンパクト化金計ることを特徴と
したサイリスタ盤内紙ファンオリ用換気空調装置。
1. In the Iristor panel room ventilation air conditioner, which uses an internal reactor recirculation type bong control device consisting of an outside air intake filter, heating/cooling coil, and supply air fan area, all the cooling fans built into the Thyristor panel are used to remove high-temperature air after the panel has been cooled. Ventilation air conditioning system for paper fan orifice inside thyristor panel, characterized by the ability to make the device more compact by discharging air to the outside.
JP58090735A 1983-05-25 1983-05-25 Ventilating and air-conditioning device using fan built in thyristor Pending JPS59217194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58090735A JPS59217194A (en) 1983-05-25 1983-05-25 Ventilating and air-conditioning device using fan built in thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090735A JPS59217194A (en) 1983-05-25 1983-05-25 Ventilating and air-conditioning device using fan built in thyristor

Publications (1)

Publication Number Publication Date
JPS59217194A true JPS59217194A (en) 1984-12-07

Family

ID=14006825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090735A Pending JPS59217194A (en) 1983-05-25 1983-05-25 Ventilating and air-conditioning device using fan built in thyristor

Country Status (1)

Country Link
JP (1) JPS59217194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091395A (en) * 2008-10-08 2010-04-22 Toshiba Corp Ventilation and air-conditioning equipment in nuclear power plant and method for controlling airflow rate of air-conditioning the same
CN103216903A (en) * 2013-05-02 2013-07-24 昆山工统环保机械有限公司 Ventilation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471367A (en) * 1977-11-17 1979-06-07 Fujitsu Ltd System of cooling electronic apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471367A (en) * 1977-11-17 1979-06-07 Fujitsu Ltd System of cooling electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091395A (en) * 2008-10-08 2010-04-22 Toshiba Corp Ventilation and air-conditioning equipment in nuclear power plant and method for controlling airflow rate of air-conditioning the same
CN103216903A (en) * 2013-05-02 2013-07-24 昆山工统环保机械有限公司 Ventilation device

Similar Documents

Publication Publication Date Title
US4061186A (en) Combined cooling and heat recovery system
US6871509B2 (en) Enhanced cooling system
US5802862A (en) Method and apparatus for latent heat extraction with cooling coil freeze protection and complete recovery of heat of rejection in Dx systems
CN109451701B (en) Data center energy-saving refrigerating system capable of utilizing outdoor air all year round
US4730461A (en) Multi-zone cold storage variable air volume air conditioning system
JP2001041503A (en) Case cooling system for communication base station
CN208653007U (en) Refrigeration equipment
US4792091A (en) Method and apparatus for heating a large building
JPS59217194A (en) Ventilating and air-conditioning device using fan built in thyristor
RU2119129C1 (en) Method and device for conditioning air and heating room space
JP2697655B2 (en) Air conditioner
JP3218688B2 (en) Air conditioner
CN112178835A (en) Air treatment unit and method for controlling such an air treatment unit
Faris Fan-Powered VAV Terminal Units
JP3219107B2 (en) Air conditioning system
JPH0236198B2 (en)
JP2000111105A (en) Air-conditioning system for office building
JP3243729B2 (en) Central heat source type air conditioner
JPS616557A (en) Engine heat pump device
JP2627613B2 (en) Clean room structure
JPH09105539A (en) Air-conditioning system and air conditioner
EP4102152A1 (en) Counter-current flow in both ac and hp modes for part load optimization
JPH0132900B2 (en)
Yoshii et al. Development of a rack-type air-conditioner for improving energy saving in a data center
Stahl et al. Life cycle cost comparison-traditional cooling systems vs. natural convection based systems