JPS59217158A - Defect detector - Google Patents

Defect detector

Info

Publication number
JPS59217158A
JPS59217158A JP9286883A JP9286883A JPS59217158A JP S59217158 A JPS59217158 A JP S59217158A JP 9286883 A JP9286883 A JP 9286883A JP 9286883 A JP9286883 A JP 9286883A JP S59217158 A JPS59217158 A JP S59217158A
Authority
JP
Japan
Prior art keywords
magnetic
detector
inspected
magnetic field
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9286883A
Other languages
Japanese (ja)
Inventor
Satoru Inoue
悟 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9286883A priority Critical patent/JPS59217158A/en
Publication of JPS59217158A publication Critical patent/JPS59217158A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To automatize a defect detector by providing a moving magnetic generator for feeding a moving magnetic field to an object to be inspected to perform an image processing of a magnetic flux leaking from a defective part of the object being inspected using a magnetic detector comprising a plurality of magnetosensitive elements. CONSTITUTION:A moving magnetic field generator 13 comprises an electromagnet 13a, which is made up of cores 14 and 15 arranged almost at the right angle to each other in a U-shape and excitation coils 16 and 17 wound thereon. A magnetic detector 18 is formed by arranging magnetosensitive elements comprising Hall elements in matrix and a support/movement mechanism 19 moves the electromagnet 13a and the detector 18 to the surface of a sample 5 keeping a fixed distance therebetween. An image processor 20 is composed of an AC power source 21 for feeding currents different in the phase to the coils 16 and 17, a preprocessor 22 for amplifying and selecting output of the detector 18, an image processor 23 and a controller 24. With such an arrangement, defects of the sample 5 are detected by detecting vertical component of a leakage magnetic flux and the result can be automatically displayed.

Description

【発明の詳細な説明】 この発明は、油タンクやガスタンク等の亀裂などの欠陥
を磁気的に検出する欠陥検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect detection device that magnetically detects defects such as cracks in oil tanks, gas tanks, etc.

従来、油タンク、ガスタンク等の亀裂欠陥を検出する装
置としては第1図に示すものがある。
Conventionally, there is a device shown in FIG. 1 as a device for detecting crack defects in oil tanks, gas tanks, etc.

図において、1は磁界を発生させるための励磁コイルで
、コ字状の鉄心2のほぼ中央に巻回され、前記鉄心2と
ともに電磁石3を構成する。4は電源で、前記電磁石3
の励磁コイル1に励磁電流を供給するように接続しであ
る。5は被検査体としての試料で、溶接部6を有してい
る。7は磁束線で、前記電磁石3により発生はれ、試料
5の内部及び表面近傍に分布している。8は前記試料5
の溶接部6に発生した亀裂状の欠陥部である。
In the figure, reference numeral 1 denotes an excitation coil for generating a magnetic field, which is wound approximately at the center of a U-shaped iron core 2, and forms an electromagnet 3 together with the iron core 2. 4 is a power supply, and the electromagnet 3
The excitation coil 1 is connected to supply an excitation current to the excitation coil 1 . Reference numeral 5 designates a sample as an object to be inspected, which has a welded portion 6. Magnetic flux lines 7 are generated by the electromagnet 3 and distributed inside the sample 5 and near the surface. 8 is the sample 5
This is a crack-like defect that occurred in the welded part 6 of the figure.

また、第2図は前記試料5の欠陥部8に吸引された磁粉
の模様を示す図で、9は前記欠陥部8の長手方向の漏洩
磁束線を示す、10は前記試料5の欠陥部8の長手方向
に対・し直角な漏洩磁束線を示す。11は前記漏洩磁束
線10によって生じた磁粉の吸着模様で、前記磁粉は電
磁石3に面する試料5の表面に散布されたものである。
Further, FIG. 2 is a diagram showing the pattern of magnetic particles attracted to the defective part 8 of the sample 5, where 9 indicates the leakage magnetic flux lines in the longitudinal direction of the defective part 8, and 10 shows the defective part 8 of the sample 5. The leakage magnetic flux lines perpendicular to the longitudinal direction of are shown. Reference numeral 11 indicates a magnetic particle attraction pattern generated by the leakage magnetic flux lines 10, and the magnetic particles are scattered on the surface of the sample 5 facing the electromagnet 3.

12は前記欠陥部8の長手方向の漏洩磁束線9によって
生じた磁粉の吸着模様で、前記試料5の欠陥部8の両端
に分布している。
Reference numeral 12 denotes a magnetic particle attraction pattern generated by the leakage magnetic flux lines 9 in the longitudinal direction of the defective portion 8, which are distributed at both ends of the defective portion 8 of the sample 5.

このような構成となっているので、検査に際しては、先
ず電源4を投入して電磁石3の励磁コイル1に励磁電流
を流す。すると、前記電磁石3の鉄心2が磁化され、前
記試料5と鉄心2とで形成される磁路に磁束が発生する
。このとき、試料5の溶接部6の欠陥部8を経由する磁
束は、その欠陥部8の磁気抵抗が非常に大であるため漏
洩16束が発生し、その欠陥部8の周囲の磁界が大とな
っている。次いで、試料5の表面に磁粉全散布すると、
その磁粉は欠陥部8近傍の磁界の作用で集中的に吸着さ
れるために欠陥部8の周囲に磁粉模様11(または12
)が形成される。そして、作業者は、磁粉模様の長さl
より欠陥部8を検出する。
With such a configuration, upon inspection, first, the power supply 4 is turned on and an excitation current is caused to flow through the excitation coil 1 of the electromagnet 3. Then, the iron core 2 of the electromagnet 3 is magnetized, and a magnetic flux is generated in a magnetic path formed by the sample 5 and the iron core 2. At this time, the magnetic flux passing through the defective part 8 of the welded part 6 of the sample 5 leaks 16 flux because the magnetic resistance of the defective part 8 is very large, and the magnetic field around the defective part 8 becomes large. It becomes. Next, when the magnetic powder is completely scattered on the surface of sample 5,
The magnetic particles are attracted intensively by the action of the magnetic field near the defective part 8, so the magnetic particle pattern 11 (or 12
) is formed. Then, the operator determines the length l of the magnetic particle pattern.
The defective portion 8 is detected.

ところが、このような従来の欠陥検出装置においては、
欠陥部8を通過する磁束がその欠陥部8に対し垂直に通
過するか平行に通過するかで磁粉模様11.12の大き
さ2よび分布も異なり、とくに欠陥部8に対し垂直に磁
束が通過すると漏洩磁束10の発生が著しく犬となる一
方、平行に通過すると漏洩磁束9の発生は小さいので、
欠陥部8を正確に知るには、電磁石3を回転させて欠陥
部8を通過する磁束の通過方向を変えた状態で磁粉を散
布しなければならないので、作業能率が非常に悪いとい
う問題点があった。
However, in such conventional defect detection equipment,
The size 2 and distribution of the magnetic particle pattern 11, 12 differ depending on whether the magnetic flux passing through the defective part 8 passes perpendicularly or parallel to the defective part 8, and in particular, the magnetic flux passes perpendicularly to the defective part 8. Then, the generation of leakage magnetic flux 10 becomes extremely sharp, while when passing in parallel, the generation of leakage magnetic flux 9 is small.
In order to accurately identify the defective part 8, it is necessary to rotate the electromagnet 3 and scatter the magnetic particles while changing the direction of the magnetic flux passing through the defective part 8, which poses the problem of very low work efficiency. there were.

また、欠陥部8を検出するために磁粉を用いているため
、その磁粉は欠陥部8に発生した磁束の大きさに比例し
て広範囲に連鎖して吸着され、その欠陥部8を正確に知
ることは殆んどできなかった。さらに、高温、高湿下、
或いは高所でのタンクの欠陥検出作業は過酷なものであ
り、作業者の疲労と相俟ってその欠陥検出はばらつきが
大きく、定賢的な検出は殆んど期待できない状態であっ
た。
In addition, since magnetic particles are used to detect the defective part 8, the magnetic particles are attracted in a chain over a wide range in proportion to the magnitude of the magnetic flux generated in the defective part 8, and the defective part 8 can be accurately detected. I couldn't do much. Furthermore, under high temperature and high humidity,
Alternatively, the work of detecting defects in tanks at high places is difficult, and combined with the fatigue of the workers, the defect detection varies greatly, making it almost impossible to expect reliable detection.

また、タンク全曲に亘る磁粉模様11.12’に記録す
るには粘着テープや写真によるものしかないのでデータ
量が膨大となりデータの保管、検索に際しても場所、時
間を要す等の問題点があった。
In addition, the only way to record on the magnetic particle patterns 11 and 12' that cover all of the songs in the tank is with adhesive tape or photographs, which results in an enormous amount of data, which poses problems such as the need for space and time when storing and retrieving data. Ta.

この発明は、前記の問題点に着目してなされたもので、
移動磁界発生器により被検査体に移動磁界を供給し、そ
の被検査体の欠陥部より漏洩される磁束を、複数の磁気
感応素子より成る磁気検出器により検出し、その磁気検
出器の出力信号を画像処理装置により画像処理して前記
被検査体の欠陥部全検出できるようにした欠陥検出装置
を提供して前記従来の問題点を解消すること全目的とす
る。
This invention was made by focusing on the above-mentioned problems.
A moving magnetic field generator supplies a moving magnetic field to the object to be inspected, a magnetic flux leaking from a defective part of the object is detected by a magnetic detector consisting of a plurality of magnetic sensing elements, and the output signal of the magnetic detector is detected. It is an object of the present invention to provide a defect detection device capable of detecting all defective parts of the object to be inspected through image processing using an image processing device, thereby solving the problems of the conventional art.

以下、この発明の一実施例を第3図ないし第10図によ
って説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 to 10.

なお、従来例と同一または相当部分には同一の符号を附
す。
Note that the same reference numerals are given to the same or corresponding parts as in the conventional example.

第3図に2いて、13は移動磁界発生器で、1組の′電
磁石13aよシ成り、前記電磁石13aは第5図に示す
ようにコ字状で互いにはef直角をなして配設した第1
.第2鉄心14.15と、その第1.第2鉄心14.1
5にそれぞれ巻回され磁界を発生する第1.第2励磁コ
イル16.17とより成る。18は磁気検出器としての
磁気センサで、第4図に示されるホール素子からなる磁
気感応素子AIl〜A m n fマトリクス状に配列
して形成され、電磁石13aに配設しである。19は支
持、移動機構で、前記電磁石13aと磁気検出器18を
試料5の表面に対して一定の距離を保って移動するよう
に構成しである。20は画像処理装置で、前記第1.第
2励磁コイル16.17に互いに位相の異なる電流を供
給する交流電源21と、前記磁気検出器18より出力さ
れる出力信号を増幅、選択する前処理器22と、前記前
処理器22の出力を画像処理する画像処理器23と、前
記支持移動機構19の移動および交流電源21の位相に
合わせて各部を制御する制御器24とより成る。
In Fig. 3, reference numeral 2 denotes a moving magnetic field generator, which is made up of a pair of electromagnets 13a, and the electromagnets 13a have a U-shape and are arranged at right angles to each other, as shown in Fig. 5. 1st
.. The second core 14.15 and its first core 14.15. Second core 14.1
5, respectively, and generate a magnetic field. It consists of a second excitation coil 16 and 17. Reference numeral 18 denotes a magnetic sensor as a magnetic detector, which is formed by arranging magnetic sensing elements A1 to A m n f in a matrix of Hall elements shown in FIG. 4, and is disposed on the electromagnet 13a. Reference numeral 19 denotes a support and movement mechanism, which is configured to move the electromagnet 13a and the magnetic detector 18 while maintaining a constant distance from the surface of the sample 5. 20 is an image processing device, and the first. an AC power supply 21 that supplies currents with different phases to the second excitation coils 16 and 17; a preprocessor 22 that amplifies and selects the output signal output from the magnetic detector 18; and an output of the preprocessor 22. and a controller 24 that controls each part in accordance with the movement of the support moving mechanism 19 and the phase of the AC power supply 21.

前処理器23は、前記磁気検出器18の磁気感応素子A
、1〜Amnよシ得られる出カケ各々増幅する複数のア
ンプ811〜Bmnと、前記制御器24の制御信号によ
り前記複数のアンプ811〜BmHの出力を順次選択し
て出力を得るマルチプレクサ25とより成る。また、画
像処理器23は、前記制御器24の制御信号に従い前記
前処理器22のマルチプレクサ25より得られるアナロ
グ出力信号をディジタル信号に変換するA/D変換器2
6と、同じく前記制御器24の制御信号に従い前記磁気
検出器18の磁気感応素子Al、−Amnの配置に対応
させて前記A/D変換器26のディジタル出力信号(以
下データという)を記憶するメモリ27と、前記メモリ
27に格納されているデータを画像化し、欠陥部8の形
状を定量化する信号処理器28と、前記信号処理器28
により処理された結果を出力するモニタ29と、前記モ
ニタ29の出力データを記録するデータレコーダ30と
より成る。
The preprocessor 23 is a magnetic sensing element A of the magnetic detector 18.
, 1 to Amn, and a multiplexer 25 that sequentially selects the outputs of the plurality of amplifiers 811 to BmH according to a control signal from the controller 24 to obtain an output. Become. The image processor 23 also includes an A/D converter 2 that converts an analog output signal obtained from the multiplexer 25 of the preprocessor 22 into a digital signal according to a control signal from the controller 24.
6, the digital output signal (hereinafter referred to as data) of the A/D converter 26 is stored in correspondence with the arrangement of the magnetically sensitive elements Al, -Amn of the magnetic detector 18 according to the control signal of the controller 24. a memory 27; a signal processor 28 that converts the data stored in the memory 27 into an image and quantifies the shape of the defective portion 8; and the signal processor 28.
The monitor 29 outputs the processed results, and the data recorder 30 records the output data of the monitor 29.

また、第6図において、31は前記第1鉄心14と試料
5を通過する磁束、32は前記試料5の欠陥部8が磁気
飽和して試料5の外部(ここでは空気中)に漏洩した漏
洩磁束で、その試料5の面に対して垂直な成分Fvと水
fな成分Fhとより成り、前記垂直成分Fvを前記磁気
検出器18の各磁気感応素子A11〜Amnにより検出
するようにしである。
In addition, in FIG. 6, 31 is the magnetic flux passing through the first iron core 14 and the sample 5, and 32 is the leakage leaked to the outside of the sample 5 (into the air here) due to the magnetic saturation of the defective part 8 of the sample 5. The magnetic flux consists of a component Fv perpendicular to the surface of the sample 5 and a component Fh perpendicular to the surface of the sample 5, and the perpendicular component Fv is detected by each of the magnetic sensing elements A11 to Amn of the magnetic detector 18. .

第7図は、第3図に示す交流電源21より電磁石13の
第1.第2励磁コイル16.17にそれぞれ供給される
励磁電流I、、I2の波形を示す図で、励磁電流■2は
励磁電流I、に対して位相が90P遅れている。tA、
tB、tcはタイミング(時間)を示す。
FIG. 7 shows the first output of the electromagnet 13 from the AC power supply 21 shown in FIG. This is a diagram showing the waveforms of excitation currents I, I2 supplied to the second excitation coils 16, 17, respectively. Excitation current 2 is delayed in phase by 90P with respect to excitation current I. tA,
tB and tc indicate timing (time).

第8図は、電磁石13aを第7図に示す励磁電流I、、
I2で励磁したときに試料5の内部に発生する回転磁界
を示す説明図である。同図(5)、 (Bl 。
FIG. 8 shows the excitation current I shown in FIG. 7 for the electromagnet 13a.
FIG. 3 is an explanatory diagram showing a rotating magnetic field generated inside the sample 5 when excited by I2. Figure (5), (Bl.

tC)はそれぞれ第7図におけるタイミングtA、tB
、tcのときに試料5に発生する回転磁界の発生方向を
示す。また、FA 、FB 、Fcは合成磁界で、電磁
石13aの第1.第2鉄心14.15と試料5とで形成
される磁気回路に発生する磁界FA、 〜FA4 、F
B、−LFB4 、Fc、 〜Fc。
tC) are timings tA and tB in FIG. 7, respectively.
, tc, the direction in which the rotating magnetic field is generated in the sample 5 is shown. Further, FA, FB, and Fc are composite magnetic fields, and the first . Magnetic fields FA, ~FA4, F generated in the magnetic circuit formed by the second iron core 14.15 and the sample 5
B, -LFB4, Fc, ~Fc.

全それぞれ合成して得られ、タイミングtA 、 tB
、tcに各々対応するものである。
The timings tA and tB are obtained by synthesizing all of them, respectively.
, tc, respectively.

第9図は、直線状の欠陥部33に発生した漏洩磁束32
の垂直成分Fvの大きさを示した説明図で、同図(5)
は直線状欠陥部33の長手方向に対して直角S9o、平
行S。および45°の傾斜S4.に磁気回路を形成した
場合を示す。同図(B)は第8図に示す回転磁界により
直線状欠陥部33に発生した漏洩磁束32の垂直成分F
Wを磁気検出器18の磁気感応素子AIl〜Amnで検
出し、その検出値を2値化し、前記磁気感応素子A11
〜Amnの配置に相対応させてプロット(図中の黒丸印
・)して画像化したものである。な&、lは直線状欠陥
部33の長さを示す。
FIG. 9 shows leakage magnetic flux 32 generated in a linear defect 33.
(5) is an explanatory diagram showing the magnitude of the vertical component Fv of
is perpendicular S9o and parallel S to the longitudinal direction of the linear defect 33. and a 45° slope S4. This shows the case where a magnetic circuit is formed. The same figure (B) shows the vertical component F of the leakage magnetic flux 32 generated in the linear defect portion 33 by the rotating magnetic field shown in FIG.
W is detected by the magnetically sensitive elements AIl to Amn of the magnetic detector 18, the detected value is binarized, and the detected value is binarized.
This is an image obtained by plotting (black circles in the figure) in correspondence with the arrangement of ~Amn. &, l indicates the length of the linear defect portion 33.

第10図は、欠陥形状が楕円状である欠陥部34に回転
磁界を加えた場合の漏洩磁束32の分布とその垂直成分
FVを示す説明図で、同図(At 、 (Blは第9図
の(A) 、 (均と相対応するものである。
FIG. 10 is an explanatory diagram showing the distribution of leakage magnetic flux 32 and its perpendicular component FV when a rotating magnetic field is applied to a defective part 34 having an elliptical defect shape. (A) , (corresponds to uniform).

次に作用について説明する。電磁石13aを試料5に対
して、第5図に示すようにほぼ垂直に配置し、その電磁
石13aの第1.第2励磁コイル16.17にそれぞれ
第7図に示す励磁電流L  +I2を流して第1.第2
鉄心14.15を励磁すると、前記試料5の内部には第
8図に示すようにタイミングtA、tB、tcに従って
合成磁界FA 、FB 、Fcが順次反時計方向に発生
して回転磁界が形成される。
Next, the effect will be explained. The electromagnet 13a is arranged almost perpendicularly to the sample 5 as shown in FIG. An excitation current L+I2 shown in FIG. 7 is applied to the second excitation coils 16 and 17, respectively, and the Second
When the iron cores 14 and 15 are excited, composite magnetic fields FA, FB, and Fc are sequentially generated in the counterclockwise direction at timings tA, tB, and tc as shown in FIG. 8, and a rotating magnetic field is formed. Ru.

このとき、第6図に示すように試料5の表層部に欠陥部
8が存在していると、その欠陥部8の断面に対して回転
磁界(第6図における磁束31に同じ)が垂直に通過す
ると、試料5の表面に漏洩磁束32が発生する。このと
き、第3図に示すように試料5の表面に存在する磁気検
出器18の磁気感応素子A1嘗〜Amnにより前記漏洩
磁束32の垂直成分Fvがマl−IJクス状に分割され
て検出される。前記磁気検出器18により検出される漏
洩磁束32の垂直成分FVの大きさおよび試料5の表面
上の分布は、回転磁束31の方向と欠陥部8の形状によ
り異なり、直線状の欠陥部33は第9図(5)、楕円状
の欠陥部34は第10図(5)に示すように回転磁束3
1の角度bO、S45 、 SQOに相対応したものと
なる。
At this time, if a defect 8 exists in the surface layer of the sample 5 as shown in FIG. 6, the rotating magnetic field (same as the magnetic flux 31 in FIG. 6) is perpendicular to the cross section of the defect 8. When passing, leakage magnetic flux 32 is generated on the surface of the sample 5. At this time, as shown in FIG. 3, the vertical component Fv of the leakage magnetic flux 32 is divided into multi-IJ square shapes and detected by the magnetic sensing elements A1 to Amn of the magnetic detector 18 present on the surface of the sample 5. be done. The magnitude of the vertical component FV of the leakage magnetic flux 32 detected by the magnetic detector 18 and its distribution on the surface of the sample 5 vary depending on the direction of the rotating magnetic flux 31 and the shape of the defective part 8. In FIG. 9 (5), the elliptical defect portion 34 is caused by the rotational magnetic flux 3 as shown in FIG. 10 (5).
1 corresponds to the angles bO, S45, and SQO.

このようにして、磁気検出器18の磁気感応素子A、1
〜Amnにより検出された出力は画像処理装置20の前
処理器22に入力され、その前処理器22のアンプ81
1〜smnで増幅して後段のマルチプレクサ25に入力
される。このとき、制御器24は交流電源21の出力電
流波形の位相よシ回転磁界31(合成磁界FA、FB、
Fc)の回転方向を判別して同期信号を発信し、前記マ
ルチプレクサ25を駆動して磁気感応素子A11〜Am
nの出力を順次選択させA/D変換器26に入力させる
。すると、前記A/D変換器26によりディジタル信号
化されたデータは前記磁気検出器18の磁気感応素子A
、〜Amnの配置に相対応したメモリ27の記憶番地に
格納される。そして、信号処理器28は、前記メモリ2
7に格納されたデータに基づいて、第9図+131また
は第10図(Blに示すように画像を処理するとともに
、モニタ29に前記画像を出力として表示させる一方、
データレコーダ30に前記画像を収録する。このとき、
前記信号処理器28により欠陥形状を示す画像の最大長
/!ヲ求めて、その最大長lから所定の様式(JISG
0565)に基づいて亀裂欠陥部33゜34の程度を検
出し、モニタ29に表示する。
In this way, the magnetically sensitive elements A, 1 of the magnetic detector 18
The output detected by ~Amn is input to the preprocessor 22 of the image processing device 20, and the amplifier 81 of the preprocessor 22
The signal is amplified by 1 to smn and input to the multiplexer 25 at the subsequent stage. At this time, the controller 24 controls the rotating magnetic field 31 (combined magnetic fields FA, FB,
Fc) and transmits a synchronizing signal to drive the multiplexer 25 to control the magnetic sensing elements A11 to Am.
The outputs of n are sequentially selected and input to the A/D converter 26. Then, the data converted into a digital signal by the A/D converter 26 is transmitted to the magnetic sensing element A of the magnetic detector 18.
, ~Amn are stored at storage addresses in the memory 27 corresponding to the arrangement. Then, the signal processor 28
Based on the data stored in 7, the image is processed as shown in FIG. 9+131 or FIG.
The image is recorded on the data recorder 30. At this time,
The maximum length of the image showing the defect shape by the signal processor 28/! Find the maximum length l and use the specified format (JIS G
0565), the extent of the crack defect portions 33 and 34 is detected and displayed on the monitor 29.

このようにして、一連の検出動作が終了すると、電磁石
13aおよび磁気検出器18は支持移動機構19によっ
て次の検査領域に移動される。
In this manner, when the series of detection operations is completed, the electromagnet 13a and the magnetic detector 18 are moved to the next inspection area by the support movement mechanism 19.

以上の動作によシ欠陥部33,31ニー自動的に検出・
表示および記録できる。
Through the above operations, the defective parts 33 and 31 knees are automatically detected.
Can be displayed and recorded.

なお、上記実施例では第7図に示すように正弦波の励磁
電流I、、I2を用いて電磁石13aを励磁して回転磁
界を発生させた場合を示したが、励磁電流1.、I2は
矩形波、台形波、三角波等でもよい。また、電磁石13
aにより発生させる回転磁界は必ずしも一回転させる必
要はなく、直流励磁電流を用いて、第8図(5)、(C
)に示すように磁界FA、Fcの2方向だけ、あるいは
前記磁界FA、Fcの2方向に加えて同図(B)に示す
磁界FBの方向およびその磁界FBに対し直角となる方
向の4方向だけの磁界走査のみでも欠陥を検出できるこ
とは言うまでもない。その他、磁気検出器18として磁
気感応素子A口〜Amnを用いたが、これに代えて磁気
抵抗素子、ウィンガードワイヤ素子、ピックアップコイ
ル等を用いても良い。
In the above embodiment, as shown in FIG. 7, the electromagnet 13a is excited using sinusoidal excitation currents I, I2 to generate a rotating magnetic field, but when the excitation current 1. , I2 may be a rectangular wave, a trapezoidal wave, a triangular wave, etc. In addition, the electromagnet 13
The rotating magnetic field generated by a does not necessarily have to rotate one revolution, but it is possible to use a DC excitation current to generate the rotating magnetic field in Figure 8 (5), (C
) as shown in the figure (B), only the two directions of the magnetic fields FA and Fc, or in addition to the two directions of the magnetic fields FA and Fc, the direction of the magnetic field FB shown in the same figure (B) and the direction perpendicular to the magnetic field FB, that is, four directions. Needless to say, defects can be detected using magnetic field scanning alone. In addition, although the magnetic sensing elements A to Amn are used as the magnetic detector 18, a magnetoresistive element, a winged wire element, a pickup coil, etc. may be used instead.

以上説明したように、この発明によれば、その構成を、
被検査体に移動磁界を供給する移動磁界発生器と、複数
の磁気感応素子より成り、前記被検査体に生じた欠陥部
より漏洩される磁束を検出する磁気検出器と、前記磁気
検出器の出力信号を画像処理することによシ前記被検査
体の欠陥部ケ表示する画像処理装置を備えたものとじた
ので、従来のように電磁石を励磁し磁粉を散布して欠陥
部を目視して検出する場合に比し、磁粉の散イD作業や
、前記電磁石を物理的に回転させる必要もなくなるので
欠陥検出作業も容易に自勉化できるとともに、その検出
精度を向上できる等積々の顕著な作用効果ケ奏する。
As explained above, according to the present invention, the configuration is
a moving magnetic field generator that supplies a moving magnetic field to an object to be inspected; a magnetic detector that is made up of a plurality of magnetically sensitive elements and detects magnetic flux leaking from a defective portion of the object to be inspected; Since the device is equipped with an image processing device that displays the defective parts of the object to be inspected by image processing the output signal, the defective parts can be visually observed by exciting an electromagnet and scattering magnetic particles as in the conventional method. Compared to the case of detection, there is no need to scatter magnetic particles or physically rotate the electromagnet, so the defect detection work can be easily learned by oneself, and the detection accuracy can be improved. It has a lot of action and effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁粉探傷法による欠陥検出装置の構成図
、第2図は第1図に示す欠陥検出装置により得られる磁
粉模様図、第3図はこの発明に係る欠陥検出装置の構成
図、第4図は第3図に示す磁気検出器と前処理器の詳細
図、第5図は第3図に示す電磁石と試料ケ示す立体配置
図、第6図は欠陥部における漏洩磁束の発生状態を示す
説明図、第7図は第3図に示す電磁石を励磁する励磁電
流波形を示す波形図、第8図は同じく第3図に示す電磁
石により生成される回転磁界を示す説明図、第9区間及
び(B)はそれぞれ直線状欠陥部により発生する漏洩磁
束の分布図と磁気検出器で検出され画像処理して得た欠
陥形状図、第10区間および(均はそれぞれ楕円状欠陥
部による漏洩磁束分布図と画像処理により得られる欠陥
形状図である。 5・・・・・・・・・試料 8.33.34・・・・・・欠陥部 13・・・・・・回転磁界発生器 13a・・・電磁石 14・・・・・・第1鉄心 15・・・・・・第2鉄心 16・・・・・・第1励磁コイル 17・・・・・・第2励磁コイル 18・・・・・・磁気検出器 19・・・・・・支持、移動機構 20・・・・・・画像処理装置 21・・・・・・交流電源 22・・・・・・前処理器 23・・・・・・画像処理器 24・・・・・・制御器 2G・・・・・・AID変換器 27・・・・・・メモリ 28・・・・・・信号処理器 29・・・・・・モニタ 30・・・・・・データレコーダ 31・・・・・・通過磁束 32・・・・・・漏洩磁束 ハ2.〜Amn・・・・・・磁気感応素子B o −B
 m n・・・・・・アンプFA、FB、Fc・・・・
・・回転磁界面、図中同一符号は同−或いは相当部分ケ
示す。 代理人 大岩増雄 第10図
FIG. 1 is a block diagram of a defect detection device using a conventional magnetic particle detection method, FIG. 2 is a diagram of a magnetic particle pattern obtained by the defect detection device shown in FIG. 1, and FIG. 3 is a block diagram of a defect detection device according to the present invention. , Fig. 4 is a detailed view of the magnetic detector and preprocessor shown in Fig. 3, Fig. 5 is a three-dimensional layout showing the electromagnet and sample shown in Fig. 3, and Fig. 6 is the generation of leakage magnetic flux at the defective part. 7 is a waveform diagram showing the excitation current waveform that excites the electromagnet shown in FIG. 3. FIG. 8 is an explanatory diagram showing the rotating magnetic field generated by the electromagnet shown in FIG. 3. The 9th section and (B) are the distribution diagram of the leakage magnetic flux generated by the linear defect, the defect shape diagram detected by the magnetic detector and obtained by image processing, and the 10th section and (B) are respectively due to the elliptical defect. It is a leakage magnetic flux distribution diagram and a defect shape diagram obtained by image processing. 5... Sample 8, 33, 34... Defect part 13... Rotating magnetic field generation Container 13a...Electromagnet 14...First iron core 15...Second iron core 16...First excitation coil 17...Second excitation coil 18. ... Magnetic detector 19 ... Supporting and moving mechanism 20 ... Image processing device 21 ... AC power supply 22 ... Preprocessor 23. ... Image processor 24 ... Controller 2G ... AID converter 27 ... Memory 28 ... Signal processor 29 ... ...Monitor 30...Data recorder 31...Passing magnetic flux 32...Leakage magnetic flux C2.~Amn...Magnetic sensing element B o -B
m n...Amplifier FA, FB, Fc...
...Rotating magnetic surface, the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 10

Claims (5)

【特許請求の範囲】[Claims] (1)被検査体に移動磁界を供給する移動磁界発生器と
、複数の磁気感応素子より成り、前記被検査体に生じた
欠陥部より漏洩する磁束を検出する磁気検出器と、前記
磁気検出器の出力信号を画像処理することにより前記被
検査体の欠陥部を表示する画像処理装置とを備えた欠陥
検出装置。
(1) A moving magnetic field generator that supplies a moving magnetic field to the object to be inspected; a magnetic detector that is made up of a plurality of magnetically sensitive elements and detects magnetic flux leaking from a defective part of the object to be inspected; and the magnetic detection device. and an image processing device that displays a defective portion of the object to be inspected by performing image processing on an output signal of the device.
(2)移動磁界発生器は、互いに位相の異なる交流電源
による回転磁界により駆動される複数の電磁石より成る
ことを特徴とする特許請求の範囲第1項記載の欠陥検出
装置。
(2) The defect detection device according to claim 1, wherein the moving magnetic field generator is comprised of a plurality of electromagnets driven by rotating magnetic fields generated by alternating current power supplies having mutually different phases.
(3)磁気検出器は、マトリクス状に配列した磁気感応
素子より成ることを特徴とする特許請求の範囲第1項ま
たは第2項記載の欠陥検出装置。
(3) The defect detection device according to claim 1 or 2, wherein the magnetic detector is composed of magnetically sensitive elements arranged in a matrix.
(4)画像処理装置は、複数の磁気感応素子に相対応し
、その複数の磁気感応素子の出力を増幅する複数のアン
プおよび前記複数のアンプ出力を順次選択して出力する
マルチプレクサより成る前処理器と、前記前処理器の出
力信号を画像化する画像処理器と、制御信号を各部へ発
する信号処理制御器とより成ることを特徴とする特許請
求の範囲第1項ないし第3項のいずれか記載の欠陥検出
装置。
(4) The image processing device includes a plurality of amplifiers that correspond to the plurality of magnetically sensitive elements and amplify the outputs of the plurality of magnetically sensitive elements, and a multiplexer that sequentially selects and outputs the plurality of amplifier outputs. 3. The preprocessor comprises a preprocessor, an image processor that converts the output signal of the preprocessor into an image, and a signal processing controller that issues control signals to each part. The defect detection device described in .
(5)画像処理装置を構成する画像処理器は、A/D変
換器と、前記A/D変換器の出力データを磁気感応素子
のマトリクス配列に相対応する番地に記憶するメモリと
、前記A/D変換器の出力を画像化して被検査体の欠陥
を定量化して検出する信号処理器と、前記信号処理器の
処理結果を出力するモニタと、画像化された欠陥部の検
出結果全記録するデータレコーダとより成ることを特徴
とする特許請求の範囲第4項記載の欠陥検出装置。
(5) The image processing device constituting the image processing device includes an A/D converter, a memory that stores output data of the A/D converter at an address corresponding to the matrix array of the magnetically sensitive elements, and the A/D converter. A signal processor that converts the output of the /D converter into an image to quantify and detect defects in the inspected object, a monitor that outputs the processing results of the signal processor, and a record of all the detection results of the imaged defective parts. 5. The defect detection device according to claim 4, further comprising a data recorder for detecting defects.
JP9286883A 1983-05-26 1983-05-26 Defect detector Pending JPS59217158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286883A JPS59217158A (en) 1983-05-26 1983-05-26 Defect detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9286883A JPS59217158A (en) 1983-05-26 1983-05-26 Defect detector

Publications (1)

Publication Number Publication Date
JPS59217158A true JPS59217158A (en) 1984-12-07

Family

ID=14066404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286883A Pending JPS59217158A (en) 1983-05-26 1983-05-26 Defect detector

Country Status (1)

Country Link
JP (1) JPS59217158A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665768A1 (en) * 1990-08-07 1992-02-14 Nukem Gmbh Installation for non-destructive testing of material, in particular cylindrical parts, sleeve tubes and the like
GR20060100602A (en) * 2006-11-06 2008-06-18 Γεωργιος Ευαγγελου Κοσμας Control method on metal alloys in the form of metal plates that contain components with magnetic properties.
CN104359969A (en) * 2014-11-07 2015-02-18 西红柿科技(武汉)有限公司 Top magnetic flux leakage testing head
EP2417433A4 (en) * 2009-04-09 2015-05-20 Michelin Rech Tech Tire metallic cable anomaly detection method and apparatus
CN107607612A (en) * 2017-08-11 2018-01-19 清华大学 The defects of vertical component based on magnetic leakage signal outline identification method and device
FR3062481A1 (en) * 2017-02-02 2018-08-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROMAGNETIC DEVICE AND METHOD FOR DETECTING DEFECTS
WO2020217278A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Flaw detection device for magnetic substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077081A (en) * 1971-03-04 1975-06-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077081A (en) * 1971-03-04 1975-06-24

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665768A1 (en) * 1990-08-07 1992-02-14 Nukem Gmbh Installation for non-destructive testing of material, in particular cylindrical parts, sleeve tubes and the like
GR20060100602A (en) * 2006-11-06 2008-06-18 Γεωργιος Ευαγγελου Κοσμας Control method on metal alloys in the form of metal plates that contain components with magnetic properties.
EP2417433A4 (en) * 2009-04-09 2015-05-20 Michelin Rech Tech Tire metallic cable anomaly detection method and apparatus
US9442093B2 (en) 2009-04-09 2016-09-13 Michelin Recherche Et Techniques S.A. Tire metallic cable anomaly detection method and apparatus
CN104359969A (en) * 2014-11-07 2015-02-18 西红柿科技(武汉)有限公司 Top magnetic flux leakage testing head
FR3062481A1 (en) * 2017-02-02 2018-08-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROMAGNETIC DEVICE AND METHOD FOR DETECTING DEFECTS
WO2018141543A3 (en) * 2017-02-02 2018-10-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electromagnetic method and device for detecting defects
CN107607612A (en) * 2017-08-11 2018-01-19 清华大学 The defects of vertical component based on magnetic leakage signal outline identification method and device
CN107607612B (en) * 2017-08-11 2019-11-22 清华大学 The defect profile recognition methods of vertical component based on magnetic leakage signal and device
WO2020217278A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Flaw detection device for magnetic substance
JPWO2020217278A1 (en) * 2019-04-22 2021-05-20 三菱電機株式会社 Magnetic flaw detector

Similar Documents

Publication Publication Date Title
US6150809A (en) Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
JP4814511B2 (en) Pulsed eddy current sensor probe and inspection method
EP2084524B1 (en) Magnetic sensor apparatus for detecting defects
JP4487082B1 (en) Magnetic flux leakage flaw detection method and apparatus
Nair et al. A GMR-based eddy current system for NDE of aircraft structures
US10175200B2 (en) Methods and systems for detecting nonuniformities in a material, component, or structure
US7304474B2 (en) Eddy current inspection device with arrays of magnetoresistive sensors
JP6083613B2 (en) Magnetic nondestructive inspection equipment
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
JPH06324021A (en) Non-destructive inspection device
JPS59217158A (en) Defect detector
JPH02262026A (en) Method and apparatus for nondestructive inspection
CN111929356B (en) Steel defect magnetic imaging device and method
Tsukada et al. Magnetic property mapping system for analyzing three-dimensional magnetic components
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
JPH0545184B2 (en)
US4930026A (en) Flaw detector for magnetographic quality inspection
US20100045276A1 (en) Eddy current inspection system
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
JPH1038984A (en) Method and apparatus for detecting failure site
CN112630294A (en) Chirp signal-based rotation chromatography defect detection method and device
Nicholson et al. Non-destructive surface inspection system for steel and other ferromagnetic materials using magneto-resistive sensors
JPS59217159A (en) Defect detectng apparatus
Hayashi et al. Detection of the weak magnetic properties change of stainless-steel welding parts by low frequency magnetic imaging
JP4156354B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using superconducting quantum interference device