JPS59215675A - Control method of fuel cell - Google Patents

Control method of fuel cell

Info

Publication number
JPS59215675A
JPS59215675A JP58091176A JP9117683A JPS59215675A JP S59215675 A JPS59215675 A JP S59215675A JP 58091176 A JP58091176 A JP 58091176A JP 9117683 A JP9117683 A JP 9117683A JP S59215675 A JPS59215675 A JP S59215675A
Authority
JP
Japan
Prior art keywords
temperature
individual cells
battery
feed air
inputted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58091176A
Other languages
Japanese (ja)
Inventor
Mutsuya Saito
斉藤 六弥
Masahiro Ide
井出 正裕
Hideo Hagino
秀雄 萩野
Osamu Tajima
収 田島
Yasuo Miyake
泰夫 三宅
Masato Nishioka
正人 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58091176A priority Critical patent/JPS59215675A/en
Publication of JPS59215675A publication Critical patent/JPS59215675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent unbalanced deterioration of each cell and extend the life and improve the efficiency of the whole cell system by controlling the temperature of individual cells respectively so that a uniform current flows through individual cells when operating multiple fuel cells in parallel. CONSTITUTION:Output currents of individual cells 1, 1' inevitably differ from each other even under the same operating condition due to the difference between their characteristics. However, cell temperatures at which a uniform current flows through individual cells 1, 1' regardless of the load variation can be programmed in advance based on the load quantity, feed air temperature, and feed air quantity, and they are inputted into a control unit 10. Output signals 11, 11' from temperature detectors 9, 9 are inputted into the control unit 10, and control signals 12, 12', 13, 13' are inputted into the control section of dampers 3, 3' and blower inverters 8, 8' of individual cells based on the predetermined program. Accordingly, the feed air temperature and feed air quantity of individual cells 1, 1' are controlled so as to obtain cell temperatures allowing a uniform current flow.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空冷式態別電池の制御特に複数基の電池を並列
的に接続して運転する場合の制御力式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to the control of air-cooled fractionated batteries, particularly to a control force type when a plurality of batteries are connected in parallel and operated.

(ロ)従来技術 複数基の燃料電池を並列運転する際には、負荷に応じて
各電池はその端子?[(圧が等しくなるように電流が流
れるため各電池においてとり出せる電流に差が生ずる。
(b) Conventional technology When operating multiple fuel cells in parallel, each cell has its own terminal depending on the load. [(Since the current flows so that the pressure is equal, there is a difference in the current that can be extracted from each battery.

これは第1図に示すよう各電池の電圧−電流特性(V−
Iカーブ)(81)及び(S2)にずれがあるためで、
今電池作動重圧が■の場合各電池の電流は夫々11及び
■2となる。
This is the voltage-current characteristic (V-
This is because there is a deviation in I curve) (81) and (S2),
Now, if the battery operating pressure is ■, the current of each battery is 11 and ■2, respectively.

この1.と■2の差が余り大きいと電流値の大きい電池
においては特性の劣化が著しく、電池寿命は短くなって
電池システム全体にも悪影響を及はすという欠点があっ
た。
This 1. If the difference between and (2) is too large, the characteristics of a battery with a large current value will be significantly deteriorated, the battery life will be shortened, and the battery system as a whole will be adversely affected.

(ハ)発明の目的 本発明の目的は複数基の燃料電池を並列運転する際個々
の電池の不均等な劣化を防止し一1′i、池システム全
体の長寿命化と効率の向上を図ることである。
(c) Purpose of the Invention The purpose of the present invention is to prevent uneven deterioration of individual cells when a plurality of fuel cells are operated in parallel, and to extend the life of the entire pond system and improve efficiency. That's true.

に)発明の構成 本発明は個々の電池温度を、各電池に等電流が流れるよ
う夫々の供給空気温度及び空気力虻の調節にもとづき設
定するもので、云いかえれば各電池のIF圧−電流特性
を一致させることを特徴とする1b1」外方式である。
B) Structure of the Invention The present invention sets the temperature of each individual battery based on the supply air temperature and adjustment of the air force so that the same current flows through each battery.In other words, the IF pressure-current of each battery is set. This is a method other than 1b1, which is characterized by matching characteristics.

(]−)実施例 本発明によるflilJ御方式を第2図に示す2基の空
冷式燃料電池の場合について説明する。個々の電池(1
1(1)は、周知のように各プロワ(21(2+で供給
された空気(反応用と冷却用)と図示しないリフオーマ
からの改質水素ガスで電池反応が行われる。この場合−
各?lj池からの高温尋出空気は、各ダンパ(3)(3
)のR(1°^整により、排気路(4)(4jと循環路
(5)(5)に分配されると共に、排出空気に見合った
低温空気を外気取入路+6+[(3)より導入し、42
i記循環路に分配された空気と共に各電池に供給される
。このようにして個々の?:i、池の冷却と酸素分圧の
補償を行う。。
(]-) EXAMPLE The flilJ control system according to the present invention will be explained with reference to the case of two air-cooled fuel cells shown in FIG. Individual batteries (1
1 (1), as is well known, a battery reaction is performed using air (for reaction and cooling) supplied by each blower (21 (2+) and reformed hydrogen gas from a reformer (not shown). In this case -
each? The high temperature air discharged from the lj pond is transferred to each damper (3) (3
) is distributed to the exhaust path (4) (4j) and the circulation path (5) (5), and the low temperature air corresponding to the exhaust air is distributed to the outside air intake path +6 + [from (3) introduced, 42
It is supplied to each battery together with the air distributed to the i circulation path. Individual in this way? :i. Cool the pond and compensate for the oxygen partial pressure. .

並列接続された各■を池(1)(1)の直流出力は、王
インパーク(7)により三相交流に父換されて大部分は
負荷(L)に、その一部分(電池出力の約10%)は、
各プロワ用インバータ+81(81を介してプロワ(2
)(2)に夫々給’rttされる。、一般に個々の電池
は、その温度検出器(91(91からの信号によシダン
パ(4)+4+及びプロワ専用インバータ(51(5)
で供給空気温度及び空気量を調節して各電池温度が略一
定になるよう制御される。
The DC output of each of the parallel connected ponds (1) (1) is converted into three-phase AC by the impark (7), and most of it goes to the load (L), while a part of it (approximately the battery output) 10%) is
Inverter for each prower +81 (via the prower (2)
) and (2) respectively. In general, each battery is connected to its temperature detector (91 (91) by the signal from the damper (4) +4+ and the blower-dedicated inverter (51 (5)
By adjusting the supply air temperature and air amount, the temperature of each battery is controlled to be substantially constant.

しかし個々の電池は同一作動条件下でもその特    
 ”洗上(V−1カーブ)の差により各出力電流が界る
ことはさけられない。
However, each battery has its own characteristics even under the same operating conditions.
``It is unavoidable that each output current varies due to the difference in washing (V-1 curve).

本発明の原理は、個々の電池に等電流が流れるよう各電
池温度を設定する点にある。即ち、1h、流値の大きい
電池は電池温度を下げるよう、又?[1,流f1hの小
さい電池は電池温度を上けるよう制御して個々の電池の
V−1カーブを一致させる。
The principle of the present invention is to set the temperature of each battery so that equal current flows through each battery. In other words, for 1 hour, batteries with a large current value should be lowered in battery temperature. [1. For batteries with a small flow f1h, the battery temperature is controlled to be raised to match the V-1 curves of the individual batteries.

負荷の変動にかかわらず個々の電池(11(11に等電
流が流れる各i電池温度は、負荷J11、供給空気温度
、供給空気足なとよシ予めプログラム化できるから、こ
れを制御器(101にインプットしておく。温度相f出
力され、所定プロクラムにもとづき制御信号’ (12
1(12)及びu、31 u;i+とし’11υ々の電
電のタンバーロバ○)pひフロワ用インバータ(8+ 
(8+のル1」外部に入力される。かくて個々の°電池
(11(11の臼(紹空気温度及び供給空気j+1は、
m直流が流れる各電池温度に設定されるよう夫々調理さ
れる。これが第1図のV−1カーツ・における(SO)
で示されるが、この(SO)は(81)又は(S2)の
いづれかと一致するようプログラム設定してもよい。図
示(SO)の場合負荷変動にか!わらず個々の市、池(
1)(1)に等電流(10)が流れることになる。
Regardless of load fluctuations, the temperature of each i-battery through which an equal current flows through the individual batteries (11) can be programmed in advance for the load J11, the supply air temperature, and the supply air foot. The temperature phase f is output, and the control signal '(12
1 (12) and u, 31 u;
(8 + 1) is input externally.Thus, each battery (11 (11 mortar)) air temperature and supply air j + 1 are
Each cell temperature through which m direct current flows is set. This is the (SO) at V-1 Kurtz in Figure 1.
However, this (SO) may be programmed to match either (81) or (S2). In the case of the illustration (SO), is it due to load fluctuation? Individual cities, ponds (
1) Equal current (10) will flow through (1).

(へ)発1!I」の効果 本発明tlj制御方式は、複数結の撚糸1電池を並列的
に運転する場合、個々の11」、池に等電流が流れるよ
う各71シ池温度を夫々θ11,1即するものであるか
ら、個々のIfi池の不均等な劣化を防止して電池シス
テム♀俸の長寿鍮化と効率の向上が達成される。
(To) Release 1! Effect of 71 In the tlj control method of the present invention, when operating multiple twisted yarn cells in parallel, the temperature of each 71 cell is adjusted to θ11,1 so that equal current flows through each cell. Therefore, uneven deterioration of the individual Ifi ponds is prevented, thereby achieving a longer battery life and improved efficiency of the battery system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2ハの燃1屯池を並列運転した場合の各’+I
Qi池における1L圧−11’i、6iu特性図、第2
図は本発明制御方式ケ示す系統図である。 111111−−114.γ32..12+121 °
−−−−−7−ロワ、t31t3+ ・−=ダンパ、(
4)(4)′−・・・・・排気路、(5)(5)1・・
・・・循環路、(G)(6)’・・・・・外気取入路、
(7)・・・・・・王インパーク、(81(8)・・・
・・・フ゛ロワ用インバータ、(9)(9)’・・・・
・・温度検出器、00)・・・・・・制御器。
Figure 1 shows each '+I' when 2 ha fuel 1 ton ponds are operated in parallel.
1L pressure in Qi pond - 11'i, 6iu characteristic diagram, 2nd
The figure is a system diagram showing the control method of the present invention. 111111--114. γ32. .. 12+121°
------7-lower, t31t3+ ・-= damper, (
4) (4)'-... Exhaust path, (5) (5) 1...
...Circulation path, (G) (6)'...Outside air intake path,
(7)... King In Park, (81(8)...
...Follower inverter, (9) (9)'...
...Temperature detector, 00)...Controller.

Claims (1)

【特許請求の範囲】[Claims] (1)複数基の空冷式燃料’lL池を並列的に運転する
際において、個々の市1池に等電流が流れるよう各電池
温度を設定せしめることを特徴とする燃料電池のflt
lj御方式 (21nil記各71f、油温度の設定は、個々の電池
温度を検出して所定プラグラムにもとづき各電池の世紀
空気温度及び供給空気J1(の調節により行われること
を特徴とする特許請求の範囲第1項記載の燃料電池の制
御力式 (31fjiJ記係給空く(温度及び供給空気量は、空
気循環経路のダンパー及び可変速ブロワにより夫々調ν
11されることを特徴とする特許請求の範囲第2項記載
の燃料電池の制御方式
(1) Flt of a fuel cell characterized in that when operating multiple air-cooled fuel tanks in parallel, each cell temperature is set so that an equal current flows through each individual tank.
A patent claim characterized in that the oil temperature is set by detecting the temperature of each battery and adjusting the century air temperature and supply air J1 of each battery based on a predetermined program by detecting the temperature of each battery. The control force formula for the fuel cell described in item 1 (temperature and supply air amount are adjusted by the damper and variable speed blower in the air circulation path, respectively).
11. The fuel cell control method according to claim 2, characterized in that:
JP58091176A 1983-05-23 1983-05-23 Control method of fuel cell Pending JPS59215675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091176A JPS59215675A (en) 1983-05-23 1983-05-23 Control method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091176A JPS59215675A (en) 1983-05-23 1983-05-23 Control method of fuel cell

Publications (1)

Publication Number Publication Date
JPS59215675A true JPS59215675A (en) 1984-12-05

Family

ID=14019148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091176A Pending JPS59215675A (en) 1983-05-23 1983-05-23 Control method of fuel cell

Country Status (1)

Country Link
JP (1) JPS59215675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038032A2 (en) * 2006-09-27 2008-04-03 Intelligent Energy Limited Low temperature operation of open cathode fuel cell stacks using air recirculation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038032A2 (en) * 2006-09-27 2008-04-03 Intelligent Energy Limited Low temperature operation of open cathode fuel cell stacks using air recirculation
WO2008038032A3 (en) * 2006-09-27 2008-06-19 Intelligent Energy Ltd Low temperature operation of open cathode fuel cell stacks using air recirculation

Similar Documents

Publication Publication Date Title
JPS61214369A (en) Temperature controller of fuel cell
US4686157A (en) Fuel cell power system
US3539397A (en) Fuel cell with temperature control
US20070184315A1 (en) Control of fuel cell stack electrical operating conditions
JPS6222374A (en) Method for starting pressure-type fuel cell
US7169492B2 (en) Method for regulating operation of fuel cell installations controlled according to heat and/or power requirement
JP2014116199A (en) Fuel cell and operation method thereof
JPS59215675A (en) Control method of fuel cell
JPH0845526A (en) Multistage reaction type fuel cell
JPS6229869B2 (en)
JPS6091569A (en) Air-supply-controlling system for fuel cell plant
JPS59141173A (en) Fuel cell power generating system
JPH0249359A (en) Fuel cell power generating system
JPS58128673A (en) Control of fuel cell power generating plant
JPS61277171A (en) Fuel cell power generation system
JPS6229868B2 (en)
JP5695739B2 (en) Method and arrangement for controlling the thermal balance of a fuel cell stack in a fuel cell system
JPS60107268A (en) Control system for fuel cell power generation plant
JPS6345762A (en) Operation controller of fuel cell power generating plant
JPS61284068A (en) Fuel cell cooling equipment
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPS60241670A (en) Fuel cell controller
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
CN113699557B (en) Operation control method and device of high-temperature electrolysis system
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant