JPS59215158A - Demodulating circuit of dpsk modulating signal - Google Patents

Demodulating circuit of dpsk modulating signal

Info

Publication number
JPS59215158A
JPS59215158A JP8950183A JP8950183A JPS59215158A JP S59215158 A JPS59215158 A JP S59215158A JP 8950183 A JP8950183 A JP 8950183A JP 8950183 A JP8950183 A JP 8950183A JP S59215158 A JPS59215158 A JP S59215158A
Authority
JP
Japan
Prior art keywords
phase
circuit
signal
carrier
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8950183A
Other languages
Japanese (ja)
Inventor
Masayuki Sano
雅之 佐野
Yoji Sugiura
杉浦 洋治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8950183A priority Critical patent/JPS59215158A/en
Publication of JPS59215158A publication Critical patent/JPS59215158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
    • H04L27/2277Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals using remodulation

Abstract

PURPOSE:To stabilize demodulating operation by forming a carrier signal without using a phase control loop and a multilication circuit to simplify the constitution and reduce the adjusting position. CONSTITUTION:Reference signals G, K phase-locked to a carrier wave of a modulation signal are formed in the timing shifted by each prescribed time from each phase change point of an inputted DPSK modulation signal; and a phase comparator circuit 7 compares the phase between the signals G, K and the modulation signal. Further, the output of the circuit 7 is sampled by a data clock C generated in synchronizing with a phase changing point detecting output at the center of each data section to reproduce sequentially the data. Thus, a phase control loop and a multiplication circuit are not required, thereby simplifying the constitution, and since each section consists of a digital logical circuit, the adjusting positions are decreased and a stable demodulating operation is realized.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はPOM通信等に使用されるD P S K(D
ifferential Phase 5hift K
eying)変調信号の復調回路に関する。
[Detailed description of the invention] (a) Industrial application field The present invention is applied to DPSK (D
iferential Phase 5hift K
eying) It relates to a demodulation circuit for a modulated signal.

(ロ) 従来技術 一般にPSK変調は2値テータでキャリア分位相変調す
るものであるが、その一種であるDP8に変調は、1テ
一タ区間の終了毎に当該区間のデータの内容に応じて、
次のデータ区間のキャリアの位相を順次変化させて行く
ようになっている。
(b) Prior art In general, PSK modulation uses binary data to phase-modulate the carrier, but one type of modulation, DP8, modulates the phase of the data at each end of one data period according to the content of the data in that period. ,
The phase of the carrier in the next data section is changed sequentially.

例えば4相のDPSK変調では、直列データの2ビット
分即ち1り゛イビットを1テ一タ区間とし、この1区間
のデータの内容即ちoo、oi、1i、10のそれぞれ
に応じて次の区111]のキャリアの位相を当該区間よ
りも下表の移相量だけ遅相(またこのよりなりPSK変
調信号の復調は、従来、同期検波により行なわれており
、そのため同期検波用のキャリア(?号を上記変調信号
から抽出する必要があるが、このキャリア信号の抽出K
Fi逓倍操作による方法が一般に採用され、更に安定し
た同期キャリア?必要とする場合は、同期発振器をP 
L L ilJ御して使用するようにしていた。
For example, in 4-phase DPSK modulation, 2 bits of serial data, ie 1 bit, are set as 1 data section, and the next section is determined according to the data content of this 1 section, ie, oo, oi, 1i, 10. 111] is delayed by the phase shift amount shown in the table below (also, demodulation of PSK modulated signals is conventionally performed by synchronous detection, so the carrier for synchronous detection (? It is necessary to extract the carrier signal from the modulated signal, but the extraction K of this carrier signal is
A method using Fi multiplication is generally adopted and is a more stable synchronous carrier? If required, use a synchronous oscillator at P
I was trying to use it by controlling L L il J.

しかしながら上記の方法では、多相D P S K4目
時の場合は逓倍操作を繰り返す(4相の場合は4逓倍、
8相の場合は8逓倍する)必要があり、このため調整個
所や部品点数が多くなり、しかも、逓倍回路やPLL回
路に伴なうフィルタを必要とするため、回路の完全LS
I化が難しいと言う欠点があった。
However, in the above method, in the case of multi-phase D P S K4, the multiplication operation is repeated (in the case of 4-phase, multiplication by 4,
(In the case of 8-phase, it must be multiplied by 8), which increases the number of adjustment points and parts.Furthermore, it requires a filter for the multiplier circuit and PLL circuit, so it is not possible to complete the complete LS of the circuit.
The drawback was that it was difficult to integrate.

(ハ) 発明の目的 本発明は上記の点に鑑みなされたものであり、必要とぜ
ずLSI化に好適f?DPSK変調イに号の復調回路を
提案することを目的とする。
(c) Purpose of the Invention The present invention has been made in view of the above points, and is suitable for LSI implementation without necessity. The purpose of this paper is to propose a code demodulation circuit for DPSK modulation.

に) 発明の構成 未発明の復調回路は、DPEIK変調信号の位相の各変
化点から一定時間ずつずれたタイミングで位相−1期さ
れる参照キャリア信号を作成し、このキャリア信呻と前
記変調信号の位相を比較し、その出力を前記変調信号の
位相像・化点検出出力に1期したデータクロックによっ
て各データ区間の略中央部でサンプリングし、それによ
って前eピ変v4信号中のデータな再生するようにした
構成である。
(2) Structure of the Invention An uninvented demodulation circuit creates a reference carrier signal whose phase is shifted by a certain period from each change point of the phase of a DPEIK modulated signal, and synchronizes this carrier signal with the modulated signal. The output is sampled at approximately the center of each data section using a data clock that is synchronized with the phase image/conversion point detection output of the modulation signal, and thereby the data in the previous e-pi-variant V4 signal is sampled. This is a configuration designed for playback.

(ホ)実施例 第1図は本発明の一実施例として4相ILP S K変
調信号の復調回路を示し、以下(この回路ケ第2図の信
号タイミング図を参照して説明する。
(e) Embodiment FIG. 1 shows a demodulation circuit for a four-phase ILP SK modulated signal as an embodiment of the present invention, and this circuit will be explained below with reference to the signal timing diagram of FIG. 2.

第1因に於いて、(1)は受信した4相のDF8に変調
信号の入力端子であり、この端子からの上記変1lll
lI伯号は位相変化点検出回路(21に与えられる。
In the first factor, (1) is the input terminal for the modulation signal to the received four-phase DF8, and the above-mentioned change 1llll from this terminal
II is given to the phase change point detection circuit (21).

この検出回路t2H:L  D P S K変調信号が
一般に帯域制限されて伝送尽わて来るため、キャリアの
位相のψ化点で振幅が大さく変化する性%J+ k f
!、l用して、上gi: ’I”化声ヲ検出する○矛し
て、その変化点検出出力によって、データクロックの8
倍の周波へに選定した第1水晶発振回w;ta)の出力
をi分周するカウンタ(4)ケリセットする。
This detection circuit t2H: Since the LDPSK modulated signal is generally band-limited and the transmission is exhausted, the amplitude changes greatly at the ψ point of the carrier phase.
! , l is used to detect the 'I' voice. On the contrary, the change point detection output is used to detect the 8 of the data clock.
A counter (4) which divides the output of the first crystal oscillation circuit (w; ta) selected to double the frequency by i is reset.

また、mJ記71!1′訴j侶号はコンパし・−夕等か
らなる2値化回路(5)Kも入力されて2(fffl化
整形され、その整形後のD PSK亥°訓情号信号下、
これをjFにDPSKli号と再う)がリセットパルス
作成[01路(印及び位相比較回路(ヱ)に与えられる
。従って、今、第2図(Mのデータが前掲の表に基すい
てDPSK変調′2!ワているものとすると、2値化回
路+51からのDPSK悟号は同図CB)となっており
、また、前述のカウンタ(4)からに上にデータ(A)
に同ル」するデータクロック(C)が出力されることに
なる0前記カウンタ(4)からのデータ。クロック(0
)の立上りがリセットパルス作成回路唄)円の2段接続
σ)単安定マルチバイブレータt81t9+の611段
側をトリガし、その前段側の出力(Dlによって後段側
がトリガζねるので、この後段側から1テ一タ区1白の
徒手に(’l’1置する一定幅のパルスfElが出力さ
ね、こσ)ノ(ルス(E)が前記2値化回路(5)から
のD P S K’l^号(Elによって1iD−FF
(Dフリップ・クロック゛)(IOIにおいてサンプリ
ング畑ねることにより、こ(7)FFの司出力として第
2リセツトパルス(Fl %’得るO一方、+1Dij
 D P S Kイ誰号の、l!!、、準キャリア周涯
数の8培の周波数に選定された第2水晶発振し1路であ
り、この発掘出力がT’ −F Fdら及びリンク接続
の第2 ’jA 3 D −F F’ tl:1lI1
41 Pらなる分周uil k 即テa分周されること
により、その第2 D −F FII3117)出力と
して第1参闇ギヤリア佃号+Glが伊られ、第5D −
F F’圓の出力とり、て第2参照キヤリア情号(Ki
が得られる。その際、上記F F 112i = I1
4:は前記第1D−FFII(1からのリットノ(ルス
(F’)の立下りでリセト ツトされるので、図示のように、第1杉照キヤリアイ6
号(G)はリセット後から1テ一タ区1ムJの終りまで
DP SK信号のキャリアに位相が一致しており、第2
参照キヤリア信号(K)はその第1参照キヤリア信号(
G)よりも90°位相が遅れたものとなっている。
In addition, the binarization circuit (5) K consisting of a comparator, etc. is also input and is formatted into 2 (fffl), and the DPSK after the formatting Under the signal,
This is given to jF as DPSKli number) is given to reset pulse generation [01 path (mark) and phase comparator circuit (ヱ). Assuming that the modulation '2! is on, the DPSK Gogo from the binarization circuit +51 is CB) in the same figure, and the data (A) is output from the counter (4) mentioned above.
A data clock (C) equal to 0 will be output from the counter (4). Clock (0
The rising edge of ) triggers the 611st stage side of the two-stage connection σ) monostable multivibrator t81t9+, and the output of the previous stage side (Dl causes the subsequent stage side to trigger ζ, so the output from this latter stage is A pulse fEl of a constant width of ('l'1) is output manually in the Teichita Ward 1 White, and the pulse (E) of this (σ) is the D P S K from the binarization circuit (5). 'l^ issue (1iD-FF by El
(D flip clock) (By turning the sampling field at IOI, we get the second reset pulse (Fl %') as the output of this (7) FF. On the other hand, +1Dij
DP S K I, who's number, l! ! ,, the second crystal oscillation is selected to have a frequency of 8 times the number of quasi-carrier cycles, and this excavation output is T' -F Fd et al. and the second 'jA 3 D -F F' of the link connection. tl:1lI1
By dividing the frequency by 41 P, the 2nd D-F FII3117) output is the first dark gear +Gl, and the 5th D-
Taking the output of the F F' circle, the second reference carrier information (Ki
is obtained. At that time, the above F F 112i = I1
4: is reset at the fall of the litno (F') from the first D-FFII (1), so as shown in the figure, the first Sugisho carrier eye 6
No. (G) is in phase with the carrier of the DP SK signal from the reset to the end of the 1st section, 1st section, and the second
The reference carrier signal (K) is the first reference carrier signal (
The phase is delayed by 90° compared to G).

前記第1第2参■1キヤリア化号(ol (K)はII
述の位相比較回路(ヱ1?構成する第4第5 D −F
 F(16iQ71の各クロックとして印加きれ、それ
により前記2値化回路(5)からのDPSK信号(Bl
が上記キャリア信号(Gl(Klの各々の立上りでそれ
ぞれサンプリングされる。従って、この第4 D −F
 Ff161の出力が第2図(L)で第5 D −F’
 F’G7+の出力が禮1図(M)となり、この各出力
(L)(Mlが次の第6第7 D −F y (181
f191においてitl記カワンタ(4)からのデータ
クロック(0)の立上りで再度それぞれサンプリングI
tt、その16D−FF081の出力(Pl及び第7D
−FF’(191の出力(Q、)が得られる。
Part 1, Part 2, ■1 Carrier number (ol (K) is II
The phase comparator circuit (E1) constitutes the fourth and fifth D-F.
F (16iQ71), which can be applied as each clock of the
is sampled at each rising edge of the carrier signal (Gl (Kl). Therefore, this fourth D - F
The output of Ff161 is 5th D -F' in Fig. 2 (L).
The output of F'G7+ is 1 figure (M), and each output (L) (Ml is the next 6th 7th D -F y (181
At f191, the sampling I is performed again at the rising edge of the data clock (0) from the itl kawanta (4).
tt, its 16D-FF081 output (Pl and 7th D
-FF' (191 outputs (Q,) are obtained.

ココテ、PI lie位相比較回v!6+71−t’ 
D P S K(3号(B)と+if! 1第2参照キ
ャリア化号(G)(Klの位相比IP!2を行っている
ので、DPSK佃号のキャリアと同一周波数で1つ互い
に位相が90°異なる二つの参照信号と位相比較を行な
えば、上記4辿りの位相変化を検出できるからである。
Cocote, PI lie phase comparison episode v! 6+71-t'
D P S K (No. 3 (B) and +if! 1 second reference carrier conversion No. (G) (Kl phase ratio IP! 2 is being performed, so one is the same frequency as the carrier of DPSK No. This is because if phase comparison is performed with two reference signals that differ by 90 degrees, it is possible to detect the phase changes in the four traces described above.

捷た、その各比較出力(サンプリング出力)ケチ−タフ
ロック(atの立上りで再度サンプリングしているのは
、次の理由による。即ち、DPf4信号は前711iの
りl] < P相メ°化点で畳幅が大きく変化しており
、このため、その変化点付近ではキャリアの位相が正値
に検出さtlない5’t71があるので、上記変化点か
ら充分離れlこ1デ一タ区間の中央部の位相比較出力の
みを取り出すためである。
The reason why each comparison output (sampling output) is re-sampled at the rising edge of AT is due to the following reason. That is, the DPf4 signal is The tatami width has changed greatly, and for this reason, the phase of the carrier is not detected as a positive value near the changing point, but there is a time of 5't71, so it is far enough away from the changing point and in the center of the 1 data interval. This is to extract only the phase comparison output of the section.

したがって、前記位相比較11路(ヱ)の第6グ17D
−F’?(181(1話の各出プバP)(Q、lについ
て見ると、ダイビット■tて対する位相比較の結果は1
.時点で境われ、ダイビット■に対する位相比較結果は
t2時点で現われ、以下同様にm2図(Alの谷データ
区+?+Jに対する比較結果が6ビツトずつ遅れて現わ
れる。そして、このパラレルの比較出力CPl (QI
 U 、例えばダイビット■に対応するt、〜t2期間
ではP=Q=’“0”となり、ダイビット■に対応する
t2〜t3期間ではP=″0″、Q、=゛1”のように
元のデータと丁度逆でほつ1ピツ)Aが2倍の長さにな
っている。従って、上記両出カ(Pl(Q、+ 2テコ
ーダ(201で反転したのちパラレル/シリアル変換す
tlば、元のデータ(Δ)を再すできるのである。
Therefore, the sixth group 17D of the phase comparison path 11 (e)
-F'? (181 (Each output P of episode 1) (Looking at Q and l, the result of phase comparison for dibit ■t is 1
.. The phase comparison result for dibit ■ appears at time t2, and similarly, the comparison result for m2 diagram (Al valley data section +?+J appears with a delay of 6 bits. Then, this parallel comparison output CP1 (QI
U, for example, in the period t to t2 corresponding to dibit ■, P = Q = ``0'', and in the period t2 to t3 corresponding to dibit ■, the original is P = ``0'', Q, = ``1''. It is exactly opposite to the data of , and A is twice as long. Therefore, both outputs (Pl , the original data (Δ) can be restored.

なか、以上は4相DP61に信号の場合の実姉例につい
て説明したが、これ以外の2相或いは8相等の多相Dp
sx4g号の場合についても同様に実現でき、その場合
は参照キャリア信号の和知、及び、そ力に伴なうサンプ
リング回路の数を増漏させtlばよい0困みに参照キャ
リアは2相の場合1種類でよく、8相の場合4釉類必敦
とする。
Above, we have explained an actual example of a signal in a 4-phase DP61, but other multi-phase DPs such as 2-phase or 8-phase etc.
The case of sx4g can also be realized in the same way, in which case the reference carrier signal is determined by increasing the number of sampling circuits and leakage according to the power, and the reference carrier is two-phase. In case of 8 phases, 4 types of glaze are required.

また、ゲ!悄したDPSKりm個すの周波数が非常に高
くて、前記実廁例の如きテジタル処理ケ直接行なうこと
が困難な場合は、すのi’調侶信号適当な中間周波数信
号に一且にlj候したのち、1111様の処理を行なう
ことにより達成できる。
Also, ge! If the frequency of the distorted DPSK signal is very high and it is difficult to directly perform digital processing as in the above practical example, the i' tuning signal can be converted to an appropriate intermediate frequency signal at once. This can be achieved by performing processing similar to 1111 after the weather has cooled down.

(へ) 発明の効果 本発明の復調回路に依れば、DPSK変調仏号からキャ
リア化ら・を再生するための位相制御ループや逓倍回路
が不要であるから、従来の復調回路に比較して構成が簡
単であわ、しかも、各部をテジタル論理回路では成でき
るため、訓1整個D[が少なく〃゛定した復調1動作を
実現できる。捷た、上記位相制御ループや逓倍回路に伴
うフィルタ等ケ必要としないから、回路の完全LSI化
に好適である0
(f) Effects of the Invention According to the demodulation circuit of the present invention, there is no need for a phase control loop or a multiplier circuit for reproducing the carrier signal from the DPSK modulated code, so compared to the conventional demodulation circuit. The configuration is simple, and since each part can be implemented using digital logic circuits, a well-defined demodulation operation can be realized with a small number of elements D[. Since the phase control loop and the filter associated with the multiplier circuit are not required, it is suitable for complete LSI implementation of the circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による復調回路の一実細例を示すフロッ
ク図、第2図はその各部のイへ号タイミング図である。 fil : D P S K変調信号の入力端子、(2
1:位相変化点検出回路、 f41 : 4ビツトカウ
ンタ、151 : 2値化回路、+31tlll :第
1第2水晶発振回路、曳):リセットパルス作成回路、
(工):位相比較回路、+151 : −!−8 分周回路、1201 :テコーダ。
FIG. 1 is a block diagram showing a detailed example of a demodulation circuit according to the present invention, and FIG. 2 is a timing diagram of each part thereof. fil: DPSK modulation signal input terminal, (2
1: Phase change point detection circuit, f41: 4-bit counter, 151: Binarization circuit, +31tll: 1st and 2nd crystal oscillation circuit, Hiki): Reset pulse generation circuit,
(Engineering): Phase comparator circuit, +151: -! -8 Frequency divider circuit, 1201: Tecoder.

Claims (2)

【特許請求の範囲】[Claims] (1)1デ一タ区間毎にキャリアの位相が所定移相量変
化するDPSK変訓信号を復調する回路であって、入力
ζiまたDPSK変調信号の各位相変化点から一足時間
ずつずれたタイミングで前記変調信号のキャリアに位相
同期される参照キャリア信号1作成し、このキャリア信
号と#記変調信号の位相比較?行ない、その位相比較出
力ヲ@11記変調信号の位相変化点検出出力に同期して
発生−ghるデータクロックによって各データ区間の略
中央部でサンプリングすることにより、データを順次再
生して行くようにしたDPSKり゛調信号の復調回路。
(1) A circuit that demodulates a DPSK modulation signal in which the phase of the carrier changes by a predetermined phase shift amount every one data interval, and the timing is shifted by one foot time from the input ζi or each phase change point of the DPSK modulation signal. Create a reference carrier signal 1 whose phase is synchronized with the carrier of the modulated signal, and compare the phase of this carrier signal with the modulated signal #? The data is sequentially reproduced by sampling the phase comparison output at approximately the center of each data section using a data clock generated in synchronization with the phase change point detection output of the modulated signal. Demodulation circuit for DPSK redundant signal.
(2)前記餐照キャリア毎号を作成する手段は、前記変
調信号のキャリアのN倍(Nは正の整数)の周波数に選
足された基準発搬器の出力?i分周する分周回路2%前
記データクロックに応答してする構成であることを特徴
とする特許請求の範囲第1項記載のDP8に変調信号の
復調回路。
(2) The means for creating each reference carrier is the output of a reference transmitter selected at a frequency that is N times (N is a positive integer) the carrier of the modulated signal? 2. A demodulating circuit for a modulated signal in a DP8 according to claim 1, characterized in that the frequency dividing circuit divides the frequency by i in response to the data clock.
JP8950183A 1983-05-20 1983-05-20 Demodulating circuit of dpsk modulating signal Pending JPS59215158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8950183A JPS59215158A (en) 1983-05-20 1983-05-20 Demodulating circuit of dpsk modulating signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8950183A JPS59215158A (en) 1983-05-20 1983-05-20 Demodulating circuit of dpsk modulating signal

Publications (1)

Publication Number Publication Date
JPS59215158A true JPS59215158A (en) 1984-12-05

Family

ID=13972509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8950183A Pending JPS59215158A (en) 1983-05-20 1983-05-20 Demodulating circuit of dpsk modulating signal

Country Status (1)

Country Link
JP (1) JPS59215158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384347A (en) * 1986-09-29 1988-04-14 Matsushita Electric Ind Co Ltd Generating circuit for phase detecting signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384347A (en) * 1986-09-29 1988-04-14 Matsushita Electric Ind Co Ltd Generating circuit for phase detecting signal

Similar Documents

Publication Publication Date Title
US5799048A (en) Phase detector for clock synchronization and recovery
JP2959286B2 (en) DQPSK delay detection circuit
JPH036698B2 (en)
JPS59215158A (en) Demodulating circuit of dpsk modulating signal
US4780893A (en) Bit synchronizer
JPS5928101B2 (en) phase locked circuit
JP2000013218A (en) Clock extracting circuit
JPS62102636A (en) Clock recovery circuit
JPS58206285A (en) Phase synchronizing circuit
US4531224A (en) Low signal-to-noise ratio symbol synchronizer
JPH01117451A (en) Demodulation circuit
JPS6117382B2 (en)
JP3134442B2 (en) Demodulator
JP2553643B2 (en) Carrier synchronizer
JP3008659B2 (en) Clock extraction circuit for CMI code signal
JP3600208B2 (en) Clock / data recovery circuit
JPS6212241A (en) Digital transmission system
Gustrau et al. Reducing the PLL noise bandwidth by a digital split-loop
JPH09275396A (en) Clock recovery circuit
JP2514819B2 (en) Carrier wave regenerator
JPS62222744A (en) Synchronous detection circuit for msk system signal
JPH0969861A (en) Detection circuit
JPS5962257A (en) Carrier wave regenerating circuit
JPH06252964A (en) Clock reproducing circuit
JPH02279050A (en) Psk demodulation circuit