JPS5921488A - Exothermic material - Google Patents

Exothermic material

Info

Publication number
JPS5921488A
JPS5921488A JP13007882A JP13007882A JPS5921488A JP S5921488 A JPS5921488 A JP S5921488A JP 13007882 A JP13007882 A JP 13007882A JP 13007882 A JP13007882 A JP 13007882A JP S5921488 A JPS5921488 A JP S5921488A
Authority
JP
Japan
Prior art keywords
magnesium
mesh
alloy
powder
ferric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13007882A
Other languages
Japanese (ja)
Other versions
JPS6026638B2 (en
Inventor
Senzo Oinuma
生沼 仙三
Kazuo Shiino
椎野 和夫
Shuzo Fujiwara
修三 藤原
Masao Kusakabe
日下部 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13007882A priority Critical patent/JPS6026638B2/en
Publication of JPS5921488A publication Critical patent/JPS5921488A/en
Publication of JPS6026638B2 publication Critical patent/JPS6026638B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K23/00Alumino-thermic welding

Abstract

PURPOSE:To obtain an exothermic material of a compression molded body of a high density which has extremely good ignitability and reactivity and by which high temp. is easily obtd. in an exothermic material composed of alloy consisting essentially of Mg and ferric oxide, by specifying the grain sizes of both. CONSTITUTION:This exothermic material consists of the compression-molded body of a mixture composed of (A) powder of <=200 mesh grain size of an alloy consisting essentially of Mg and (B) pulverized ferric oxide of <=200 mesh grain size. Since it is difficult to obtain the powder A of desired grain sizes by direct grinding, H2 is caused to react with an Mg alloy to form hydride which is then ground. The powder obtd. in such a way is subjected to a heat treatment under a reduced pressure to dissociate hydrogen from the metal.

Description

【発明の詳細な説明】 本発明はマグネシウム合金と酸化第二鉄との混合物から
なる発熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat generating material made of a mixture of a magnesium alloy and ferric oxide.

従来、発熱剤としては多数の種類が知られているが、そ
の中で発熱量が大きく、高温を得ることのできるものと
してテルミツトと呼称されているものがある。これは、
酸化剤としての酸化第二鉄に可燃剤としてアルミニウム
、マグネシウムまたはこれらの合金が用いられている。
Many types of exothermic agents have been known in the past, but among them there is one known as thermite, which has a large calorific value and can generate high temperatures. this is,
Ferric oxide is used as an oxidizing agent, and aluminum, magnesium, or an alloy thereof is used as a combustible agent.

これは焼却剤、加熱剤、溶融剤、伝熱剤等として用いら
れているが、単位容量当りの発熱量を高めるために高密
度の圧縮成形体とすると、その着火反応性が極端に悪化
するという欠点を有している。
This is used as an incinerator, heating agent, melting agent, heat transfer agent, etc., but when it is made into a high-density compression molded product to increase the calorific value per unit volume, its ignition reactivity becomes extremely poor. It has the following drawbacks.

前記のような発熱材の中、酸化第二鉄−マグネシウム系
のものは下式のように反応し、約2000ml/cm3
以上の多数の熱を放出する。
Among the above-mentioned heat generating materials, ferric oxide-magnesium based ones react as shown in the following formula, and generate approximately 2000 ml/cm3.
It releases a lot of heat.

Fe2O3+3MgO→3MgO+2Fe従つて、この
酸化第二鉄−マグネシウム系の発熱材において、もし高
密度の圧縮成形体として発熱させることができれは、そ
の反応時の温度は通常のものでは出せないような高温に
なることに明らかである。しかしながら、現在の技術で
は、直径約5mm以下の薬径で30kg/cm2程度の
圧力で圧縮F成形したものは、着火しようとしても反応
しない。
Fe2O3 + 3MgO → 3MgO + 2Fe Therefore, if this ferric oxide-magnesium-based heat generating material can be made to generate heat as a high-density compression molded body, the temperature during the reaction will be a high temperature that cannot be produced with normal materials. It is clear that However, with the current technology, a drug having a diameter of about 5 mm or less and compressed F-molded at a pressure of about 30 kg/cm2 does not react even if an attempt is made to ignite it.

本発明者らは、従来技術に見られる前記欠点を克服し、
高温発熱性の微小圧縮成形体からなる発熱材を開発すべ
く鋭意研究を重ねた結果、本発明を完成するに到った。
The inventors have overcome the aforementioned drawbacks found in the prior art,
As a result of intensive research to develop a heat generating material made of a micro compression molded body that generates heat at high temperatures, the present invention was completed.

即ち、本発明によれば(A)マグネシウムをウ主成分と
する合金の粒度200メツシユ以下の微粉末と、(B)
粒度200メツシユ以下の微粉末状の酸化第二鉄との混
合物の圧縮成形体からなる発熱剤が提供される。
That is, according to the present invention, (A) a fine powder of an alloy containing magnesium as a main component and having a particle size of 200 mesh or less, and (B)
A heat generating agent is provided which is a compression molded product of a mixture with finely powdered ferric oxide having a particle size of 200 mesh or less.

本発明の発熱材成分の一方の成分(A)は、マグネシウ
ムを主成分とする合金であるが、このものは粒度200
メツシユ以下、好ましくは270メツシユ以下の微粉末
状で用いることが必要である。本発明者らの研究によれ
ば、マグネシウムを主成分とした合金は、その粒度が2
00メツシユ付近を境にして、それより小さな粒度にな
ると、急激に反応性が増大し、酸化第二鉄の微粉末と混
合した場合、小型高密度の圧縮成形体としても容易に着
火反応することが判明した。酸化第二鉄−アルミニウム
系の発熱体では、アルミニウム粉末をいくら微小にして
もその反応性は格別よくならず、前記のような200メ
ツシユ以下にする粒度の微小化による反応性の顕著な向
上は、マグネシウム系のものに見られる特異な現象であ
る。マグネシウム合金としては、成分として、マグネシ
ウムの他に、ニッケル、マンガン、亜鉛、鉄、ジルコニ
ウム、カルシウム、アルミニウム、チタン、クロムなど
のマグネシウムと合金化可能の金属の1種または2種以
上を含むものであり、一般には、マグネシウムを70重
量%以上、好ましくは85重量%以上を含むものである
One component (A) of the heat generating material components of the present invention is an alloy mainly composed of magnesium, which has a particle size of 200.
It is necessary to use it in the form of a fine powder of no more than 270 meshes, preferably no more than 270 meshes. According to the research conducted by the present inventors, alloys mainly composed of magnesium have a particle size of 2.
When the particle size becomes smaller than 00 mesh, the reactivity increases rapidly, and when mixed with fine ferric oxide powder, it can easily ignite even as a compact high-density compression molded product. There was found. In a ferric oxide-aluminum oxide heating element, no matter how fine the aluminum powder is made, its reactivity does not improve significantly, and the reactivity cannot be significantly improved by reducing the particle size to 200 mesh or less as described above. This is a unique phenomenon seen in magnesium-based materials. Magnesium alloys include, in addition to magnesium, one or more metals that can be alloyed with magnesium, such as nickel, manganese, zinc, iron, zirconium, calcium, aluminum, titanium, and chromium. It generally contains 70% by weight or more, preferably 85% by weight or more of magnesium.

また、酸化第二鉄成分(B)の粒度は200メツシユ以
下、好ましくは320メツシユ以下の微粉末である。本
発明の発熱材においては、この酸化第二鉄(B)は、マ
グネシウム合金成分(A)に対する重量比B/Aが87
.5/12.5〜75.0/25.0の範囲になるよう
に用いられる。なお、本発明でいうメツシユは、テーラ
ー標準篩を基準としたものである。
Further, the particle size of the ferric oxide component (B) is a fine powder of 200 mesh or less, preferably 320 mesh or less. In the heat generating material of the present invention, this ferric oxide (B) has a weight ratio B/A of 87 to the magnesium alloy component (A).
.. It is used in a range of 5/12.5 to 75.0/25.0. Note that the mesh referred to in the present invention is based on a Taylor standard sieve.

本発明の発熱材には、本発明の目的を阻害しない限り、
各種の金属の酸化物、過酸化物、塩素酸塩、過塩素酸塩
、過マンガン酸塩、硫酸塩、例えば、酸化銅、過酸化バ
リウム、硫酸バリウム、過マンガン酸カリ、過塩素酸カ
リなどを添加し得る他、可燃剤として例えば珪素、ジル
コニウム、ホウ素、マグネシウム、チタン、珪素鉄、な
どのようなものを添加することもできる。
The exothermic material of the present invention includes, as long as it does not impede the purpose of the present invention.
Various metal oxides, peroxides, chlorates, perchlorates, permanganates, sulfates, such as copper oxide, barium peroxide, barium sulfate, potassium permanganate, potassium perchlorate, etc. In addition, combustible agents such as silicon, zirconium, boron, magnesium, titanium, iron silicon, etc. can also be added.

本発明においては、マグネシウム合金成分(A)と酸化
第二鉄成分(B)との混合物は、適当な形状の圧縮成形
体として用いられる。この場合の形状は任意であり、例
えば板状、棒状、筒状などで用いられる。また圧縮成形
は、適当な形状の金型に、前記混合物を充填し、圧縮す
ることにより実施される。この場合、圧力は通常10k
g/cm2〜500kg/cm2、好ましくは200k
g/cm2以上であり、圧縮成形に際しては、補助成分
として、物理的性質を良好にするために、ステアリン酸
ナトリウム、パラフィン、密ろうその他のバインダーを
用いることもできる。
In the present invention, the mixture of the magnesium alloy component (A) and the ferric oxide component (B) is used as a compression molded body in an appropriate shape. In this case, the shape may be arbitrary, such as a plate, a rod, or a cylinder. Compression molding is carried out by filling the mixture into an appropriately shaped mold and compressing the mixture. In this case, the pressure is usually 10k
g/cm2 to 500kg/cm2, preferably 200k
g/cm2 or more, and during compression molding, binders such as sodium stearate, paraffin, beeswax, etc. can also be used as auxiliary components to improve physical properties.

本発明の発熱材は、通常、密度2.0g/cm3以上、
好ましくは2.9g/cm3〜3.10g/cm3を有
する。
The heat generating material of the present invention usually has a density of 2.0 g/cm3 or more,
Preferably it has 2.9 g/cm3 to 3.10 g/cm3.

本発明に於て用いるマグネンウム合金は、伸展性が大き
いので、直接粉砕して所望の粒度のものとすることは困
難である。しかしながら、マグネシウム合金に水素を反
応させて水素化物とした後、これを粒度200メツシユ
以下、好ましくは270〜320メツシユの微粉末状に
粉砕し、次いでこの微粉砕物を減圧下加熱処理して金属
中から水素を解離させる。このようにして所望する微粉
末状のマグネシウム合金を容易に得ることができる。本
発明に於ては、合金成分を2〜5重量%含むマグネシウ
ム合金をこのような金属水素化物を介して微粉砕化した
ものを発熱材成分として用いるのが有利である。本発明
の発熱材は従来の発熱材と同様な用途に使うことができ
るほかに、微小圧縮成形体としても極めて着火、反応性
がよく、高温が容易に得られる特性を利用してこれまで
にない多くの分野に使用することができる。本発明の場
合、殊に、直径5mm以下の棒状又は線状成形体や、厚
さ3mm以下の板状成形体等として有利に用いられる。
Since the magnenium alloy used in the present invention has high extensibility, it is difficult to directly crush it into a desired particle size. However, after a magnesium alloy is reacted with hydrogen to form a hydride, this is ground into a fine powder with a particle size of 200 mesh or less, preferably 270 to 320 mesh, and then this finely ground product is heat-treated under reduced pressure to form a hydride. Dissociate hydrogen from inside. In this way, a desired finely powdered magnesium alloy can be easily obtained. In the present invention, it is advantageous to use as the heating material component a magnesium alloy containing 2 to 5% by weight of the alloy component, which has been pulverized through such a metal hydride. The heat generating material of the present invention can not only be used for the same purposes as conventional heat generating materials, but also as a micro-compression molded product, it has extremely good ignition and reactivity, and has the ability to easily reach high temperatures. Not can be used in many fields. In the case of the present invention, it can be particularly advantageously used as a rod-shaped or linear molded product with a diameter of 5 mm or less, a plate-shaped molded product with a thickness of 3 mm or less, and the like.

例えば、直径3mm程度の棒状成形体は、微小熔接棒と
して金属同志の、細部の接着あるいはその高温発熱性を
利用して金属の細部の熔融切断等に用いることができる
For example, a rod-shaped molded body with a diameter of about 3 mm can be used as a minute welding rod for adhering small parts of metals together or for melting and cutting small parts of metal by utilizing its high-temperature exothermic property.

次に本発明を実施例によりさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 粒度約100メツシユのマグネシウム97重量%とニッ
ケル3重量%からなる合金粉末に、温度350℃、圧力
50kg/cm2Gの条件下で水素ガスを反応させて、
そのマグネシウムニツケル合金の水素化物を作つた。次
に、この水素化物を粒度270メツシユ以下に微粉砕し
た後、減圧下約200℃に加熱してマグネシウム−ニツ
ケル合金微粉末を得た。なお、金属マグネシウム及びそ
のニツケル2重量%含有の合金は、非常にやわらかい金
属であるため、これをそのまま通常の微粉砕法により粉
砕しても前記のような粒度200メツシユ以下にするこ
とは困維であり、この場合には100メツシユ程度の微
粉砕化が限度である。従つて、本発明の場合、マグネシ
ウム微粉末化はいずれも、前記水素化物を介しての微粉
化法を用いた。
Example 1 An alloy powder consisting of 97% by weight of magnesium and 3% by weight of nickel with a particle size of approximately 100 mesh was reacted with hydrogen gas at a temperature of 350°C and a pressure of 50kg/cm2G.
We created a hydride of the magnesium-nickel alloy. Next, this hydride was pulverized to a particle size of 270 mesh or less, and then heated to about 200° C. under reduced pressure to obtain a fine magnesium-nickel alloy powder. Furthermore, since metallic magnesium and its alloy containing 2% by weight of nickel are very soft metals, it is difficult to reduce the particle size to less than 200 mesh as described above even if they are pulverized by ordinary pulverization methods. In this case, the limit is pulverization of about 100 meshes. Therefore, in the case of the present invention, the above-mentioned hydride-mediated pulverization method was used for pulverizing magnesium.

次にこのマグネシウムニツケル合金微粉末18.6重量
%と、酸化第二鉄粉末(粒度200メツシユ以下)81
.4重量%とを均一に混合し、この混合物を200kg
/cm2の圧力で、直径3mm、長さ30mmの棒状に
圧縮成形した。
Next, 18.6% by weight of this magnesium nickel alloy fine powder and 81% of ferric oxide powder (particle size of 200 mesh or less)
.. 4% by weight, and this mixture was weighed 200 kg.
It was compression molded into a rod shape with a diameter of 3 mm and a length of 30 mm at a pressure of /cm2.

この棒状成形物を金属の容器に入れ、密栓し、その上端
に抵抗線を使い、電気的に着火したところ、着火は良好
であり、白熱状態で反応が他端まで進行することが確認
された。またこの場合、反応温度が約3000℃にもな
り、容器中に空気等があると、それが爆発的に膨張する
。気体の体積は絶体温度に比例するから、この場合爆発
的に10倍に膨張する。つまり10気圧にも圧力が上昇
する。
When this rod-shaped molded product was placed in a metal container, sealed tightly, and electrically ignited using a resistance wire at the top end, ignition was successful, and it was confirmed that the reaction progressed to the other end in an incandescent state. . In this case, the reaction temperature reaches about 3,000° C., and if air is present in the container, it will expand explosively. Since the volume of gas is proportional to its extreme temperature, in this case it expands explosively ten times. In other words, the pressure increases to 10 atmospheres.

したがつて、圧縮成形物は高密度に成形し、気泡のない
ものほどよい。即ち、密度2.5g/cm3以上に圧縮
するか、または容器中を減圧状態に保つことが好ましい
ことが判つた。
Therefore, the compression-molded product should be highly dense and free of bubbles. That is, it has been found that it is preferable to compress the material to a density of 2.5 g/cm3 or more or to maintain the container under reduced pressure.

比較のために、マグネシウムニツケル合金粉末及び純マ
グネシウム金属粉末の、粒度約100メツシユのものを
用い、前記と同様にして棒状の圧縮成形物を得た。この
ものは、前記と同様にして着火してみたが全く反応しな
かつた。
For comparison, rod-shaped compression molded products were obtained in the same manner as described above using magnesium-nickel alloy powder and pure magnesium metal powder with a particle size of about 100 mesh. I tried to ignite this thing in the same way as above, but it did not react at all.

実施例2 金属マグネシウム90重量%とニツケル10重量%とか
らなる合金を粒度270メツシユ以下の微粉末に粉砕し
、この粉砕物19.2重量%に粒度320メツシユ以下
の酸化第二鉄80.8重量%を混合した。
Example 2 An alloy consisting of 90% by weight of magnesium metal and 10% by weight of nickel was pulverized into a fine powder with a particle size of 270 mesh or less, and 19.2% by weight of this pulverized product was mixed with 80.8% of ferric oxide with a particle size of 320 mesh or less. % by weight was mixed.

次に、この混合物を直径2mmの棒状に100kg/c
m2の圧力で容器内で圧縮成形し、これを密封した後、
着火し、その燃焼特性を調べたところ、1.5cm/秒
の速度で均一に燃焼することが確認された。
Next, this mixture was made into a rod shape with a diameter of 2 mm at a weight of 100 kg/cm.
After compression molding in a container at a pressure of m2 and sealing it,
When it was ignited and its combustion characteristics were examined, it was confirmed that it burned uniformly at a speed of 1.5 cm/sec.

また前記に於て、圧力100kg/cm2の条件下で直
径5mmの棒状に成形したものは、密閉金属容器中で1
cm/秒速度で燃焼することが確認された。
In addition, in the above, the product formed into a rod shape with a diameter of 5 mm under the condition of a pressure of 100 kg/cm2 was placed in a closed metal container.
It was confirmed that it burns at a speed of cm/sec.

さらに前記に於て、マグネシウム合金の粒度を種々変え
、同様にして直径2mmの棒状成形物を作り、その燃焼
特性を調べたところ、マグネシウム合金の粒度が200
メツシュ付近を境にして、それより小さくなると、燃焼
特性が急激に改善されることが判明した。即ち、マグネ
シウム合金の粒度が200メツシユ以下の成形体は着火
が容易で、燃焼反応の中断がなく、均一速度で燃焼反応
が進行し、それ以上の粒度では、着火反応が好ましくな
いことが判つた。
Furthermore, in the above, when the particle size of the magnesium alloy was varied and rod-shaped molded products with a diameter of 2 mm were made in the same way and the combustion characteristics were investigated, it was found that the particle size of the magnesium alloy was 200 mm.
It has been found that the combustion characteristics are rapidly improved when the particle size becomes smaller than the mesh area. In other words, it was found that compacts of magnesium alloy with a grain size of 200 mesh or less can be easily ignited, and the combustion reaction proceeds at a uniform rate without interruption, whereas with grain sizes larger than that, the ignition reaction is unfavorable. .

なお、マグネシウム合金中のニツケルは、酸化第二鉄と
ほとんど反応しないので、ニツケル含量の多いもの程成
形体の発熱量は少なくなる。ニツケル含量が30%を越
えるようになると、単位重量当りの発熱量が小さくなる
と同時に、着火性燃焼性等においても劣るようになるの
で、ニツケル含は30%以下、即ちマグネシウム含量を
70%以上にすることが好ましい。
Note that since nickel in the magnesium alloy hardly reacts with ferric oxide, the higher the nickel content, the lower the calorific value of the molded article. If the nickel content exceeds 30%, the calorific value per unit weight decreases, and at the same time, the ignitability and combustibility become inferior. It is preferable to do so.

実施例3 マグネシウム合金として、Fe、Cr、Mn、Sn、C
a又はZr等の各種金属を含む合金を用い、実施例2と
同一条件で製造した発熱材を圧力300kg/cm2で
直径2mmの棒状成形体を作り、その燃焼特性を調べた
ところ、同様に良好な燃焼特性を示すことが確認された
Example 3 Fe, Cr, Mn, Sn, C as magnesium alloy
Using an alloy containing various metals such as a or Zr, a heat-generating material manufactured under the same conditions as in Example 2 was made into a rod-shaped body with a diameter of 2 mm at a pressure of 300 kg/cm2, and its combustion characteristics were examined, and it was found to be similarly good. It was confirmed that the fuel had excellent combustion characteristics.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)マグネシウムを主成分とする合金の粒度2
00メツシユ以下の微粉末と、(B)粒度200メツシ
ユ以下の微粉末状の酸化第二鉄との混合物の圧縮成形体
からなる発熱材。
(1) (A) Particle size of alloy mainly composed of magnesium 2
A heat generating material comprising a compression-molded mixture of (B) fine powder of 00 mesh or less and (B) fine powder ferric oxide with particle size of 200 mesh or less.
JP13007882A 1982-07-26 1982-07-26 heat generating material Expired JPS6026638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13007882A JPS6026638B2 (en) 1982-07-26 1982-07-26 heat generating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13007882A JPS6026638B2 (en) 1982-07-26 1982-07-26 heat generating material

Publications (2)

Publication Number Publication Date
JPS5921488A true JPS5921488A (en) 1984-02-03
JPS6026638B2 JPS6026638B2 (en) 1985-06-25

Family

ID=15025455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13007882A Expired JPS6026638B2 (en) 1982-07-26 1982-07-26 heat generating material

Country Status (1)

Country Link
JP (1) JPS6026638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132252A (en) * 1994-11-10 1996-05-28 Honda Motor Co Ltd Resistance welding method for aluminum material and t-shaped aluminum structure
JPWO2014188559A1 (en) * 2013-05-23 2017-02-23 株式会社日立製作所 Reactive powder, bonding material using the reactive powder, bonded body bonded with the bonding material, and method of manufacturing the bonded body
CN110642664A (en) * 2019-11-01 2020-01-03 四川蓝狮科技有限公司 High-energy high-combustion-rate ignition agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138329U (en) * 1986-02-25 1987-09-01
JPS63181124U (en) * 1987-05-11 1988-11-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132252A (en) * 1994-11-10 1996-05-28 Honda Motor Co Ltd Resistance welding method for aluminum material and t-shaped aluminum structure
JPWO2014188559A1 (en) * 2013-05-23 2017-02-23 株式会社日立製作所 Reactive powder, bonding material using the reactive powder, bonded body bonded with the bonding material, and method of manufacturing the bonded body
CN110642664A (en) * 2019-11-01 2020-01-03 四川蓝狮科技有限公司 High-energy high-combustion-rate ignition agent

Also Published As

Publication number Publication date
JPS6026638B2 (en) 1985-06-25

Similar Documents

Publication Publication Date Title
JP2649245B2 (en) Method for producing tough and porous getter by hydrogen grinding and getter produced therefrom
US3503814A (en) Pyrotechnic composition containing nickel and aluminum
US3957483A (en) Magnesium composites and mixtures for hydrogen generation and method for manufacture thereof
US1415516A (en) Method of and apparatus for reducing metals, etc.
Schoenitz et al. Preparation of energetic metastable nano-composite materials by arrested reactive milling
US3384463A (en) Graphite metal body composite
JPH0135761B2 (en)
US2884688A (en) Sintered ni-al-zr compositions
US4182748A (en) Material and method for obtaining hydrogen and oxygen by dissociation of water
JPS5921488A (en) Exothermic material
US4289744A (en) Material and method to dissociate water
US4996002A (en) Tough and porus getters manufactured by means of hydrogen pulverization
US2657127A (en) Production of chromium-alloyed corrosion-resistant metal powders and related products
CA1053485A (en) Ruthenium powder metal alloy and method for making same
CA1183374A (en) Process for the production of porous nickel bodies
US4312894A (en) Hard facing of metal substrates
Padyukov et al. Self-propagating high-temperature synthesis: a new method for the production of diamond-containing materials
US3389990A (en) Manganese nitride
EP0099219A2 (en) Method of producing an agglomerated metallurgical composition
GB1036635A (en) Beryllium copper based alloys and method of producing green compacts and sintered articles therefrom
JP2787617B2 (en) Nickel alloy for hydrogen storage battery electrode
US2823116A (en) Method of preparing sintered zirconium metal from its hydrides
US3779717A (en) Nickel-tantalum addition agent for incorporating tantalum in molten nickel systems
US4324777A (en) Material and method to dissociate water at controlled rates
US2657128A (en) Silicon-alloyed corrosion-resistant metal powders and related products and processes