JPS5921454B2 - Forced air supply/exhaust type combustion control device - Google Patents

Forced air supply/exhaust type combustion control device

Info

Publication number
JPS5921454B2
JPS5921454B2 JP9852076A JP9852076A JPS5921454B2 JP S5921454 B2 JPS5921454 B2 JP S5921454B2 JP 9852076 A JP9852076 A JP 9852076A JP 9852076 A JP9852076 A JP 9852076A JP S5921454 B2 JPS5921454 B2 JP S5921454B2
Authority
JP
Japan
Prior art keywords
air
gas
pressure
valve
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9852076A
Other languages
Japanese (ja)
Other versions
JPS5324139A (en
Inventor
芳雄 山本
義幸 横網代
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9852076A priority Critical patent/JPS5921454B2/en
Publication of JPS5324139A publication Critical patent/JPS5324139A/en
Publication of JPS5921454B2 publication Critical patent/JPS5921454B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply

Description

【発明の詳細な説明】 本発明は強制給排気式燃焼装置に於いて、空気過剰率を
安定化させ燃焼状態に維持するための制御装置に関する
もので、空気過剰率を安定化しつつガス入力を連続的か
つ広範囲に変化することが可能で、且つ、最大入力時の
通風回路の圧力損失が少い制御装置を得ることを目的と
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for stabilizing the excess air ratio and maintaining the combustion state in a forced air supply/exhaust type combustion device. It is an object of the present invention to provide a control device that can change the pressure continuously and over a wide range and has a small pressure loss in the ventilation circuit at the time of maximum input.

完全予混合燃焼器ではガス量と燃焼空気量の比率が許容
限界内に保たれていることが必要である。
A fully premixed combustor requires that the ratio between the amount of gas and the amount of combustion air be kept within permissible limits.

しかしながら、実際面ではその比率(以下空気過剰率と
いう)は、ガス圧、電圧などの外部的な要因やガス入力
を可変にするためのガス量変化に伴う要因などで不安定
になり易く、一般ガス器具で使用されるガス圧を単に一
定化するための定圧ガスガバナのみでは目的を果せない
However, in practice, this ratio (hereinafter referred to as excess air ratio) tends to become unstable due to external factors such as gas pressure and voltage, and factors associated with changes in gas amount to make gas input variable. A constant-pressure gas governor that simply stabilizes the gas pressure used in gas appliances cannot accomplish its purpose.

このために、空気圧とガス圧を常にほぼ等しくして混合
させる方法が有効で、ゼロガバナと混合管を使用する場
合が多い。
For this purpose, it is effective to always keep the air pressure and gas pressure approximately equal and mix them, which often uses a zero governor and a mixing tube.

この方法では、単に燃焼空気量のみを変化させればガス
入力も自動的に変化するので便利であるが、ガス圧を常
に空気圧と等しく推移させることが困難で、ある程度の
誤差は認めなければならない。
This method is convenient because the gas input automatically changes by simply changing the amount of combustion air, but it is difficult to keep the gas pressure always equal to the air pressure, and a certain amount of error must be accepted. .

この誤差は空気過剰率の誤差となるのでこの影響を少く
するには後述するが混合管の性能を高くする必要があり
、それは混合管の通風圧力損の増大を伴うため、送風機
性能との関係で設計点が選ばれていた。
This error results in an error in the excess air ratio, so in order to reduce this effect, it is necessary to improve the performance of the mixing pipe, which will be explained later.This is accompanied by an increase in the ventilation pressure loss of the mixing pipe, so the relationship with the blower performance is The design points were selected.

しかし、ガス入力を可変にするには、燃焼風量を変化さ
せねばならないが、最低風量時にガス圧と空気圧の誤差
による空気過剰率が許容値内にあるように混合管仕様を
選定すると、混合管圧損は燃焼風量の約2乗に比例して
増大するので、最高風量時の圧損は極めて大きくなる。
However, in order to make the gas input variable, it is necessary to change the combustion air volume, but if the mixing pipe specifications are selected so that the excess air ratio due to the error between gas pressure and air pressure is within the allowable value at the lowest air volume, the mixing pipe Since the pressure loss increases in proportion to approximately the square of the combustion air volume, the pressure loss at the maximum air volume becomes extremely large.

このために送風機として大型になり、騒音も大きくなる
という問題があった。
For this reason, there was a problem that the blower became large and the noise became louder.

本発明はこのような従来の欠点を除去したもので、以下
その実施例を添付図面とともに説明する。
The present invention eliminates these conventional drawbacks, and embodiments thereof will be described below with reference to the accompanying drawings.

第1図に於いて、1は燃焼空気の給気路で、分岐部2に
よって2方向に別れ各々が空気とガスの混合器6及び6
′に入る。
In FIG. 1, reference numeral 1 denotes a combustion air supply passage, which is divided into two directions by a branch part 2, and each has an air and gas mixer 6 and 6.
'to go into.

混合器6,6/は同一構造で、空気入口室3,3′から
空気ノズル4,4/を通って空気が噴出し、そのエゼク
タ効果で低圧室5“。
The mixers 6, 6/ have the same structure, and air is ejected from the air inlet chambers 3, 3' through the air nozzles 4, 4/, and the ejector effect creates a low pressure chamber 5''.

5′の圧力レベルを下げる。Reduce the pressure level at 5'.

その後、徐々に拡大するディフューザを通ってバーナ7
へ入る。
Burner 7 is then passed through a gradually expanding diffuser.
Enter.

ここで燃焼した熱は熱交換器8で外部へ伝えられ、また
排ガスは排気筒9を通って送風機10により排気路11
へ排出される。
The heat combusted here is transferred to the outside by a heat exchanger 8, and the exhaust gas is passed through an exhaust pipe 9 and sent to an exhaust passage 11 by a blower 10.
is discharged to.

次に、ガスは、コック13の後に分岐通路14を通って
ガスガバナ15 、15’へ入り、ガス弁16 、16
’を経て前記混合器6,6′の低圧室5゜5′に臨むガ
スノズル17.17’に至る二つのガス回路12 、1
2’から供給されている。
The gas then enters the gas governor 15 , 15 ′ through the branch passage 14 after the cock 13 and into the gas valve 16 , 16
Two gas circuits 12 and 1 lead to gas nozzles 17 and 17' facing the low pressure chambers 5°5' of the mixers 6 and 6' through the
It is supplied from 2'.

尚、ガスガバナ15.15’には空気入口室3,3′の
空気圧が圧力等化管18 、18’によって導入されて
おり、空気圧の変化とガスガバナ出口圧の変化が同期す
るように作動する。
The air pressure in the air inlet chambers 3, 3' is introduced into the gas governor 15, 15' through pressure equalization pipes 18, 18', and operates so that changes in the air pressure and changes in the gas governor outlet pressure are synchronized.

尚、19は給気路1中に設けたダンパーで、燃焼空気量
の連続的変化が出来るようになっている。
Note that 19 is a damper provided in the air supply path 1, which allows continuous change in the amount of combustion air.

20は混合器6′の給気回路中に挿入された空気弁で、
ガス弁16′と同時に開閉される。
20 is an air valve inserted into the air supply circuit of the mixer 6';
It is opened and closed simultaneously with the gas valve 16'.

次に、第1図のような混合器を使用した方式での動作に
ついて説明する。
Next, the operation of the system using the mixer as shown in FIG. 1 will be explained.

記号を次の如く定める。混合器の空気入口室3,31の
圧力 pai〃 低王室の圧力 p
nT5ガスガバナの出ロガ゛ス圧 pz。
The symbols are defined as follows. Pressure in air inlet chambers 3 and 31 of mixer pai〃 Low royal pressure p
nT5 gas governor output log pressure pz.

燃焼空気量 Qc、 ガス量 Qg 空気過剰率 M 〃 の許容下限 Mmin〃 の許
容上限 Mmaxさて、空気ノズル4,4′
のエゼクタ効果による空気入口室と低圧室の圧力差Pa
1−Pn″6は第2図のようにQcのほぼ2乗に比例す
る。
Combustion air amount Qc, gas amount Qg Allowable lower limit of excess air ratio M 〃 Allowable upper limit of Mmin〃 Mmax Now, air nozzles 4, 4'
The pressure difference Pa between the air inlet chamber and the low pressure chamber due to the ejector effect of
1-Pn''6 is approximately proportional to the square of Qc as shown in FIG.

又、ガス量はガス16 、16’とガスノズル17 、
17’の抵抗及びガスガバナ出口圧Pzoと低圧室の圧
力n3で決まり、第3図のように圧力差PZG) P
noのほぼ平方根に比例する。
Also, the gas amount is gas 16, 16' and gas nozzle 17,
It is determined by the resistance of 17', the gas governor outlet pressure Pzo, and the pressure n3 of the low pressure chamber, and the pressure difference PZG) P is determined as shown in Fig. 3.
It is approximately proportional to the square root of no.

即ち、Pai =Pzoとなるようにガスガバナ15
、15’が作動するとMは寸法関係でのみ決定されて、
風量、ガス量にかかわらず一定化が可能である。
That is, the gas governor 15 is adjusted so that Pai = Pzo.
, 15' is activated, M is determined only by the dimensional relationship,
It is possible to keep it constant regardless of the air volume or gas volume.

ところが、ガスガバナの出口圧は、ガス流量によって変
化したり、供給ガス元圧の変化によっても変化する。
However, the outlet pressure of the gas governor varies depending on the gas flow rate and also varies depending on the supply gas source pressure.

更に、生産時の誤差も含めると、すべての条件でPa1
=PnEを保持することは困難である。
Furthermore, if production errors are included, Pa1 is achieved under all conditions.
= It is difficult to maintain PnE.

今、Pzδ−Pai十ΔPという関係にあるとすれとな
ってMの変化をもたらす。
Now, if there is a relationship of Pzδ-Pai+ΔP, this will result in a change in M.

第4図はQcが100係の時にPai −Pno=24
mmAqでΔP=0の時の基準空気過剰率が1.5とし
た時にΔP=±2mmAqであるとすると、ガス入力を
減少させる目的でQcを低下させた時にMがどう変化す
るかを示したものである。
Figure 4 shows Pai −Pno=24 when Qc is 100.
Assuming that the standard excess air ratio when ΔP=0 in mmAq is 1.5 and ΔP=±2 mmAq, we have shown how M changes when Qc is lowered for the purpose of reducing gas input. It is something.

すなわち、Pai PnoがQc減少と共に低下して
くるので、低入力側になるほどMの変化は大きくなって
くる。
That is, since Pai Pno decreases as Qc decreases, the change in M becomes larger as the input becomes lower.

次に、Mの許容限界をMmax、Mminとした時に、
定められたPai Pnoに対してΔPの許容値、す
なわち、ガスガバナの許容誤差範囲がどうなるかを第5
図に示している。
Next, when the allowable limits of M are set as Mmax and Mmin,
The fifth test determines what the tolerance value of ΔP, that is, the tolerance range of the gas governor, will be for the determined Pai Pno.
Shown in the figure.

ガバナの誤差と、バーナの空気過剰率の許容値が定まれ
ば、混合器6゜6′での圧力差Pa1−Pn?5の最低
必要値も決定される。
Once the tolerance of the governor error and the excess air ratio of the burner are determined, the pressure difference Pa1-Pn? at the mixer 6°6' is determined. A minimum required value of 5 is also determined.

入力を可変にする場合は、最低入力に見合う燃焼空気量
の時にその最低必要差圧を確保するように空気ノズル4
,4′を設計することになる。
When making the input variable, the air nozzle 4 should be adjusted so as to secure the minimum required differential pressure when the amount of combustion air corresponds to the minimum input.
, 4' will be designed.

混合器6,6′の送風機10から見た圧損は、入力最低
の時を基準として、入力を2倍まで可変とするなら圧損
は4倍、3倍まで可変とするなら9倍の圧損となる。
The pressure drop seen from the blower 10 of the mixer 6, 6' is based on the lowest input, and if the input is varied up to 2 times, the pressure drop will be 4 times, and if it is varied up to 3 times, the pressure drop will be 9 times. .

例えば、最低必要な圧力差Pa1−Pn。を10mmA
qとしてその時の混合器6,61の圧損を6mmAqと
するなら、入力変化を3倍とすると圧損は54mmAq
まで増加することになる。
For example, the minimum required pressure difference Pa1-Pn. 10mmA
If the pressure loss of the mixers 6 and 61 at that time is 6 mmAq as q, then if the input change is tripled, the pressure loss is 54 mmAq.
will increase to.

これは、送風機自体の大型化と騒音の増大を伴うので好
ましない。
This is not preferred because it increases the size of the blower itself and increases noise.

以上は混合器とゼロガバナ使用の方式に於ける一般的な
説明であるが、本発明では能力変化幅を拡大する時に生
じる圧損の増大、送風機の大型化を解決するもので、第
1図の如く、並列に混合器6.61とガス回路12 、
12’が設けられ、且つ一方の混合器6′には空気弁2
0が設けられ、この空気弁20とガス弁16′が同時に
開閉されるようになっている。
The above is a general explanation of the system using a mixer and zero governor, but the present invention solves the problems of increased pressure loss and increased size of the blower that occur when expanding the range of capacity variation, as shown in Figure 1. , mixer 6.61 and gas circuit 12 in parallel,
12', and one mixer 6' is provided with an air valve 2.
0 is provided, and the air valve 20 and gas valve 16' are opened and closed at the same time.

今、最大入力を100係とし、2ケの混合器が均等に作
動しているとすれば、各々50係ずつの入力になってい
る。
Now, if the maximum input is 100 units and the two mixers are operating equally, each has an input of 50 units.

一本の混合器では、前述の最低必要圧力差Pa1−Pn
oの関係から入力は1/2までししか下げられないとす
る。
In one mixer, the above-mentioned minimum required pressure difference Pa1-Pn
Assume that the input can only be lowered to 1/2 due to the relationship o.

最低必要差圧Pa1−PnδをPnとして示し、その時
の混合器圧損をPA’とると、空気量、ガス入力との関
係は次表の如くなる。
If the minimum required differential pressure Pa1-Pnδ is expressed as Pn, and the mixer pressure drop at that time is PA', then the relationship between the air amount and the gas input is as shown in the following table.

すなわち、全入力の1/2が一本の混合器の定格入力と
定め、それの1/2まで入力が下げ得るとなれば、全入
力が1/2になった時、空気弁20とガス弁16′を同
時に停止し混合器6′をストップし、更に入力を低下す
るには混合器6のみを使用して1/4まで下げることが
出来る。
In other words, if 1/2 of the total input is determined as the rated input of one mixer, and if the input can be lowered to 1/2 of that, then when the total input becomes 1/2, the air valve 20 and the gas To further reduce the input by simultaneously stopping the valve 16' and stopping the mixer 6', it is possible to use only the mixer 6 to reduce the input to 1/4.

しかし、混合器は並列配置なので送風機10から見た混
合器圧損は最高でも4PAにおさまっている。
However, since the mixers are arranged in parallel, the mixer pressure drop seen from the blower 10 is limited to 4 PA at most.

この例と同じように入力1/4まで可能とじ一本の混合
器で行うとすれば圧損は16Plと高くなってしまう。
If a single mixer is used to accommodate up to 1/4 of the input as in this example, the pressure drop will be as high as 16 Pl.

第1図の例では2本の並列配置であったが、更に数を増
して入力下限を176.1/8と押し下げ得るようにす
ることも可能で、その場合でも1本当りの入力変化幅を
1/2としている限り、送風機から見た圧損は4P7止
まりである。
In the example shown in Figure 1, two wires are arranged in parallel, but it is also possible to further increase the number of wires so that the input lower limit can be lowered to 176.1/8, and even in that case, the input change width per wire can be reduced. As long as is set to 1/2, the pressure loss seen from the blower will be no more than 4P7.

第6図は他の実施例であるが、ガスガバナ15を1ケと
し、その後で複数のガス回路に分岐されている。
FIG. 6 shows another embodiment in which there is only one gas governor 15, which is then branched into a plurality of gas circuits.

又、空気圧は分岐部2から導入し、更に空気弁20の全
開時抵抗に見合う抵抗体21が混合器6側に設けである
Further, air pressure is introduced from the branch 2, and a resistor 21 corresponding to the resistance when the air valve 20 is fully opened is provided on the mixer 6 side.

こうすれば、空気ノズル4.4′、ガスノズル17,1
γが全く同一物で両混合器6,6′の入力を等しく出来
るし、ガバナの調圧も1ケのみなので容易である。
In this way, air nozzle 4.4', gas nozzle 17,1
Since γ is exactly the same, the inputs to both mixers 6 and 6' can be equalized, and pressure regulation by only one governor is easy.

この場合も第1図の例と同様に、送風機の負担を少くし
て入力変化幅を広くすることが可能である。
In this case as well, as in the example shown in FIG. 1, it is possible to reduce the load on the blower and widen the input variation range.

燃焼空気量の変化方法としてダンパー19を設けている
が、送風機の回転数制御をしても同じ効果は得られる。
Although the damper 19 is provided as a method for changing the amount of combustion air, the same effect can be obtained by controlling the rotation speed of the blower.

又、混合器61を停止した時にダンパーを全開位置又は
、送風機を全速状態になるよなるよう関連ずけると、前
例で入力1/2で混合器61を停止しても1/2のまま
となってスムーズな入力変化が得られる。
Also, if the damper is set to the full open position or the blower is set to full speed when the mixer 61 is stopped, even if the mixer 61 is stopped at 1/2 in the previous example, the input will remain at 1/2. This results in smooth input changes.

もし、この関連がない場合には、100係人力→1/2
人力→1/4人力→1/2人力という変則的な入力変化
となって実用上好ましくない。
If this relationship does not exist, 100 staff force → 1/2
This results in an irregular input change of human power → 1/4 human power → 1/2 human power, which is not practical.

説明の簡易化の為に、各混合器の入力が均等である場合
について述べたが、入力に挙を持たせることによって入
力調節幅を任意に選択することも可能で、要は、各混合
器の最低入力時のPa1−Pnoが確保されておれば燃
焼装置として安定燃焼が得られることになる。
To simplify the explanation, we have described the case where the inputs to each mixer are equal; however, it is also possible to arbitrarily select the input adjustment range by giving the inputs a uniformity. If Pa1-Pno at the lowest input is ensured, stable combustion will be obtained as a combustion device.

更に、燃焼空気量の連続的調節が可能なダンパー等を、
第1図の分岐部2と混合器6,6′の間に設けて片方は
定格運転し、他方のみ入力を可変とすることも可能であ
る。
Furthermore, dampers etc. that can continuously adjust the amount of combustion air are installed.
It is also possible to provide one between the branch part 2 and the mixers 6, 6' in FIG. 1, so that one operates at the rated value and only the input of the other is made variable.

このように燃焼空気量とガス量の比を厳密にコントロー
ルする必要がある場合に、入力可変幅を拡大すると、一
般に送風機として高圧が要求されるのであるが、本発明
によれば、送風機圧を同じままでも入力可変幅を拡大出
来る。
In this way, when it is necessary to strictly control the ratio between the amount of combustion air and the amount of gas, expanding the input variable range generally requires a high pressure for the blower, but according to the present invention, the blower pressure can be increased. You can expand the input variable width even if it remains the same.

又、入力定格の異る用途にも、混合器とガス回路の追加
のみで可能となり応用分野は広い。
In addition, applications with different input ratings can be made by simply adding a mixer and gas circuit, and the field of application is wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す強制給排気式燃焼制御装
置の概略構成図、第2〜5図は説明図、第6図は強制給
排気式燃焼制御装置の他実施例を示す概略構成図である
。 1・・・・・・給気路、3,3′・・・・・・空気入口
室、5,5′・・・・・・低圧室、6,61・・・・・
・混合器、12 、12’・・・・・・ガス回路、15
,15’・・・・・・ガスガバナ、16゜16′・・・
・・・ガス弁、20・・・・・・空気弁。
Fig. 1 is a schematic configuration diagram of a forced intake/exhaust type combustion control device showing an embodiment of the present invention, Figs. 2 to 5 are explanatory diagrams, and Fig. 6 is a schematic diagram showing another embodiment of the forced intake/exhaust type combustion control device. FIG. 1... Air supply path, 3, 3'... Air inlet chamber, 5, 5'... Low pressure chamber, 6, 61...
・Mixer, 12, 12'...Gas circuit, 15
, 15'...Gas governor, 16°16'...
...Gas valve, 20...Air valve.

Claims (1)

【特許請求の範囲】 1 空気入口室とその空気入口室下流で高速流となるノ
ズル部が形成する低圧室とを有し空気とガスを混合する
並列配置された複数個の混合器と、空気圧に応じたガス
圧になるよう制御するガスガバナが挿入されその末端が
前記各混合器の低圧室に導かれたガス回路と、一方の混
合器への空気路を開閉する空気弁と、その一方の混合器
に入るガス回路中に設けたガス弁とを有し、空気弁とガ
ス弁を同時に開閉するよう関連させた強制給排気式%式
% 2 複数の混合器に入る空気路の分岐前の空気圧に応じ
たガス圧になるよう制御するガスガバナを有し、そのガ
バナ下流側を複数のガス回路を介して各混合器に接続し
た特許請求の範囲第1項記載の強制給排気室燃焼制御装
置。 3 空気弁が開放状態の時の通風抵抗と同じ抵抗体を空
気弁が挿入されていない混合器の給気空気路中に設けた
特許請求の範囲第2項記載の強制給排気式燃焼制御装置
。 4 燃焼風量の連続的調節が可能な調節手段を有し、空
気弁及びガス弁が開閉した時に前記調節手段が同時に風
量最低又は風量最高の状態になるよう関連させた特許請
求の範囲第1項または第2項記載の強制給排気式燃焼制
御装置。
[Scope of Claims] 1. A plurality of mixers arranged in parallel that mix air and gas, each having an air inlet chamber and a low pressure chamber formed by a nozzle section that generates a high-speed flow downstream of the air inlet chamber; a gas circuit in which a gas governor is inserted to control the gas pressure according to the gas pressure, the ends of which are led to the low pressure chambers of each of the mixers; an air valve that opens and closes the air passage to one of the mixers; A forced supply/exhaust type % type that has a gas valve installed in the gas circuit that enters the mixer and connects the air valve and gas valve so that they open and close at the same time. The forced air supply/exhaust chamber combustion control device according to claim 1, which has a gas governor that controls the gas pressure to be in accordance with the air pressure, and the downstream side of the governor is connected to each mixer via a plurality of gas circuits. . 3. The forced air supply/exhaust type combustion control device according to claim 2, wherein a resistance element having the same ventilation resistance as that when the air valve is in an open state is provided in the air supply air path of the mixer in which no air valve is inserted. . 4. Claim 1, which has an adjusting means that can continuously adjust the combustion air volume, and is associated so that when the air valve and the gas valve open and close, the adjusting means simultaneously reaches the minimum air volume or maximum air volume state. Or the forced air supply/exhaust type combustion control device according to item 2.
JP9852076A 1976-08-17 1976-08-17 Forced air supply/exhaust type combustion control device Expired JPS5921454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9852076A JPS5921454B2 (en) 1976-08-17 1976-08-17 Forced air supply/exhaust type combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9852076A JPS5921454B2 (en) 1976-08-17 1976-08-17 Forced air supply/exhaust type combustion control device

Publications (2)

Publication Number Publication Date
JPS5324139A JPS5324139A (en) 1978-03-06
JPS5921454B2 true JPS5921454B2 (en) 1984-05-19

Family

ID=14221921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9852076A Expired JPS5921454B2 (en) 1976-08-17 1976-08-17 Forced air supply/exhaust type combustion control device

Country Status (1)

Country Link
JP (1) JPS5921454B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659101A (en) * 1979-10-06 1981-05-22 Hara Kikai Kogyo:Kk Combustion furnace
JP5305084B2 (en) * 2008-11-28 2013-10-02 株式会社ノーリツ Combustion device

Also Published As

Publication number Publication date
JPS5324139A (en) 1978-03-06

Similar Documents

Publication Publication Date Title
US4380895A (en) Combustion chamber for a gas turbine engine having a variable rate diffuser upstream of air inlet means
US4385887A (en) Combustion control apparatus
US8413451B2 (en) Turbine with fluidically-controlled valve and swirler with a bleed hole
JP2001527201A5 (en)
JPH07189746A (en) Gas turbine combustor control method
JPS5921455B2 (en) Forced supply/exhaust type combustion control device
JPS5921454B2 (en) Forced air supply/exhaust type combustion control device
CN205013304U (en) Multi -stage compressor and have its refrigerating system
KR102312889B1 (en) Gas Burner
JP2018132257A (en) Premixing device, heat source device and water heater
JPS5921456B2 (en) Forced supply/exhaust type combustion control device
AU2016217888A1 (en) Operation method for improving partial load efficiency in a gas turbine and gas turbine with improved partial load efficiency
JP2001012257A (en) Fuel vapor supply device for gas turbine burner
JPS6091135A (en) Controller of gas combustion
JPS5843654B2 (en) Combustion control device
JPS5855410B2 (en) Forced intake and exhaust combustion device
US10539023B2 (en) Flow control in modulated air systems
JPS605856B2 (en) Forced air supply/exhaust combustion control device
JPH05256166A (en) Gas turbine control method
JP2000146263A (en) Engine fuel feeder and air conditioner equipped with the same
JP3131804B2 (en) Fuel distribution control device for gas turbine combustor
JPH07166891A (en) Gas turbine control device
JPS59142329A (en) Combustion control device
JP2020063885A (en) Gas fuel supply device and combustion apparatus
JPS596339B2 (en) Forced intake and exhaust combustion device