JPS59213104A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS59213104A
JPS59213104A JP58088148A JP8814883A JPS59213104A JP S59213104 A JPS59213104 A JP S59213104A JP 58088148 A JP58088148 A JP 58088148A JP 8814883 A JP8814883 A JP 8814883A JP S59213104 A JPS59213104 A JP S59213104A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnets
reuse
performance
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58088148A
Other languages
Japanese (ja)
Other versions
JPH0516161B2 (en
Inventor
Masato Fujiwara
正人 藤原
Eiji Natori
栄治 名取
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58088148A priority Critical patent/JPS59213104A/en
Publication of JPS59213104A publication Critical patent/JPS59213104A/en
Publication of JPH0516161B2 publication Critical patent/JPH0516161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an excellent permanent magnet by a method wherein magnetic powder of R2-Mz14-17 having the specific value or more of true magnetic coercive force and thermoplastic resin are mixed, and the permanent magnet is formed by performing an injection molding method, thereby enabling to increase the number of reuse of the permanent magnet. CONSTITUTION:Magnetic powder of R2-Mz14-17 (R is the alloy having one kind or more of rare-earth element and Mz is the alloy containing cobalt as a main component) having 6,000 oersted or more of true magnetic coercive force iHc, is formed into the permanent magnet by performing an injection molding method using thermoplastic resin as a binder. As a result, the number of reuse of injection-molded permanent magnet can be increased even when the manufactured articles of product volumetric efficiency of 30% are manufactured, thereby enabling to obtain excellent permanent magnets.

Description

【発明の詳細な説明】 本発明は、R−MZ磁石粉末を、熱可塑性樹脂をバイン
ダーとして、射出成形法により成形する永久磁石に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet formed by injection molding R-MZ magnet powder using a thermoplastic resin as a binder.

本発明の目的は、射出成形永久磁石の再利用回数を向上
させ、良好な永久磁石を得ることである。
An object of the present invention is to improve the number of reuses of injection molded permanent magnets and to obtain good permanent magnets.

従来、永久磁石は、フェライト磁石とアルニコ磁石が、
その主体であったが、近来、希土類磁石とよばれるR−
co磁石が急速な伸びを示してきた。これは、フェライ
ト磁石に比べ、高性能なためである。参考として、この
3種のヒステリシスループを第1図に示す。図中、1は
フェライト磁石、2はアルニコ磁石、3はR−M Z磁
石であるまた、近年、フェライト磁石やR−M Z磁石
の主流であった焼結による製造方法とは異なり、熱可塑
性樹脂をバインダーとし、射出成形法により製造される
磁石が増加してきた。これは、焼結法では製造困難な薄
肉磁石や、ラジアル異方性を有する磁石が、比較的容易
に製造可能なためであるよって数年前から、フェライト
の射出成形磁石は製造が始められ、現在、ブラウン管用
センタリング磁石など、大きな市場を形成するまでに発
展した。
Traditionally, permanent magnets are ferrite magnets and alnico magnets.
It was mainly used as a magnet, but in recent years, R-
Co magnets have shown rapid growth. This is because they have higher performance than ferrite magnets. For reference, these three types of hysteresis loops are shown in FIG. In the figure, 1 is a ferrite magnet, 2 is an alnico magnet, and 3 is an R-M Z magnet.Also, unlike the sintering method that has been the mainstream for ferrite magnets and R-M Z magnets in recent years, thermoplastic Magnets manufactured by injection molding using resin as a binder have been increasing. This is because it is relatively easy to manufacture thin-walled magnets and magnets with radial anisotropy, which are difficult to manufacture using the sintering method.Therefore, production of ferrite injection molded magnets began several years ago. Currently, it has developed to the point where it has formed a large market for products such as centering magnets for cathode ray tubes.

しかし、R−Mz磁石においては、末に工業べ−スに乗
っていない。その大きな原因の一つじ、スプール・ラン
ナーの再利用可否の問題がある。
However, R-Mz magnets have not yet reached the industrial base. One of the major reasons for this is the issue of whether or not the spool runner can be reused.

参考として第2図に0、射出成形上りの見取図を示す。For reference, Fig. 2 shows a sketch of the injection molding process.

図中、4はスプール、5はランナー、6(ま製品である
。一般に、製品体積率、つまり、は、30%前後である
In the figure, 4 is a spool, 5 is a runner, and 6 is a product. Generally, the product volume ratio, that is, is around 30%.

フェライトの場合は、原料のフェライト粉末のコストが
、一般にo、 3〜0.5円/1と安いため、廃却し、
再利用しなくても、製品コストへの影響は、微小であり
、工業化への大きな問題にならなかった。
In the case of ferrite, the cost of raw material ferrite powder is generally low at 3 to 0.5 yen/1, so it is discarded and
Even if it was not reused, the impact on product cost was minimal and did not pose a major problem for industrialization.

しかし、R−Mz磁石の場合は、原料粉末のコストが、
一般に20〜50円/2と、フェライトのほぼ100倍
であり、スプール+ランナ一部70%の再利用をせず、
廃却することは、製品コストが高(なり工業化は不可能
である。よって、スプール・ランナーの再利用を何回繰
り返えしてやれるかが、R−MZ射出成形磁石を工業ベ
ースに乗せられるか否かのポイントとなる。
However, in the case of R-Mz magnets, the cost of raw material powder is
Generally, it costs 20 to 50 yen/2, which is almost 100 times that of ferrite, and does not reuse 70% of the spool + runner.
Disposing of the product results in high product costs (and industrialization is impossible. Therefore, the number of times the spool and runner can be reused is the key to putting R-MZ injection molded magnets on an industrial basis. The point is whether or not.

一般に射出成形では、230〜320℃に昇温し、射出
するため、磁石粉の酸化や、磁壁のピニング効果への影
響などにより、性能が劣化し、再利用ができなかった。
Generally, in injection molding, the temperature is raised to 230 to 320° C. and then the material is injected, so the performance deteriorates due to oxidation of the magnet powder and the effect on the pinning effect of the domain wall, making it impossible to reuse it.

本発明は、かかる欠点を解決し、R−Mz射出成形磁石
を、工業ベースに乗せるためのものである。
The present invention is intended to overcome these drawbacks and bring R-Mz injection molded magnets onto an industrial basis.

従来は、R1−MZ、の組成を主体として、射出成形を
行っていたが、この磁石は、単磁区異方性のため原料粉
末粒度を10ミクロン以下にしなければならず、粒度が
細かいために、原料の表面積か膨大になり、酸化が甚だ
しく、再利用は無理であったが、本発明では、この原料
を1Hc6000工ルステツド以上のR2−MZI、〜
、7に変更することにより、成功したものである。
Conventionally, injection molding was performed mainly with the composition R1-MZ, but this magnet has single domain anisotropy, so the raw material powder particle size must be 10 microns or less, and because the particle size is fine, However, in the present invention, this raw material is converted into R2-MZI with a 1Hc of 6000 millimeter or more, ~
, 7, it was successful.

本発明の説明に入る前に、再利用可否の概略的規準を明
確にしたい。
Before going into the description of the present invention, I would like to clarify the general criteria for reusability.

現在、一般に磁石性能の公差は、±5%が標準であり、
レンジで10%の〕くラツキまでゆるされている。しか
し、これは全ての要因を含むノ々ラツキであり、製品体
積率60%前後の製品を製造する際の再利用による性能
劣(2%ま、この半分の5%の範囲でなければ安定生産
とむまならなし′10今、この成形を行う際、初回(ま
100%力ζバージン材であるが、次にスプール・ラン
ナ一部を再利用した際には、〕〕々ジージン3302,
1回も繰り返すと、その割合は、次のようになる。
Currently, the standard tolerance for magnet performance is ±5%.
It is allowed to become 10% softer in the microwave. However, this is a fluctuation that includes all factors, and performance degradation due to reuse when manufacturing products with a product volume ratio of around 60% (2%, or half of this, 5%) will result in stable production. Tomuma Nanashi'10 Now, when performing this molding, the first time (I used 100% virgin material, but the next time I reused part of the spool and runner, I used Jijin 3302,
If it is repeated once, the ratio will be as follows.

戒−1 ここで、性能低下は、再利用回数にほぼ比例するので、
バージン材のみで成形した時の性能をAとし、再利用回
数をルとし、性能低下係数をaとしたときの、ル回目の
再刊用品のみで成形した時の性能Bnは、 Bn−AxarL  (1式) となる。
Precept-1 Here, the performance degradation is approximately proportional to the number of reuses, so
When the performance when molded only with virgin material is A, the number of times of reuse is L, and the performance deterioration coefficient is a, the performance Bn when molded only with the second reprint product is Bn-AxarL (1 formula).

よって、バージン材のみで成形した時の性能Aと繰り返
し、再利用を行い表1のようになった時の性能Cの差が
、5%以下でなければならず、その場合、性能低下係数
αは、約0.98となる。これを1式に代入すると、1
0回再利用した材料のみで成形した時の性能B1oは、
性能Aの80%でなければならない。
Therefore, the difference between performance A when molded only with virgin material and performance C when it is repeatedly reused and becomes as shown in Table 1 must be 5% or less, and in that case, the performance deterioration coefficient α is approximately 0.98. Substituting this into equation 1, we get 1
Performance B1o when molded only with materials that have been reused 0 times is:
Performance must be 80% of A.

よって、本発明においては、再利用可能な規準を、B1
o≧A X O,8とした。
Therefore, in the present invention, the reusable criterion is B1
o≧A X O, 8.

我々は、本発明において、従来のRI  M zH系材
量から、:R2−Mz工、〜1.系の材料に変更したが
、これは、R,−MZl、〜17材は、ピニング効果を
利用した磁石であり、磁粉の粒度は、R1−M z B
材に比べ約10倍あり、その表面積は1/100となり
、表面酸化による劣化が、少なくなったためである。
In the present invention, from the conventional RI M zH material amount: R2-Mz engineering, ~1. The material was changed to R, -MZl, ~17 material is a magnet that utilizes the pinning effect, and the particle size of the magnetic powder is R1-MzB.
This is because the surface area is about 10 times larger than that of wood, and its surface area is 1/100, reducing deterioration due to surface oxidation.

しかし、これだけでは、不十分であり、この磁石材料に
おいても、iHcの大きさにより、再利用による性能劣
化が異なることがわかった。これにより、B10≧A 
X 0.8  を満たすためには、iHc≧6000以
上が必要である。
However, this alone is insufficient, and it has been found that even in this magnet material, performance deterioration due to reuse differs depending on the magnitude of iHc. As a result, B10≧A
In order to satisfy X 0.8, it is necessary that iHc≧6000 or more.

以下実施例により詳述する。This will be explained in detail below using examples.

実施例 Sm(Co、Ou、Fe 、Zr)s、t  の原料を
、時効処理の条件を変更し、1Hc==2000゜40
00.6000,8000,10000゜15000.
20000.エルステッドの材料。
The raw materials of Example Sm(Co, Ou, Fe, Zr) s, t were aged to 1Hc==2000°40 by changing the aging treatment conditions.
00.6000,8000,10000゜15000.
20000. Ørsted material.

7種類の粉末を作り、体積比で40%のナイロンを入れ
て混練し、280℃成形でそれぞれ10回の再利用を行
い、4110mmX10の丸棒を成形し、その表面磁束
を測定し、性能の低下を調べた。そのデータを第6図に
示す。
Seven types of powder were made, mixed with 40% nylon by volume, and each was reused 10 times by molding at 280°C to form a 4110mm x 10 round bar.The surface magnetic flux was measured and the performance was evaluated. We investigated the decline. The data are shown in FIG.

これにより分かるように、再利用性は、1Hc6000
エルステツド以下では、極端に悪化し、再利用が困難で
ある。
As you can see, the reusability is 1Hc6000
Below Oersted, it deteriorates extremely and is difficult to reuse.

尚、本発明は、原料の組成とiHcを規定するものであ
り、バインダーの種類や、その%には関係なく有効であ
る。
Note that the present invention specifies the composition of the raw material and the iHc, and is effective regardless of the type of binder or its percentage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、3種の磁石のヒステリシス曲線。 1はフェライト、2はアルニコ、3はR−MZ第2図は
、射出成形された物の見取図。 4はスプール、5はランナー、6は製品、第3図は、i
Hcの違いによる、Aに対するBIOの低下を示したグ
ラフ。 以  上 出願人 株式会社諏訪精工舎 第1図 第2図
Figure 1 shows the hysteresis curves of three types of magnets. 1 is ferrite, 2 is alnico, 3 is R-MZ. Figure 2 is a sketch of the injection molded product. 4 is a spool, 5 is a runner, 6 is a product, Fig. 3 shows i
Graph showing the decrease in BIO with respect to A due to differences in Hc. Applicant: Suwa Seikosha Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] R−MZ(Rは、希土類元素の1種または、2種以上、
Mzは、コバルトを主体とする合金)磁石粉末と、熱可
塑性樹脂を混合し、射出成形法で成形する永久磁石にお
いて、R2−M214〜.I、ノ原料粉末を使用し真の
保磁力(iHc)が、6000工ルステツド以上である
ことを特徴とする、永久磁石。
R-MZ (R is one or more rare earth elements,
Mz is R2-M214 to . I. A permanent magnet characterized in that it uses raw material powder and has a true coercive force (iHc) of 6,000 degrees or more.
JP58088148A 1983-05-19 1983-05-19 Permanent magnet Granted JPS59213104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088148A JPS59213104A (en) 1983-05-19 1983-05-19 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088148A JPS59213104A (en) 1983-05-19 1983-05-19 Permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1285016A Division JP2689651B2 (en) 1989-11-02 1989-11-02 Method for manufacturing permanent magnet molded body

Publications (2)

Publication Number Publication Date
JPS59213104A true JPS59213104A (en) 1984-12-03
JPH0516161B2 JPH0516161B2 (en) 1993-03-03

Family

ID=13934843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088148A Granted JPS59213104A (en) 1983-05-19 1983-05-19 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS59213104A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563807A (en) * 1978-11-07 1980-05-14 Seiko Epson Corp Grindable permanent magnet
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS5623711A (en) * 1979-08-02 1981-03-06 Seiko Epson Corp Production of intermetallic compound magnet
JPS56114309A (en) * 1980-02-13 1981-09-08 Tdk Corp Manufacture of permanent magnet
JPS59136907A (en) * 1983-01-25 1984-08-06 Seiko Epson Corp Manufacture of resin bonded rare-earth cobalt magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563807A (en) * 1978-11-07 1980-05-14 Seiko Epson Corp Grindable permanent magnet
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS5623711A (en) * 1979-08-02 1981-03-06 Seiko Epson Corp Production of intermetallic compound magnet
JPS56114309A (en) * 1980-02-13 1981-09-08 Tdk Corp Manufacture of permanent magnet
JPS59136907A (en) * 1983-01-25 1984-08-06 Seiko Epson Corp Manufacture of resin bonded rare-earth cobalt magnet

Also Published As

Publication number Publication date
JPH0516161B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
EP0181597A1 (en) Method of producing permanent magnet
US4441875A (en) Mold apparatus for forming article under influence of magnetic field
US4702852A (en) Multipolarly magnetized magnet
JPS59213104A (en) Permanent magnet
JPH02153509A (en) Recycling manufacture of permanent magnet
JP2516176B2 (en) Method for manufacturing resin-bonded permanent magnet
JPH053124B2 (en)
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JPH0471205A (en) Manufacture of bond magnet
JPH0514401B2 (en)
JPH0559572B2 (en)
JPH0152469B2 (en)
JPS56114309A (en) Manufacture of permanent magnet
KR100213333B1 (en) Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith
Mendelsohn et al. Novel Light‐Weight Moldable Permanent‐Magnet Material
JPS59136909A (en) Manufacture of resin-bonded permanent magnet
JPS60211908A (en) Manufacture of cylindrical permanent magnet
Arlinghaus Spin polarized energy band structure of SmCo 5
JPS63146414A (en) Manufacture of bonded magnet
JPH0786070A (en) Manufacture of bond magnet
GB1214054A (en) Improvements in or relating to permanent magnets
JPS57164509A (en) Manufacture of magnet roll
JPS589805B2 (en) KIDOLI COBALTO
JPS59136916A (en) Manufacture of permanent magnet
JPS62136924A (en) Manufacture of magnetic encoder