JPS59212912A - Positioning control method of servo system - Google Patents

Positioning control method of servo system

Info

Publication number
JPS59212912A
JPS59212912A JP8663383A JP8663383A JPS59212912A JP S59212912 A JPS59212912 A JP S59212912A JP 8663383 A JP8663383 A JP 8663383A JP 8663383 A JP8663383 A JP 8663383A JP S59212912 A JPS59212912 A JP S59212912A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
maximum speed
positioning control
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8663383A
Other languages
Japanese (ja)
Inventor
Tsukasa Yamazaki
司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP8663383A priority Critical patent/JPS59212912A/en
Publication of JPS59212912A publication Critical patent/JPS59212912A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To attain the quick positioning control and at the same time to improve the positioning accuracy by putting a residual distance produced from an allotment calculation into an acceleration or deceleration area. CONSTITUTION:The command shift distance is allotted to the acceleration and deceleration areas respectively based on an acceleration/deceleration table which decides acceleration and deceleration slopes and the maximum speed conditions. A residual distance DELTAx produced from the above-mentioned allotment calculation is put into the acceleration or deceleration area. Then a servo system is driven at said acceleration and deceleration areas and at maximum speed Vm. Thus the quick positioning is possible together with improvement of the positioning accuracy.

Description

【発明の詳細な説明】 Qの発明は数fii’i ili制御國)I:;のり−
−ボ系の位置決め制御Il法に関し、特に、移動i二′
−夕の処理を)&lF化づること(こ、1、り正1if
l’かつ迅j*な17/置めIIすi:lllを4るS
どがてさるJ:うにしたものC・ある。
[Detailed Description of the Invention] Q's invention is based on the number fii'i ili control country) I:;
- Regarding the positioning control Il method of the system, especially the movement i2'
- evening processing)&IF conversion (this, 1, correction 1if
l' and quick j* 17/place II: lll 4 S
What a monkey J: There is a sea urchin C.

&l l面制御K11−11’r i幾、故IFII 
1lilJ lit a ホラt−1,)II(1)敢
11f4制御機器(以トNCI火器と呼ぶ)のXYZ軸
或いは回転軸、旋回軸等のリーボ系は、例え+、r 5
Ill S[ICの如き所定の微小時間単位毎に所定の
パルス吊をバルーλ分配器に送り、このパルスを各軸に
増幅器を通じて分配し各軸を作動させている。
&l l surface control K11-11'r i, late IFII
1lilJ lit a Hola t-1,) II (1) 11f4 Control equipment (hereinafter referred to as NCI firearms)'s XYZ axes, rotation axes, rotation axes, etc.
A predetermined pulse is sent to the balloon lambda distributor every predetermined minute time unit such as IllS[IC, and this pulse is distributed to each axis through an amplifier to operate each axis.

一般に、加速条件たる加速テーブルと装置限界値或いは
所望速度たる最高速度とを予め定めておき、所定の微小
時間毎の移動分を全体の移動データから順次減弁し、残
りが減速に必要な距離J!下になったら減速を開始する
ようにし′でいる。このときル1i′7の余りが生ずる
。この余りは例えば最低)中1豆を保持し4Tがら移動
データが零(Jなるまで出力する如く処理されている。
Generally, an acceleration table that is an acceleration condition and a device limit value or a maximum speed that is a desired speed are determined in advance, and the movement amount for each predetermined minute time is sequentially reduced from the overall movement data, and the remaining distance is the distance required for deceleration. J! Be sure to start decelerating when you reach the bottom. At this time, a remainder of rule 1i'7 is generated. This remainder is processed so that, for example, one bean in the middle (minimum) is held and the movement data is output from 4T until it reaches zero (J).

この従来よりの方式によれば、(’+’ +I−11:
’+ +、’:jを延長して余りの調整を行なうので停
止するJて゛の111間止(Q置を不+E 1iilど
り−る舅合しあった。り一小系の位置決め14能はその
(代品の提供りる作業量7′(に肖接影νでを勺えるし
の(((うる。叩楚1的イf1宇+l tll+粍;(
特に減)*テーブル)が折角得られた(ごしても計算処
理の課程による余りの発生により位置決め14能を悪く
している。
According to this conventional method, ('+' +I-11:
'+ +,': Extend j and adjust the remainder, so the 111th stop of J is stopped (the Q position is not +E 1iil), and the positioning of one small system is 14 The amount of work provided by the substitute product 7'
In particular, the positioning performance is deteriorated due to the generation of a remainder due to the calculation processing process, even though the reduction (in particular, the table) has been achieved with great effort.

この発明はJ記従来技術の問題点を改善するしので、移
動データの処理を適正化することにより、i’[Tri
(、か゛つ、迅速な位置決め制御がでさる制御方法をi
′?ることを目的とJる。
This invention improves the problems of the prior art described in J. By optimizing the processing of movement data, i'[Tri
(i.e., a control method that allows quick positioning control.
′? The purpose is to do something.

」−開目的を)ヱ成りるためのこの発明に係るり一小系
の112置決め制御方法は、移動指令に塁づさ位置決め
制御する数値制御機器のリーボ系にJjい−(、IJ1
1速及び減速勾配を定める加減速デープルと最高速度を
定めるIn高速磨条flとにより指令移動距離を加i戚
’>I域と最高速1軟とに割イ」す、この割f」けt1
停にit> IJる余りの距離を前記加減速域内に割込
処理し・、この割込処理した1111減速域と最高速域
とにJ、リリーボ系を駆動lることを特徴どする。
The 112 positioning control method of the small system according to the present invention for achieving the opening purpose) is applicable to the 112 positioning control method of the numerical control equipment that performs positioning control based on movement commands.
The command travel distance is divided into the acceleration/deceleration daple that determines the 1st speed and deceleration slope and the In high-speed grinding groove fl that determines the maximum speed. t1
It is characterized in that the distance remaining beyond the stop is interrupted into the acceleration/deceleration area, and the relibo system is driven in the 1111 deceleration area and the highest speed area where the interruption is processed.

以下この発明について実施例を掲げ詳細に説明+する1
゜ 第゛1図及υ・第2図は加)虫j−プル3、最高iiJ
 1.qVm、減速テーブル5を準尚しCおき、移動距
離×oを移動指令しIC11,’lの割(=J tj処
理状況を承り特PI F<I Cある。加速テーブル3
及び減速ラーブル5共に直線的階段状で・あるものにつ
いC示11゜IJ−小系は所定の倣小口)間△110に
演い結果たるノ\ルス吊を分配Jる この特性図は横軸を11間で、縦軸4j中19としC表
わし、同11:’lに移動距離を仮想線で表わして17
入る。
This invention will be explained in detail below with examples.1
゜Fig.
1. qVm, set the deceleration table 5 to C, issue a movement command for the movement distance xo, and divide the IC11,'l (=J tj, depending on the processing situation, there is a special PI F<I C.Acceleration table 3
Both the curve and deceleration curve 5 have a linear step-like shape, and the resulting Norse suspension is distributed between Δ110 and the horizontal axis. is 11, and the vertical axis 4j is 19, which is represented by C, and the moving distance is represented by a virtual line at 11:'l, which is 17.
enter.

移動距離1の割fIプは移動にんだ・)て行なう。加速
域が微小1侍間△tの0回繰返しにより行ηわ4′シ、
1威速回故はn−1回とすると加)中域での移動距離Q
+ と減速域での移動距離Q3の合計(よ、△[・1)
・\1111で表わされる。従って本例に示す直線的階
段状の加速及び減速テーブルにおいては最高)中度の指
定は加速回数nの指定をしたのと同じである。加速をn
回行ない最高速度V lIIに達づれIま、τ回等速運
転を行ない次いCn−1回減速する。
Divide the moving distance by 1. The acceleration region is minute and is performed by repeating 0 times of △t,
Assuming that 1 speed rotation is n-1 times, the distance traveled in the mid range is Q.
+ and the sum of the moving distance Q3 in the deceleration area (yo, △[・1)
・Represented by \1111. Therefore, in the linear stepwise acceleration and deceleration table shown in this example, specifying the maximum (moderate) is the same as specifying the number of accelerations n. acceleration n
The motor rotates until the maximum speed VlII is reached, performs constant speed operation τ times, and then decelerates Cn-1 times.

△Xは余りのiIl口[を示す。尚、第1図に示した余
り△Xの配置位置は従来例で示した最低速度を続行さけ
る13式に相当する位置である。
ΔX indicates the remainder iIl[. Incidentally, the arrangement position of the remainder ΔX shown in FIG. 1 corresponds to Equation 13, which avoids the lowest speed shown in the conventional example.

第3図は割付(〕作業におtJる故tinの決定を示リ
フローチャートである。ステップ101から順を追って
説明゛りる。ステップ102は数値の決定手順に当り初
1!IJ化をiIなうしの(ある。スデータスハツノ!
・の田Q柊了フラクをリレッ1〜し、it 停:cリッ
ツをクリア L、、KI L’情報ノー−ゾルらクリj
’ L/ ’Ui多、移動率データを甜弾1リアに入れ
る。繰り返1、、1jil I’d II O’) 設
定C’b良い。ステップ103 c移動量1:lII 
Xと加速及び減速域中の移Φツノ距ド!1の和Q1」0
3どを比較)Jる。これ(,1、最高速度V mま(加
速iI能かどうかを判定りるらのである。ステップ10
/1の[\/111決定−1は最13速麿を示すVIl
lの1.梵定11(i J)’:どの注」”1・上用で
きることを承り。移動量li!IIXが充分(あり最高
速度Vmよ(加)士i」能の場合にはスノッf 105
に移る。ステップ105では第2図に示j1等速1戊(
最高辿喰域)の分配回教τをQ出りる1、同時に余り△
Xが求まる(ステップ107)。
FIG. 3 is a reflow chart showing the determination of tin according to the assignment (work).The explanation will be explained step by step from step 101.Step 102 is the procedure for determining numerical values, and for the first time, 1! Now (there is. Sudatasu Hatsuno!
・Noda Q Ryo Hiiragi is replayed from 1 to 1, and it stops: C Ritz is cleared.
'L/' Ui, put the movement rate data into the 1st bullet. Repeat 1,, 1jil I'd II O') Setting C'b is good. Step 103 c movement amount 1: lII
X and the movement Φ horn distance in the acceleration and deceleration range! Sum of 1 Q1''0
3. Compare) Jru. This (, 1, determine whether the maximum speed V m (acceleration II) is possible. Step 10
/1's [\/111 decision-1 indicates the maximum 13th speed VIl
1 of l. Bonjo 11 (i J)': Which note "1. I understand that it can be used. The amount of movement li! IIX is sufficient (there is maximum speed Vm.
Move to. In step 105, j1 constant velocity 1 (
The distribution coefficient τ of the highest traceable area) is Q out of 1, and at the same time the remainder △
X is found (step 107).

スンツ7103で移動距離がより小さいと判断された場
合にはス】ツf109に移る。ステップ109から1 
’l OIは設定置iff[il J % V Inを
最低速1(を単1η△\lづつ減小さlLでゆく、移動
距離が小ざ(1ざる場合には最高速+g :I:で持−
)でゆくことができないので第1図に速度V1で承り如
き適正な最高速瓜値を求めるものである。移動(ThX
の方が、縮小された加減速域の和(第1図04 )以上
になった時ステップ111に移る。ステップ112(移
動量Xから縮小された加減速域の和Q4を減じ余りを求
める(ステップ1 ’+ 3 )。
If the distance traveled is determined to be smaller in the step 7103, the process moves to step f109. Steps 109 to 1
'l OI is the setting position iff [il J % V In is decreased by 1 (minimum speed 1) by 1 η Hold
), the appropriate maximum speed value is determined by using the speed V1 shown in FIG. Movement (ThX
When the sum of the reduced acceleration/deceleration ranges (04 in FIG. 1) is exceeded, the process moves to step 111. Step 112 (Subtract the sum Q4 of the reduced acceleration/deceleration range from the movement amount X to find the remainder (Step 1'+3).

上記M枠手順で定まつI〔余り△Xを割込値どして加減
速域内に割込処理づる。割込処理した結果を第2図に示
し処理手順のフローヂャートを第4図に示す、、第4図
についてステップ201から順を追い説明り−る。ステ
ップ202では割込値が設定されているかどうかを判断
する。割込11f1が設定されていない場合、即ち余り
ΔXがない場合にはステップ203に移りデータバッフ
ァに速度テーブルの値りをそのまま代入してゆく゛。本
例では−i−タパッフノア2バイ1−で構成されている
例としく出力ポインタのバッファ値を+2iIる(スフ
ツブ204)。余りがある場合即ち割込11r4フラグ
が1とな−)ている場合にはステップ206に移る。
The above M-frame procedure is used to determine the I[remainder ΔX as an interrupt value and perform interrupt processing within the acceleration/deceleration region. The results of the interrupt processing are shown in FIG. 2, and a flowchart of the processing procedure is shown in FIG. 4. FIG. 4 will be explained sequentially from step 201. In step 202, it is determined whether an interrupt value has been set. If the interrupt 11f1 is not set, that is, if there is no surplus ΔX, the process moves to step 203 and the value of the speed table is directly substituted into the data buffer. In this example, the buffer value of the output pointer is incremented by +2iI (step 204), assuming that the output pointer is configured with -i-ta-puff-nor 2-by-1-. If there is a remainder, that is, if the interrupt 11r4 flag is 1, the process moves to step 206.

ステップ20Gで・はテーブル舶と割込1i1ff B
どの人ut3がI”I Il/i c(レル。スj:ン
7’ 2 C’l 6 r、−y−−/’ /L/ j
l白1)の1ノが小さいI間合にはj−ツルhl:I 
’a−j−クバッノノ・に(;場豹勺し、出カポ、rン
タのハソフノ・11自を+2ど1jる。t−’フル埴り
が割込1的口J、り人さく1(−)た111+にステッ
プ207に移りデータハアッフノ・の1−1す込舶用I
リノ′に刈込IB7 Bを48納りる。以下順次ステッ
プ201から205のスフツブを繰り返し移動データ・
を・格納する。
At step 20G, the table and interrupt 1i1ff B
Which person ut3 is I"I Il/i c(rel.sj:n7' 2 C'l 6 r, -y--/' /L/ j
j-Tsuru hl:I for I interval where 1 no of l white 1) is small
'a-j-Kubanono. -) Go to step 207 for 111+ data
I can fit 48 IB7 B mowers in Reno'. After that, repeat steps 201 to 205 to move the data.
・Storage.

第2図に示したように移動量X GJ、加速域と等速1
1火に1文ヅ)、公れ余り△×に相当(する距因1は、
IJII i中域内の\/2ど\/3どの間に割込J:
1.!る。に(L−)てε1)1図に示()た△Xに相
当りるF?:、の部分がなくなる。
As shown in Figure 2, travel amount X GJ, acceleration area and constant velocity 1
1 sentence per fire), which corresponds to the excess △× (the distance factor 1 is
IJII i Interrupt between \/2 and \/3 in the middle range J:
1. ! Ru. (L-) and ε1) F corresponding to △X shown in Figure 1 ()? :, part disappears.

この時の鈴JJ−1!l’ji性は減速7−フル5に1
1tづい(−11な4′)れるの(J、り正イIlrな
F↑+L ’l、’i竹−を得ることがてさる。
Suzu JJ-1 at this time! l'ji nature slows down 7 - full 5 to 1
It is interesting to obtain 1t (-11 4') (J, right Ilr F↑+L 'l, 'itake-.

)1(実施F”I tjI rl、iい−U 4J:余
りの割込処理を加速域内(。二割込J1.1.!I、:
(]れどb’+威速域内に1−]1り込ま1しく)こと
l:) 1−IJ (iに(ある。
) 1 (Implementation F"I tjI rl, ii-U 4J: Execute the remaining interrupt processing within the acceleration range (.2 interrupt J1.1.!I,:
(] But b'+ 1-]1 enters into the speed range) 1:) 1-IJ (There is (in i).

又、加速及O−減速−7−ノルを直線的なものについ(
小1.. /、、: lJれども、曲線的変化のもの、
或い1.L、途中に適宜t1中間速庶を右りる曲線イI
−ど適宜に指定し11するムのである。
Also, regarding acceleration and O-deceleration-7-nor in a straight line (
1st grade. .. /,,: lJ, but curved change,
Or 1. L, curve I that turns right at t1 intermediate speed curve on the way
- Specify as appropriate.

−1−記説明から明らかなように、:’、11 fll
)4綽にお【Jる余りの距離を加速成いは減速区域内(
ご割込、1、けるようにしたこの発明に係る位置決め制
御方法にJ、れ(、L、迅速な位置決めをりることが(
さると共に位置1](め制痕の向上を図ることが(きる
-1- As is clear from the explanation, :', 11 fll
) in the 4th direction (accelerating or decelerating the remaining distance) (
Please note that the positioning control method according to the present invention allows rapid positioning.
Position 1] (Position 1) (Position 1)

【図面の簡単な説明】[Brief explanation of the drawing]

第′1図11、従来例を共に説明りるIIl′1間−沖
磨1!i l!l説明図、 第2図は実施例を承り時間〜通数’4IJ1/1.1i
l)開目、第3図(,1,数征四大定処即を示づ)]]
1−チャーへ。 第4図は割込処理ルーチンを示リフa −−f−p −
1〜、。 X・・・移動距離    Ql・・・加速域移動距閤(
Q−1・・・減速域移動距離 τ・・・高速域繰返し回数 D・・・デープル値 13・・・割込値 第1図 第2図 第3図 01 手続ネ[暑1正錫−(自発) 昭和58年6月玉δ日 特Bq庁長官  若 杉  和 夫  殿1、事件の表
示   特願昭第58−086633号2、発明の名称 リーーボ系の位置決め制御方法 3、補正をする者 事イ′1との関係 特許出願人 住所(居所) 神奈用県1ア勢原市石田200番地氏名
(名称) 株式会社 ア マ ダ 代表者  天 1) 勇 虎ノ門第−ビル5階 電話 東京(504) 3075・3076・3077
番氏名  弁理士(6834)三好 保男6、補正の対
象 明細書の発明の詳細な説明の欄 7、補正の内容 (+>  明#11mffi6iml 6trFBl、
「バッファ」 とあるのを、 「バッフ1」 と補正する。 (2)明細書第7頁第5行目から第6行目に、[データ
バッファの割込値用エリアに」とあるのを、 「データバッファに」 と補正する 以上
Fig. 11 shows the conventional example between IIl'1 and Okima 1! i l! lExplanatory diagram, Figure 2 shows the time to receive the example ~ number of letters '4IJ1/1.1i
l) Opening, Fig. 3 (, 1, Showing the four main points)]]
1- To Char. FIG. 4 shows the interrupt processing routine a --f-p-
1~. X...Traveling distance Ql...Acceleration area moving distance (
Q-1...Deceleration range movement distance τ...High speed range repetition count D...Daple value 13...Interrupt value Figure 1 Figure 2 Figure 3 01 Procedure (Voluntary initiative) June 1986, Director General of Tama δ Nittoku Bq Agency, Kazuo Wakasugi, 1. Indication of the incident: Japanese Patent Application No. 58-086633 2. Name of the invention: Positioning control method for Revo system 3. Matters to be corrected Relationship with A'1 Patent Applicant Address (Residence) 200 Ishida, Asehara City, Kanayo Prefecture Name (Name) AMADA Co., Ltd. Representative Ten 1) Yutoranomon Building 5th Floor Telephone Tokyo (504) 3075・3076・3077
No. Name Patent Attorney (6834) Yasuo Miyoshi 6, Column 7 for detailed explanation of the invention of the specification subject to amendment, Contents of amendment (+> Akira #11mffi6iml 6trFBl,
Correct the word “buffer” to read “buffer 1.” (2) From line 5 to line 6 of page 7 of the specification, the phrase ``in the interrupt value area of the data buffer'' has been corrected to ``in the data buffer.''

Claims (1)

【特許請求の範囲】[Claims] 移動指令に基づき位置決め制御りるミ9.値制御機器の
り−ボ系にd3い−C1加速及び減速勾配を定める加減
速7−プルと最高速度を定める最高速磨条(’lどによ
り指令移動距離を加減速域と最高速域とに^11f・H
)、このス]J fJ番ノ5じ)に、1月ノる余りのy
l: +η(1をt’lll :!己卯)賊速域に別込
灰理し、この割込処理した加111^6j虫域と最l:
’f+ i中1・・yと(、lより11−ボ系を駆動り
るこ3!を1!iij!<と1するリーホ系の位置決め
制御方法。
Positioning control based on movement command 9. In the value control equipment board system, d3-C1 determines the acceleration and deceleration gradient. Acceleration/deceleration 7-pull and the maximum speed grinding line ('l) which determines the maximum speed are used to set the commanded travel distance into the acceleration/deceleration range and the maximum speed range. ^11f・H
), this school] J fJ number 5th), the remainder of January
l: +η (1 to t'lll:!self-rabbit) Separate into the pirate speed area, and add this interrupt processing to the insect area and the maximum l:
A positioning control method for a Liho system in which Riruko 3! drives the 11-bo system from 'f+i 1...y and (, l) as 1!iij!<.
JP8663383A 1983-05-19 1983-05-19 Positioning control method of servo system Pending JPS59212912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8663383A JPS59212912A (en) 1983-05-19 1983-05-19 Positioning control method of servo system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8663383A JPS59212912A (en) 1983-05-19 1983-05-19 Positioning control method of servo system

Publications (1)

Publication Number Publication Date
JPS59212912A true JPS59212912A (en) 1984-12-01

Family

ID=13892424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8663383A Pending JPS59212912A (en) 1983-05-19 1983-05-19 Positioning control method of servo system

Country Status (1)

Country Link
JP (1) JPS59212912A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232508A (en) * 1985-08-06 1987-02-12 Shinko Electric Co Ltd Positioning control method for servo-system of numerical controller
EP0264453A1 (en) * 1986-03-20 1988-04-27 Fanuc Ltd. Injection molding machine capable of changing the acceleration/deceleration time for injection speed
JPS6441908A (en) * 1987-08-07 1989-02-14 Canon Kk Positioning control system for servo system
JPS6467611A (en) * 1987-09-09 1989-03-14 Fanuc Ltd Robot controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130775A (en) * 1978-04-03 1979-10-11 Okuma Mach Works Ltd Positioning control system
JPS5779511A (en) * 1980-10-31 1982-05-18 Okuma Mach Works Ltd Automatic acceleration and deceleration cintrol system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130775A (en) * 1978-04-03 1979-10-11 Okuma Mach Works Ltd Positioning control system
JPS5779511A (en) * 1980-10-31 1982-05-18 Okuma Mach Works Ltd Automatic acceleration and deceleration cintrol system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232508A (en) * 1985-08-06 1987-02-12 Shinko Electric Co Ltd Positioning control method for servo-system of numerical controller
EP0264453A1 (en) * 1986-03-20 1988-04-27 Fanuc Ltd. Injection molding machine capable of changing the acceleration/deceleration time for injection speed
JPS6441908A (en) * 1987-08-07 1989-02-14 Canon Kk Positioning control system for servo system
JPS6467611A (en) * 1987-09-09 1989-03-14 Fanuc Ltd Robot controller
WO1989002623A1 (en) * 1987-09-09 1989-03-23 Fanuc Ltd Robot controller

Similar Documents

Publication Publication Date Title
US4706003A (en) Acceleration and deceleration control system
US4600985A (en) Numerical control method and apparatus therefor
JP2862052B2 (en) Position command method and device
JPS601100A (en) Automatic deceleration controller for aircraft
CN1272678C (en) Laser beam machine
JPS5299546A (en) Speed control device for elevator
WO2020177571A1 (en) Method and device for establishing longitudinal motion model of vehicle, and computer system
JPS59212912A (en) Positioning control method of servo system
EP0294486A4 (en) Tapping controller.
EP0258447B1 (en) Method of returning to origin
JPS5933511A (en) Accelerating and decelerating device
EP0439617A4 (en) Acceleration/deceleration control method of numeric controller
EP0076330A1 (en) Copy controlling system
JPS58213301A (en) Numerical control system of direct teaching and operating system
JPS6232508A (en) Positioning control method for servo-system of numerical controller
JPS6126174A (en) High speed linear interpolation system
JP2661739B2 (en) Electron beam exposure method
JPS5755414A (en) Attitude control system
JPS61245209A (en) Acceleration and deceleration control system
JPS575110A (en) Control system for track of industrial robot or the like
JP3219115B2 (en) Block data processing method for numerical controller
JPS5347666A (en) Method of minimizing fluctuation of crane
JPH04240039A (en) Acceleration/deceleration control method for machine tool and device thereof
JPS57206588A (en) Laser working method
JPS5622107A (en) Playback type nc machine tool