JPS59211573A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPS59211573A
JPS59211573A JP8727983A JP8727983A JPS59211573A JP S59211573 A JPS59211573 A JP S59211573A JP 8727983 A JP8727983 A JP 8727983A JP 8727983 A JP8727983 A JP 8727983A JP S59211573 A JPS59211573 A JP S59211573A
Authority
JP
Japan
Prior art keywords
mirror
evaporation
heating
deposited
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8727983A
Other languages
Japanese (ja)
Inventor
Yuichi Mikata
見方 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8727983A priority Critical patent/JPS59211573A/en
Publication of JPS59211573A publication Critical patent/JPS59211573A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titled device which permits observation of a heating and evaporating part at all times and is low in cost by constituting a base material for a mirror to be provided in a vacuum chamber in order to observe the heating and evaporating part of a vapor depositing member of a material having the coefft. of linear expansion in a heating temp. range approximate to that of the material to be deposited by evaporation. CONSTITUTION:A material 4 to be deposited by evaporation installed in a vacuum chamber 1 of a vacuum deposition device is heated to evaporate by the electron ray 3 generated from an E gun 2, and the particles of the evaporating member 4 evaporated through the aperture 11a of a heat shielding plate 11 provided at the top end of a shroud 10 are deposited on a member 5 to be subjected to vapor deposition installed in the upper part so as to face the member 2. The operator controls the evaporation by observing the heating and evaporating part of the member 4 through a peep window 6, a mirror 9a and the aperture 11b of the plate 11. The base material of said mirror 9 is constituted of the material having the same coefft. of linear expansion in the predicted heating temp. range of the mirror 9a as that of the member 4 or having the aporoximate coefft. of linear expansion within about 30%. Even if the material to be deposited by evaporation sticks on the mirror 9a, the specular surface condition is maintained and the observation through the window 6 is not hampered.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸着部材の加熱蒸発部を観察するためのミラー
が、蒸着部材とともに真空蚕内に設けられた真空蒸着装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a vacuum evaporation apparatus in which a mirror for observing a heated evaporation part of a evaporation member is provided in a vacuum chamber together with the evaporation member.

〔発明の技術的背景およびその間照点〕真空中で薄膜を
形成する代表的な方法には、蒸着部材としての金属ある
いは非金属を加熱蒸発させて被蒸着部材としての、例え
ば、ガラス、水晶板の表面に薄膜として凝着させる蒸着
や、金属あるいは非金属を加熱蒸発させ、中性分子から
なる粒子線を作って結晶を成長させる分子線エビタクシ
−等があるが、この明細書ではこれらを総称して真空蒸
着と言う。
[Technical Background of the Invention and Points of Interest] A typical method for forming a thin film in a vacuum involves heating and evaporating a metal or non-metal as a member to be vapor-deposited, such as a glass or quartz plate as a member to be vapor-deposited. evaporation, which deposits a thin film on the surface of metals, and molecular beam epitaxy, which heats and evaporates metals or non-metals to create particle beams made of neutral molecules to grow crystals, but in this specification, they are collectively referred to as This is called vacuum evaporation.

ここで、融点が比較的高い、例えばシリコンを加熱蒸発
させ、高純度の分子線を得るには、シリコンインゴット
の上方中央部分に融液部を形成し、シリコンインゴット
自体をるつぼとする手法が採られ、この融液部の形成に
は加速電子線によって衝撃加熱するEガンが使用される
Here, in order to heat and evaporate silicon, which has a relatively high melting point, to obtain a high-purity molecular beam, a method is adopted in which a melt part is formed in the upper central part of the silicon ingot and the silicon ingot itself is used as a crucible. An E gun that performs impact heating using an accelerated electron beam is used to form this melt portion.

このように、シリコンインゴットの上方中央部分に融液
部を形成するとぎ、シリコンインゴットの下底面および
側面を強制冷却するが、電子線の形で与えるエネルキー
およびシリコンインゴットの冷却効率によって融液部の
拡がりが微妙に変化するため、真空蒸着を行う真空室の
外部から加熱蒸発部を観察する必要がある。
In this way, when a melt part is formed in the upper central part of the silicon ingot, the lower bottom and side surfaces of the silicon ingot are forcibly cooled, but the melt part is cooled by the energy provided in the form of electron beams and the cooling efficiency of the silicon ingot. Because the spread changes slightly, it is necessary to observe the heating evaporation part from outside the vacuum chamber where vacuum evaporation is performed.

第1図はこの種の従来の真空蒸着装置の構成を示すもの
で、真空室l内に、蒸着部材4を所にの位IW: vc
装填したEカン2および被蒸着部材5が設けられ、真空
室1の側壁部には覗き窓6およびこの覗ぎ窓6を内部か
らしや閉するシャッタ7が設けら几ており、さらに、シ
ャッタ7を操作するハンドル8か側壁を貝通して外方に
突出している。
FIG. 1 shows the configuration of a conventional vacuum evaporation apparatus of this type, in which a evaporation member 4 is placed in a vacuum chamber 1.
A loaded E-can 2 and a member to be evaporated 5 are provided, and the side wall of the vacuum chamber 1 is provided with a viewing window 6 and a shutter 7 for closing the viewing window 6 from inside. A handle 8 for operating the handle 7 protrudes outward through the side wall through the shell.

ここで、蒸着都利4はEガン2に形成されたハース部に
、上面を露出させた状態で装填され、この蒸着部月4の
上方中央部分を電子線3によって価撃加熱すると、この
部分に融液部か形成され、その−Fガに配置された被熱
>ti部材5に対して蒸着か行7よりれる。
Here, the vapor deposition part 4 is loaded into the hearth part formed in the E gun 2 with its upper surface exposed, and when the upper central part of the vapor deposition part 4 is heated by the electron beam 3, this part is heated. A melt section is formed in the melt section, and vapor deposition is carried out from row 7 on the heated >ti member 5 placed in the -F region.

これに対して覗き窓6は加熱蒸発部を斜め上方より観察
し得る位置に設ゆられ、シャッタ7はこの観察時に視野
外に移動せられ、何の観察もし1よいとぎには図示した
状態に戻して覗き窓の汚染を防ぐ。
On the other hand, the viewing window 6 is set at a position where the heating and evaporating section can be observed from diagonally above, and the shutter 7 is moved out of the field of view during this observation, so that no observation can be made. Return it to prevent contamination of the viewing window.

次に、第2図もまたこの種の従来の真空蒸着装置の構成
を示すもので、この場合には覗き窓6に対向する側壁部
にミラー9が設けられるとともに、上述したと同様の機
構のシャッタ7かミラー9の前面に設けられている。
Next, FIG. 2 also shows the configuration of this type of conventional vacuum evaporation apparatus, in which a mirror 9 is provided on the side wall facing the viewing window 6, and a mechanism similar to that described above is provided. It is provided in front of the shutter 7 or the mirror 9.

しかして、加熱蒸発部の観察はミラー9を介して行なわ
れ、シャッタ7はミラー90反射曲の汚染を防いでいる
Thus, the heating and evaporation section is observed through the mirror 9, and the shutter 7 prevents the reflection curve of the mirror 90 from being contaminated.

この場合、覗き窓6とミラー9とは互いに対向する側壁
部に設けられているため、加熱蒸発部を覗き込む角度が
第1図に示したものより幾分水平に近(なり、覗き窓の
内面に蒸発分子か当たらないようになっている。したが
って覗ぎ窓6は常に清浄に保たれ、この覗き窓6を真空
室1内の状態監視にも使用される。
In this case, since the viewing window 6 and the mirror 9 are provided on side walls facing each other, the angle at which the heating evaporator is viewed is somewhat closer to horizontal than that shown in FIG. The inner surface is prevented from being hit by evaporated molecules.Therefore, the viewing window 6 is always kept clean and is also used to monitor the condition inside the vacuum chamber 1.

次に、第3図は超高真空中で薄膜形成を行う従来の真空
蒸着装置の構成を示し、Eガン2の周囲には数体雷素を
充填したシュラウドlOが配置され、これによって蒸’
12時の熱遮Mkを行う一方、蒸7g部材4に対向する
位置と、加熱蒸発部を観察しようとする位16:とにそ
れぞれ開口11a、llbを有する熱)に!、、蔽板1
1がシュラウド10の上端部に配置されている。
Next, FIG. 3 shows the configuration of a conventional vacuum evaporation apparatus for forming a thin film in an ultra-high vacuum.
While performing heat shielding Mk at 12 o'clock, the position facing the evaporator 7g member 4 and the heating evaporator part 16: where each has openings 11a and llb (heat)! ,,shield 1
1 is arranged at the upper end of the shroud 10.

才た、覗ぎ窓6、ミラー9およびシャッタ7は第2図に
示した装置6とlli旧I1.Iイ・kな配置1′を関
係に、t;)す、熱遮蔽板】1の開DIlbを辿して加
熱蒸発部を観察するようLLなっている。
The viewing window 6, mirror 9 and shutter 7 are the same as the device 6 shown in FIG. With respect to the unique arrangement 1', the heating evaporation section is observed by tracing the open DIlb of the heat shield plate 1.

上述した3X!!=の真空蒸着装置は何れもシャッタ7
を用いて覗さ窓6またはミラー9の汚染ケ防いでいるも
のの、加熱蒸発部の観察時にはシャッタ7かこの覗、ぎ
窓6−またはミラー9の前面から視野外に移動せしめら
れるため、この観察時の汚染は虹り−られす、ここに堆
積した物質の除去作業を余儀な(される。
3X mentioned above! ! The vacuum evaporation equipment with = has shutter 7.
is used to prevent contamination of the viewing window 6 or mirror 9. However, when observing the heating evaporation section, the shutter 7 must be moved out of the field of view from the front of the viewing window 6 or mirror 9. The contamination of time is reflected, and we are forced to remove the material that has accumulated here.

なお、ミラー9としてガラスにクロームメッキしたもの
を用い、且つ、蒸着物質カー金1>j’iであるとぎ、
ミラー9に金属が付着したとしても¥1ら(σ)間鏡面
は維持されるので、覗き窓VC、:鈷I゛f物′L′↓
カ・1ζ1凋することに比べれば、月t、遺し7た・!
7I′Aυ):途去1川故を低減し得るといり点でミラ
ーを用し・る力法力・イJ利である。
In addition, if a chromium-plated glass is used as the mirror 9, and if the vapor deposition material is gold 1>j'i,
Even if metal adheres to the mirror 9, the mirror surface will be maintained for a period of ¥1,000 (σ), so the viewing window VC, :I゛f object'L'↓
Compared to Ka・1ζ1 fall, it was 7 months ago!
7I'Aυ): This is a force that uses a mirror at the entry point to reduce the amount of damage caused by one river.

しかしながら、このミラー9す乙に19′ノ″慣物貝と
してのシリコンが1μn1以上堆核すると、堆6tシた
シリコンが部分的に剥れ落ちて加熱熱イ?v t’ii
sのi3°甚がやり難くなり、場合(てよってはt、シ
12り不能に陥ることがめる。
However, if more than 1μn1 of silicon as a 19'-inch habitual shell is deposited on this mirror 9, the deposited silicon will partially peel off and cause heating heat.
It becomes extremely difficult to perform s, i3°, and in some cases, it may become impossible to perform t, si12.

すなわち、ミラー9の温度は加熱蒸発部の輻射熱によっ
て容易にlOO℃程度まで上昇し、観察時+i+か長ひ
くと200℃にも上昇することがあり、一方、熱温を終
了した段階でミラー9の温度は常温に降下することから
、ミラー9を)11“;す成するカラスおよびクロムと
、ここに堆積されるシリコンとの1j4.1の腺膨張係
数の差によって堆積したシリコンか剥れ落ちるものと考
えられる。
In other words, the temperature of the mirror 9 easily rises to about 100°C due to the radiant heat of the heating evaporation section, and may rise to 200°C during observation for a long time. As the temperature of the mirror 9) falls to room temperature, the deposited silicon will peel off due to the difference in glandular expansion coefficient of 1j4.1 between the glass and chromium that forms the mirror 9) and the silicon deposited here. considered to be a thing.

か(して、従来の真空蒸着装置にあっては汚染を低く迎
える1こめに観察時間が制限され、加熱蒸発部の常時観
察かできす、その温度を外部で測定し−〔蒸発速度およ
び膜厚を1iilliかく制御することができlえいと
百5欠点があった。
(Thus, in conventional vacuum evaporation equipment, observation time is limited to one time when contamination is low, and the heating evaporation section cannot be constantly observed. Its temperature is measured externally. Although the thickness could be controlled to a certain degree, there were several disadvantages.

また、シャッタ7を移動操作するハンドルが具望室1の
1■11壁を貫通ずる貧造であるため、気密保持を、;
g、7似した入念な調整も要求され、その分だけ製造コ
ストが高むことの他、ここにバッキング?用いたとぎこ
のバッキングからガスが放出する惧れもあった。
Also, since the handle for moving the shutter 7 is poorly constructed and passes through the walls 1 and 11 of the viewing room 1, airtightness cannot be maintained;
g, 7 Similar careful adjustments are required, which increases manufacturing costs, and is there a backing here? There was also a risk that gas would be released from the backing of the sword used.

一方、超旨真窒下で薄膜を形成する第3図に示した装′
r′:t、 vcあっては、一度、大気に曝すと丹庶ル
1高具空に到達させるに多大な時間を要することから、
ミラー9の反射面の堆積物か剥れ落ちて温展測定か不能
になった場合でも、ミラー9の交換ができなかった。
On the other hand, the apparatus shown in FIG.
r': t, vc, once exposed to the atmosphere, it takes a long time to reach the air.
Even when the deposits on the reflective surface of mirror 9 peeled off, making it impossible to perform warm-extension measurements, mirror 9 could not be replaced.

これを防ぐ一つの方法としてミラーを水冷すれはよいか
、その分だけ装し・Tのコストが高騰するという欠点か
あった。
One way to prevent this is to water-cool the mirror, but this has the drawback of increasing the cost of mounting and mounting.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去するためになされたもので、
加熱蒸発部を′吊′時観祭し得、且つ、観察不能に陥る
ことを阻止し得るコスト的にも廉価1.c真空蒸着装置
の提供を目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks.
1. It is inexpensive in terms of cost and allows the heating and evaporating section to be ``suspended'' and prevented from becoming observable. c) The purpose is to provide a vacuum evaporation device.

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明は、蒸着部祠の加熱蒸
発部を観察するためのミラーが[■J記蒸尤。
In order to achieve this object, the present invention provides a mirror for observing the heating evaporation section of the evaporation section [■J evaporation section].

部材とともに真空室内に設けられる真空蒸シd妄危にお
いて、前記ミラーの基材を、該ミラーが加熱されると予
測される温度範囲での11尿j杉j辰係数力柚1記蒸着
部材と同−若しくは近似の材質で414成したことを特
徴とするものである。
In a vacuum vapor deposition system provided in a vacuum chamber together with a member, the base material of the mirror is heated to a temperature range in which the mirror is expected to be heated. It is characterized by being made of the same or similar material.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明の一人施例について説
明する。
Hereinafter, a single person embodiment of the present invention will be described with reference to the accompanying drawings.

第4図は本発明に係る真空蒸着装置の414成例で、第
3図と同一の符号を付したものはそれぞれ同一の要素を
示している。そして、第3図に示したシャッタ7および
ハンドル8を除去する一方、ミラー90代わりに蒸着物
質4と同−質のミラー9aを設けた点が第3図と異って
いる。
FIG. 4 shows 414 examples of a vacuum evaporation apparatus according to the present invention, in which the same reference numerals as in FIG. 3 indicate the same elements. 3 in that the shutter 7 and handle 8 shown in FIG. 3 are removed, and a mirror 9a of the same quality as the vapor deposition material 4 is provided in place of the mirror 90.

上述した如く、加熱蒸発部の観共に用いるミラーは1モ
を射熱によって例えば200℃まで加熱されることがあ
り、このミラーとしてガラスの表面にクロームメッキを
施したものを用いるとともに、蒸Xf物質がクローノ・
である場合には、正規の蒸オiに似た状態でクローム分
子が反射面に付光するため多jd面状態は維持される。
As mentioned above, the mirror used together with the heating evaporation section can be heated up to, for example, 200°C by radiation heat, and the mirror used is one with chrome plating on the glass surface, and the evaporation Xf material is used as the mirror. is chrono・
In this case, the multi-jd surface state is maintained because the chromium molecules illuminate the reflective surface in a state similar to normal vapor i.

しかしながらクロームの膜厚が大さくなった場合にはガ
ラスおよびクローム間の線膨1辰係叔の差異に基づき、
ミラーの温度が繰返して昇降するとぎにクロームの剥扛
か生じる。
However, when the film thickness of chrome becomes large, based on the difference in line expansion between glass and chrome,
Chrome flaking occurs when the temperature of the mirror rises and falls repeatedly.

一方、超旨真孕中での蒸層において、ガラスの次面にク
ロームメッキをノーしたミラーにより、蒸斤f’i′/
J質としてのシリコンの加力1に蒸発部を観察する場合
には、クロームにシリコンが付着するのでこの場合もま
た鏡面状態は維持される。
On the other hand, in the steaming layer during super-improvement, a mirror with no chrome plating on the next surface of the glass allows the steaming layer f'i'/
When observing the evaporated part under the applied force 1 of silicon as J quality, the mirror state is maintained in this case as well since silicon adheres to the chromium.

しかしながら、シリコンの膜厚が1μrn f:超える
と、クロームおよびシリコン1ite 17)線膨張1
系敢の栓異というよりも、ガラスおよびシリコン間の線
膨張係数の差異によると思われて、d1]れが生じるこ
とになる。
However, if the silicon film thickness exceeds 1 μrn f: chromium and silicon 1ite 17) Linear expansion 1
The difference in coefficient of linear expansion between glass and silicon is thought to be the cause of the difference in coefficient of linear expansion, rather than a physical difference between the two types.

そこで第4図に示した具空魚廂−皆141°では、蒸う
11物質′bチシリコンであるとさ、反射11.lIを
含めて全体がシリコンでなるミラー9aを用いて加熱蒸
発部の1説察を行うようにしている。1−なゎ′ら、蒸
着物質と同−質のミラーン用いた場合には線膨張係数の
差異がないことから、こ扛によって堆積物の剥れを防い
でいる。
Therefore, at the angle of 141 degrees shown in Fig. 4, the vaporizing material 11'b is silicon, and the reflection 11. An explanation of the heating evaporation section will be made using a mirror 9a made entirely of silicon including lI. 1-Nawa' et al., when using mirroran of the same quality as the deposited material, there is no difference in linear expansion coefficient, so this method prevents the deposit from peeling off.

実醗によれば、このシリコンのミラー9aの反射面に1
00μIT1以上のシリコンが堆積した場合でもこ7’
Lか剥れ落ちることは皆無であった。
According to actual experiments, there is 1 on the reflective surface of this silicon mirror 9a.
Even if silicon of 00μIT1 or more is deposited, this 7'
There was no peeling off of the L.

なお、この実施例では蒸着物質と同−質のミラーを用い
たが、必すしも両者が同−質でなくとも、線膨張係数が
類似の利り′i、?基4d”とするミラーを用いてもよ
い。
In this example, a mirror of the same quality as the deposited material was used, but it is not necessarily necessary that the two are of the same quality, but the advantage of similar linear expansion coefficients is 'i,? A mirror having a base 4d'' may also be used.

また、実験によれば、バ・ルックスガラスVこクローム
メッキケ施したミラ・−を用いてシリコンを加熱蒸発し
、ここにシリニ7ン′?L:50μm万以上堆積すせた
場合でも剥れは生じなかった。ここで、バイレックスガ
ラスおよびシリコンの線膨張係数はそれぞれ、J、 O
X 10−6! 2.4 、X ICl−6で、シリコ
ンを基準としたときの両者の差゛i℃は約2!5%であ
った。
Also, according to experiments, silicon was heated and evaporated using a chrome-plated mirror glass plate, and silicone was heated and evaporated here. L: No peeling occurred even when the film was deposited to a thickness of 50 μm or more. Here, the linear expansion coefficients of Virex glass and silicon are J and O, respectively.
X 10-6! 2.4, X ICl-6, the difference between the two when based on silicon was about 2.5%.

これらの実1験結−′、i方から、?、致着部材と同−
質のミラーを用いたとさかもちろん最良であるけれども
、必ずしも同−質でなくともミラーの基材を、このミラ
ーが加j、’、、% f?、 、)すると予測される温
度範囲でのj、児膨張係数が蒸着部伺と近世の、例えば
、両者の老人が3(1%I)、内の部材で構成1−れば
、実質的に支μパにのない覗んζが口■能である。
The result of these experiments is -', from the i side, ? , the same as the adhesion member.
Of course, it is best to use a mirror of high quality, but even if it is not necessarily of the same quality, this mirror will add j,',,% f? , , ) Then, in the predicted temperature range, j, if the expansion coefficient of the vapor deposited part and the modern one are 3 (1% I), then, The peeps that are not available for support are oral skills.

また、−に記実施例ではg高真空甲で蒸ノnをイ]5裟
li″t−に・ついて説明したり\、不発明は一般的な
偵、;°1装置”i−にも勿論適用し7得ることは言う
まCもなり・、3〔発明の効果〕 以」−のR発明によって明らか7r如く、本発明のg空
蒸冶装置によれば、Q!4熱蒸発部の常時観察り・d工
面になるとともに、観■不能に陥ることを未然に防止し
得、従来装置では必要不可欠であったンヤツタや、観察
不能に陥ることを防止するための水冷装置1コか不要化
され、大幅なコストダウンが図られる。
In addition, in the embodiment described in -, the vaporization process is carried out in a high vacuum chamber. Of course, by applying 7, it goes without saying that C can also be obtained.3 [Effects of the Invention] As is clear from the R invention of 7r, according to the g air steaming apparatus of the present invention, Q! 4) Constant observation of the thermal evaporation section, and water cooling to prevent the inability to observe the heat, which was indispensable in conventional equipment, This eliminates the need for one piece of equipment, resulting in significant cost reductions.

またーシャツタか不要化されたことに伴って真空室の壁
部な貫通するハンドルも不要になり、ここに用いられる
バッキング等からのガス放出もな(高真空下での良好な
蒸着が可能になる。
In addition, since the shirt shutter is no longer necessary, there is no longer a need for a handle that penetrates the wall of the vacuum chamber, and there is no need for gas to be released from the backing, etc. used here (enabling good evaporation under high vacuum). .

なお、蒸着部材と同−賀のミラーまたは線膨張係数が類
似の材質でなるミラーを用いた場合でも、何れその父換
を行なわなければならないが、その父換回数は従来装置
と比較して’/100以下に減らすことかでざる。
Note that even if a mirror of the same age as the vapor deposition member or a mirror made of a material with a similar coefficient of linear expansion is used, it must be replaced at some point, but the number of times the replacement is required is less than that of conventional equipment. The best thing to do is to reduce it to less than /100.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来の各種の真空蒸着装置の構成を
示す概念図、第4図は本発明に係る真空蒸着装置の一実
施例の構成を示す概念図である。 1・・・真空室、2・・・Eガン、3・・パ−子腺、4
・・・蒸着部材、5・・・被蒸着部材、6・・・覗ぎ窓
、7・・・シャッタ、8・・・ハンドル、9,9a・・
・ミラー、10・・・シュラウド、11・・・熱遮蔽板
、lla 、 llb・・・開口。 第1図 第3図 第2図 第4図
1 to 3 are conceptual diagrams showing the configuration of various conventional vacuum evaporation apparatuses, and FIG. 4 is a conceptual diagram showing the configuration of an embodiment of the vacuum evaporation apparatus according to the present invention. 1...Vacuum chamber, 2...E gun, 3...Pacific gland, 4
... Vapor deposition member, 5... Evaporation target member, 6... Peephole, 7... Shutter, 8... Handle, 9, 9a...
-Mirror, 10...shroud, 11...heat shield plate, lla, llb...opening. Figure 1 Figure 3 Figure 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)蒸着部材の加熱蒸発部を観察するためのミラーが
前記#層部材とともに真空室内に設けられる真空蒸着装
置において、前記ミラーの基材を、該ミラーが加熱され
ると予測される温度範囲での線膨張係数がMiJ記蒸着
部材と同−若しくは近似の材質で4r’+成したことを
特徴とする真空蒸着装置fl、l、。
(1) In a vacuum evaporation apparatus in which a mirror for observing the heated evaporation part of the evaporation member is provided in a vacuum chamber together with the #layer member, the base material of the mirror is heated within a temperature range where the mirror is expected to be heated. A vacuum evaporation apparatus fl, l, characterized in that it is made of a material with a linear expansion coefficient of 4r'+ equal to or similar to that of the evaporation member MiJ.
(2)前記ミラーの基材を、前記蒸着部材と同−質の金
4材料で構成したことン特徴とする特許請求の範囲第1
項記載の真空蒸着装置。
(2) Claim 1, characterized in that the base material of the mirror is made of a gold material of the same quality as the vapor deposition member.
The vacuum evaporation apparatus described in Section 1.
(3)前記ミラーの基材を、常温から略200℃までの
範囲における前記蒸着物質に対する線膨張係数の迎いか
加%以内の材質で構成したことン特徴とする特許請求の
範囲第1項記載の真空蒸着装置。
(3) The base material of the mirror is made of a material having a coefficient of linear expansion within a percentage of that of the vapor deposition material in the range from room temperature to approximately 200°C. vacuum evaporation equipment.
JP8727983A 1983-05-18 1983-05-18 Vacuum deposition device Pending JPS59211573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8727983A JPS59211573A (en) 1983-05-18 1983-05-18 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8727983A JPS59211573A (en) 1983-05-18 1983-05-18 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPS59211573A true JPS59211573A (en) 1984-11-30

Family

ID=13910340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8727983A Pending JPS59211573A (en) 1983-05-18 1983-05-18 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPS59211573A (en)

Similar Documents

Publication Publication Date Title
Takagi et al. Ionized‐cluster beam deposition
JP2020508392A (en) Additional layer manufacturing equipment with process monitoring equipment
JP3475403B2 (en) Evaporation apparatus and method
UA71572C2 (en) An electron beam physical vapor deposition apparatus for application of coating on articles
Hamdi et al. Coating of hydroxyapatite thin film by simultaneous vapor deposition
Peters Penning Sputtering of Ultra-Thin Metal Films for High-Resolution Electron Microscopy
US4648347A (en) Vacuum depositing apparatus
JPS59211573A (en) Vacuum deposition device
BR112020025193A2 (en) METHOD TO CONTINUE CONTINUOUSLY ON A MOVING SUBSTRATE (S), COATINGS FORMED FROM AT LEAST ONE METAL, METAL SUBSTRATE AND VACUUM DEPOSITION INSTALLATION
US4997673A (en) Method of forming aluminum nitride films by ion-assisted evaporation
US5154811A (en) Apparatus and process for coating workpieces by arc discharge method in vacuum
JP2006111916A (en) Vapor deposition system
JPH03183778A (en) Method and device for forming deposited film
JPH04268065A (en) Sputtered film forming device
JP4982004B2 (en) Protection plate device
RU2777062C1 (en) Method for obtaining nanosized films of titanium nitride
JP2977659B2 (en) Method of depositing anti-doming material for shadow mask
JPH02104659A (en) Device for producing thin film
L'vov et al. Electron beam deposition of cobalt on the silicon substrate: Experiment and simulation
JPS5970774A (en) Vapor deposition device
JPS6033349A (en) Vacuum vapor deposition apparatus
JPS61295366A (en) Masking material for vapor deposition
JPH0397859A (en) Evaporating device
Webb et al. An evaporation system for the preparation of ternary compounds
JPS61106766A (en) Spatter device