JPS59209697A - Controlling method for existence ratio of cation and anion remaining in desalinated water - Google Patents

Controlling method for existence ratio of cation and anion remaining in desalinated water

Info

Publication number
JPS59209697A
JPS59209697A JP8415983A JP8415983A JPS59209697A JP S59209697 A JPS59209697 A JP S59209697A JP 8415983 A JP8415983 A JP 8415983A JP 8415983 A JP8415983 A JP 8415983A JP S59209697 A JPS59209697 A JP S59209697A
Authority
JP
Japan
Prior art keywords
water
cations
anions
ratio
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8415983A
Other languages
Japanese (ja)
Other versions
JPH0141392B2 (en
Inventor
Shinichi Usui
伸一 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP8415983A priority Critical patent/JPS59209697A/en
Publication of JPS59209697A publication Critical patent/JPS59209697A/en
Publication of JPH0141392B2 publication Critical patent/JPH0141392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To control the existence ratio of cations and anions remaining in desalinated water over a wide range, by measuring the equivalent mol ratio of cations to anions in outflow water during the ion-exchange treatment of desalinated water, and setting the ratio of the desalinated outflow water to be supplied to both ion-exchange resin beds and a line. CONSTITUTION:Desalinated water from an apparatus 1 for manufacturing desalinated water flows through a means 7 for detecting a flow amount, a means 4 for detecting the concentration of cations and a means 5 for detecting the concentration of anions. The measured concentration of cations and anions are transmitted to a unit 6 for controlling a flow amount. When the equivalent mol ratio of cations to anions comes out of a desired value, valves 10, 11, 12 are adjusted to by-pass a part of the desalinated water to a Type-OH<-> Ar bed 3 or a Type-H<+> C bed 2. The result is measured by both of the detector means 4, 5. In addition, information from the means 7, 8, 9 for detecting flow amounts is transmitted to the unit 6 for controlling a flow amount to recognize the operation for controlling a flow amount. Hence, the concentration ratio of cations to anions remaining in the desalinated water can be controlled at the desired value.

Description

【発明の詳細な説明】 本発明は、脱塩水をイオン交換処理することによシ処理
水中に残留するカチオンとアニオンの濃度比率を所定の
値に制御するための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the concentration ratio of cations and anions remaining in treated water to a predetermined value by subjecting demineralized water to ion exchange treatment.

従来蒸発法、逆浸透法、イオン交換法などによって原水
を脱塩する方法は広く知られている。製造された脱塩水
は種々の用途に使用されるが、使用目的によって許容さ
れる残存塩類濃度やその他の水質が異なることは言うま
でもない。
Conventional methods of desalinating raw water by evaporation, reverse osmosis, ion exchange, and the like are widely known. The produced desalinated water is used for various purposes, and it goes without saying that the allowable residual salt concentration and other water qualities vary depending on the purpose of use.

上記従来法による脱塩水は必ずしも中性ではなく、水素
イオン以外のカチオン(以下、残存カチオンとする)と
水酸化物イオン以外のアニオン(以下、残存アニオンと
する)のイオンバランスがくずれている場合もある。残
存カチオンと残存アニオンの当量比が1より小さい場合
には脱塩水は酸性、1より大きい場合には脱塩水は塩基
性となる。
Desalinated water obtained by the conventional method described above is not necessarily neutral, and the ion balance of cations other than hydrogen ions (hereinafter referred to as residual cations) and anions other than hydroxide ions (hereinafter referred to as residual anions) is disrupted. There is also. When the equivalent ratio of residual cations to residual anions is less than 1, the demineralized water is acidic, and when it is more than 1, the demineralized water is basic.

たとえば、第1塔に水素イオン(H)形の強酸性カチオ
ン交換樹脂(以下、CRとする)を充填し、第2塔に水
酸化物イオン(OH)形の強塩基性アニオン交換樹脂(
以下、皿とする)を充填して、原水を第1塔から第2塔
へと直列に通水する「2床式」のイオン交換装置の処理
水は通常は塩基性である。
For example, the first column is filled with a strongly acidic cation exchange resin (hereinafter referred to as CR) in the form of hydrogen ions (H), and the second column is filled with a strongly basic anion exchange resin (hereinafter referred to as CR) in the form of hydroxide ions (OH).
The treated water of a "two-bed type" ion exchange device, in which raw water is passed in series from the first column to the second column, is usually basic.

これは、第1塔のイ形CRが完全に再生されておらず一
部がナトリウム(Na)形、マグネシウム(Mg” )
形、カルシウム(Ca” ’)形などの負荷形になって
いるため、通水時に第1塔からおもにNa+がリークし
、これが第2塔を素通りして第2塔の流出水中に存在す
ることによる。第2塔からの塩素イオン(C6)などの
リークは通常Na  リークに比較して非常に小さいの
で、結果として第2塔からの流出水中には水酸化ナトリ
ウム(NaOH)が存在することになり処理水は塩基性
を呈するのである。
This is because the I-form CR in the first column has not been completely regenerated, and some of it is in the sodium (Na) form and magnesium (Mg") form.
Because it is a loaded type, such as calcium (Ca'') type, Na+ mainly leaks from the first tower when water is passed through, and this passes through the second tower and is present in the outflow water of the second tower. Since the leakage of chloride ions (C6) etc. from the second column is usually much smaller than the Na leakage, it is concluded that sodium hydroxide (NaOH) is present in the water flowing out from the second column. As a result, the treated water exhibits basicity.

上記2床式のイオン交換装置の処理水を中性にするため
には第2塔の後段にH形の弱酸性カチオン交換樹脂(以
下、WCRとする)を設ければよいとされている。f形
のWCRは第2塔の流出水中のアルカリ度成分だけを吸
着除去し、中性塩を構成するカチオンは吸着除去しない
とされているので、その処理水は中性になる。しかしな
がら、WCRもわずかながら中性塩分解能力を持つこと
が多く、その場合には処理水は微酸性となる。さらにW
CRは酸による再生後の洗浄特性が悪いために再生後は
17ばらく処理水が酸性となり、その後通水を続けてい
ると次第に処理水が中性となってくるという傾向がある
In order to neutralize the treated water of the above-mentioned two-bed ion exchange apparatus, it is considered that an H-type weakly acidic cation exchange resin (hereinafter referred to as WCR) may be provided at the latter stage of the second column. It is said that the f-type WCR adsorbs and removes only the alkalinity components in the water effluent from the second column and does not adsorb and remove cations that constitute neutral salts, so the treated water becomes neutral. However, WCR also often has a slight ability to decompose neutral salts, and in that case, the treated water becomes slightly acidic. Furthermore, W
Since CR has poor cleaning characteristics after regeneration with acid, the treated water tends to become acidic for a while after regeneration, and then gradually become neutral as water continues to flow.

このような場合、WCRを後段に設ける代わりに ゛本
発明を用いれば、処理水を常に中性に保つことができろ
In such a case, if the present invention is used instead of installing a WCR in the latter stage, the treated water can always be kept neutral.

次に、脱塩水がボイラ給水として使用される場合に本発
明を応用することについて説明する。よく知られている
ように、高圧ボイラにおいてはNa+はタービンスケー
ルや苛性脆化の原因になりCt−は応力腐食割れの原因
になるとされており、ボイラ給水中のNa 濃度とCt
−濃度は厳しく規制されることが多い。この場合、Na
 の存在環境が問題であるとする見解もある。すなわち
NaC1として存在するか、NaOHとして存在するか
によって、ボイラ内における挙動が異なってくるという
見解である。こうなると、Na  とCt−の当量比が
問題となる。
Next, application of the present invention to a case where desalinated water is used as boiler feed water will be described. As is well known, in high-pressure boilers, Na+ causes turbine scale and caustic embrittlement, and Ct- causes stress corrosion cracking, and the Na concentration in boiler feed water and Ct
- Concentrations are often strictly regulated. In this case, Na
There is also a view that the problem lies in the environment in which people exist. In other words, the view is that the behavior within the boiler differs depending on whether it exists as NaCl or NaOH. In this case, the equivalence ratio of Na and Ct becomes a problem.

このような場合に本発明を用いれば、Na+とCt−の
当量比を広範囲にわたって所望の値に制御することが可
能となる。
If the present invention is used in such a case, it becomes possible to control the equivalent ratio of Na+ and Ct- to a desired value over a wide range.

本発明は、原水を脱塩工程で処理したのちイオン交換工
程で処理する方法において、前記イオン交換工程を前記
脱塩工程による脱塩水の移送ライン、水素イオン形の強
酸性カチオン交換樹脂層及び水酸化物イオン形の強塩基
性アニオン交換樹脂層を並列に配備して形成すると共に
、該イオン交換工程からの流出水について水素イオン以
外の残留カチオンと水酸化物イオン以外の残留アニオン
の当量比を測定し、目標とする当量比と前記測定当量比
の差がなくなるように該測定当量比に基づいて前記イオ
ン交換工程へ流入する前記脱塩水の前記カチオン交換樹
脂層、アニオン交換樹脂層及び移送ラインへの分配供給
流量の比率を設定することを特徴とする脱塩水中の残存
カチオンと残存アニオンの存在比率の制御方法である。
The present invention provides a method in which raw water is treated in a desalination process and then treated in an ion exchange process, in which the ion exchange process is performed in a transfer line for desalinated water from the desalination process, a strongly acidic cation exchange resin layer in the hydrogen ion form, and a water In addition to forming strongly basic anion exchange resin layers in the form of oxide ions in parallel, the equivalent ratio of residual cations other than hydrogen ions to residual anions other than hydroxide ions in the water effluent from the ion exchange process is determined. The cation exchange resin layer, the anion exchange resin layer, and the transfer line of the desalted water that is measured and flows into the ion exchange step based on the measured equivalence ratio so that there is no difference between the target equivalence ratio and the measured equivalence ratio. This is a method for controlling the abundance ratio of residual cations and residual anions in demineralized water, which is characterized by setting the ratio of the distribution and supply flow rate to the demineralized water.

以下に、図面を用いて本発明の一実施態様を説明する。An embodiment of the present invention will be described below with reference to the drawings.

図において1は脱塩水製造装置、2はイ形のCR層、3
はOH−形の黛層、4はカチオン濃度検出手段、5はア
ニオン濃度検出手段、6は流量制御装置、7,8.9は
流量検出手段、10,11゜12は流量制御弁である。
In the figure, 1 is a desalinated water production device, 2 is an A-shaped CR layer, and 3
4 is a cation concentration detection means, 5 is an anion concentration detection means, 6 is a flow rate control device, 7, 8.9 are flow rate detection means, and 10, 11 and 12 are flow rate control valves.

しかして脱塩水製造装置1によって製造された脱塩水は
弁10、流量検出手段7、カチオン濃度検出手段4、ア
ニオン濃度検出手段5を通って流れる。カチオン濃度検
出手段4、アニオン濃度検出手段5によって測定された
カチオン濃度とアニオン濃度は流量制御装置6に伝えら
れ、もしカチオンとアニオンの当量比が所望の値よシも
小さい場合には、弁12が少し開き弁10が少し閉じる
ことによって脱塩水の一部がOH−形屁層6にバイパス
される。その結果はカチオン濃度検出手段4、アニオン
濃度検出手段5によって測定され、その結果によって弁
10と弁12の開き加減が調節される。このようなフィ
ードバック制御によシ、カチオンとアニオンの当量比は
所望の値に近づく。
Thus, the desalted water produced by the desalted water production apparatus 1 flows through the valve 10, the flow rate detection means 7, the cation concentration detection means 4, and the anion concentration detection means 5. The cation concentration and anion concentration measured by the cation concentration detection means 4 and the anion concentration detection means 5 are transmitted to the flow rate control device 6, and if the equivalence ratio of cations and anions is smaller than the desired value, the valve 12 By slightly opening the valve 10 and slightly closing the valve 10, a portion of the demineralized water is bypassed to the OH-type fart layer 6. The results are measured by the cation concentration detection means 4 and the anion concentration detection means 5, and the openings of the valves 10 and 12 are adjusted based on the results. Through such feedback control, the equivalence ratio of cations and anions approaches a desired value.

脱塩水中のカチオンとアニオンの当量比が1よりも大き
い場合には、弁11が少し開き弁10が少し閉じること
によって脱塩水の一部がH+形CR層2にバイパスされ
る。なお流量検出手段7,8.9は流量制御が正常に動
作しているかを確認するためのものであり、この情報も
流量制御装置6に伝えられる。
When the equivalence ratio of cations and anions in the desalted water is greater than 1, a portion of the desalted water is bypassed to the H+ type CR layer 2 by slightly opening the valve 11 and slightly closing the valve 10. Note that the flow rate detection means 7, 8.9 are for checking whether the flow rate control is operating normally, and this information is also transmitted to the flow rate control device 6.

前記π形のCR層2およびOH−形の社層6は向流再生
し、かつ再生レベルを高くとることによって、それぞれ
カチオンおよびアニオンのリークをできるだけ小さくす
ることが好ましい。カチオン濃度検出手段4としては、
完全再生したOH−形のAR層に脱塩水を通した後の導
電率を測定する方法や、イオン選択性電極を用いたイオ
ンメータなどがある。壕だ、このように連続的にモニタ
リングせずて、間欠的にサンプリングしてカチオンを分
析しでもよい。すなわち本発明ではカチオン濃度検出手
段4については特に限定されない。同様に、アニオン濃
度検出手段5についても特に限定されない。
It is preferable that the π-type CR layer 2 and the OH-type social layer 6 be regenerated in countercurrent and at a high regeneration level to minimize the leakage of cations and anions, respectively. As the cation concentration detection means 4,
There are methods to measure the conductivity after passing demineralized water through a completely regenerated OH-type AR layer, and an ion meter using an ion-selective electrode. Well, instead of continuous monitoring like this, you can sample intermittently and analyze the cations. That is, in the present invention, the cation concentration detection means 4 is not particularly limited. Similarly, the anion concentration detection means 5 is not particularly limited either.

前記流量制御装置6はカチオン濃度検出手段4、アニオ
ン濃度検出手段5、流量検出手段7,8゜9からの情報
を受けて弁10,11.12(自動制御弁が好ましいが
、手動弁としてもよい)を操作し各流路に流れる流量を
制御する。
The flow rate control device 6 receives information from the cation concentration detection means 4, the anion concentration detection means 5, and the flow rate detection means 7, 8, 9, and operates the valves 10, 11, 12 (preferably automatic control valves, but also as manual valves). ) to control the flow rate flowing into each flow path.

なお、本発明が上記実施、幅様に限定されるものでない
ことは勿論である。
It goes without saying that the present invention is not limited to the above implementation and width.

以上本発明によれば、脱塩水中の残存カチオン   が
と残存アニオンの存在比率を広範囲にわたって所望の値
に簡便かつ適確に制御することができる実益がある。
As described above, according to the present invention, there is a practical advantage that the abundance ratio of residual cations and residual anions in demineralized water can be easily and accurately controlled to desired values over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施態様を示すフローシートである
。 1・・・脱塩水製造装置、2・・・CR層、6・・・訊
層、4・・・カチオン濃度検出手段、5・・・アニオン
濃度検出手段、6・・・流量制御装置、7,8.9・・
・流量検出手段、10,11.12・・・弁。 特許出願人  荏原インフイルコ株式会社代理人弁理士
 千  1)   捻
The drawing is a flow sheet illustrating one embodiment of the invention. DESCRIPTION OF SYMBOLS 1...Demineralized water production device, 2...CR layer, 6...Combination layer, 4...Cation concentration detection means, 5...Anion concentration detection means, 6...Flow rate control device, 7 ,8.9...
・Flow rate detection means, 10, 11, 12... valve. Patent Applicant: Ebara Infilco Corporation Representative Patent Attorney Sen 1) Neji

Claims (1)

【特許請求の範囲】 1、原水を脱塩工程で処理したのちイオン交換工程で処
理する方法において、前記イオン交換工程を前記脱塩工
程による脱塩水の移送ライン、水素イオン形の強酸性カ
チオン交換樹脂層及び水酸化物イオン形の強塩基性アニ
オン交換樹脂層を並列に配備して形成すると共に、該イ
オン交換工程からの流出水について水素イオン以外の残
留カチオンと水酸化物イオン以外の残留アニオンの当量
比を測定し、目標とする当量比と前記測定当量比の差が
なくなるように該測定当量比に基づいて前記イオン交換
工程へ流入する前記脱塩水の前記カチオン交換樹脂層、
アニオン交換樹脂層及び移送ラインへの分配供給流量の
比率を設定することを特徴とする脱塩水中の残存カチオ
ンと残存アニオンの存在比率の制御方法。 2、 前記脱塩工程がイオン交換工程である特許請求の
範囲第1項記載の方法。 5 前記脱塩工程が復水を処理するものである特許請求
の範囲第1項記載の方法。 4、前記残留カチオンがナトリウムイオンであり、前記
残留アニオンが塩素イオンである特許請求の範囲第1項
記載の方法。
[Scope of Claims] 1. In a method in which raw water is treated in a desalination process and then treated in an ion exchange process, the ion exchange process is carried out through a transfer line for desalinated water from the desalination process, and a strongly acidic cation exchange in the form of hydrogen ions. A resin layer and a strongly basic anion exchange resin layer in the form of hydroxide ions are arranged in parallel to form a resin layer, and residual cations other than hydrogen ions and residual anions other than hydroxide ions are removed from the outflow water from the ion exchange process. the cation exchange resin layer of the demineralized water that flows into the ion exchange step based on the measured equivalence ratio so that there is no difference between the target equivalence ratio and the measured equivalence ratio;
A method for controlling the abundance ratio of residual cations and residual anions in desalted water, comprising setting the ratio of the distribution and supply flow rate to an anion exchange resin layer and a transfer line. 2. The method according to claim 1, wherein the desalting step is an ion exchange step. 5. The method according to claim 1, wherein the desalination step treats condensate. 4. The method according to claim 1, wherein the residual cation is a sodium ion and the residual anion is a chloride ion.
JP8415983A 1983-05-16 1983-05-16 Controlling method for existence ratio of cation and anion remaining in desalinated water Granted JPS59209697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8415983A JPS59209697A (en) 1983-05-16 1983-05-16 Controlling method for existence ratio of cation and anion remaining in desalinated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8415983A JPS59209697A (en) 1983-05-16 1983-05-16 Controlling method for existence ratio of cation and anion remaining in desalinated water

Publications (2)

Publication Number Publication Date
JPS59209697A true JPS59209697A (en) 1984-11-28
JPH0141392B2 JPH0141392B2 (en) 1989-09-05

Family

ID=13822714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8415983A Granted JPS59209697A (en) 1983-05-16 1983-05-16 Controlling method for existence ratio of cation and anion remaining in desalinated water

Country Status (1)

Country Link
JP (1) JPS59209697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017918B1 (en) 2008-11-14 2011-03-04 박병호 Method for producing ion reduced water using ion exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017918B1 (en) 2008-11-14 2011-03-04 박병호 Method for producing ion reduced water using ion exchange resin

Also Published As

Publication number Publication date
JPH0141392B2 (en) 1989-09-05

Similar Documents

Publication Publication Date Title
KR100481801B1 (en) Method and apparatus for high efficiency reverse osmosis operation
AU2009244243B2 (en) Method of minimizing corrosion, scale, and water consumption in cooling tower systems
US6929748B2 (en) Apparatus and method for continuous electrodeionization
US9428412B2 (en) Method for high efficiency reverse osmosis operation
US5925255A (en) Method and apparatus for high efficiency reverse osmosis operation
US7618538B2 (en) Procedure for elimination of boron from sea-water by reverse osmosis membranes
RU2727492C1 (en) Water softening device and operation method of water-softening device
Lipnizki et al. Water treatment: Combining reverse osmosis and ion exchange
JPH1085743A (en) Method and apparatus for treating water containing boron
Migliorini et al. Seawater reverse osmosis plant using the pressure exchanger for energy recovery: a calculation model
JPS59209697A (en) Controlling method for existence ratio of cation and anion remaining in desalinated water
JP2013193004A (en) Pure water production method
US4298477A (en) Regeneration of cation ion-exchange polishers
US11008230B2 (en) Exchange based-water treatment
JP2022015198A (en) Treatment method of water with hardness and treatment device of water with hardness
JP2010058013A (en) Pure water production system
Applegate Posttreatment of reverse osmosis product waters
JP2005118712A (en) Pure water manufacturing method
US20150251928A1 (en) Ion exchange methods for treating water hardness
JPH1157420A (en) Water run treatment method for electric deionized water manufacturing device
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
Nir When does commercial software fail in predicting scaling tendency in reverse osmosis and what can we do better?
JP2012210611A (en) Apparatus and method for treating acidic solution
US2701791A (en) Water softening process
Baker Dechlorination and sensory control