JPS59209606A - Gas-liquid contact apparatus - Google Patents

Gas-liquid contact apparatus

Info

Publication number
JPS59209606A
JPS59209606A JP59081726A JP8172684A JPS59209606A JP S59209606 A JPS59209606 A JP S59209606A JP 59081726 A JP59081726 A JP 59081726A JP 8172684 A JP8172684 A JP 8172684A JP S59209606 A JPS59209606 A JP S59209606A
Authority
JP
Japan
Prior art keywords
perforated plate
gas
liquid
core metal
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59081726A
Other languages
Japanese (ja)
Other versions
JPS643521B2 (en
Inventor
Yukiyoshi Yoshimatsu
吉松 幸祥
Makoto Nawata
誠 縄田
Yoichi Ito
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59081726A priority Critical patent/JPS59209606A/en
Publication of JPS59209606A publication Critical patent/JPS59209606A/en
Publication of JPS643521B2 publication Critical patent/JPS643521B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • B01D3/18Fractionating columns in which vapour bubbles through liquid with horizontal bubble plates
    • B01D3/20Bubble caps; Risers for vapour; Discharge pipes for liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To contrive to reduce pressure loss in a perforated plate and to enlarge a driving operation range, by utilizing the core metal in a tray tower as a flooding pipe while connecting the flooding pipe provided to the outer peripheral side of the perforated plate and the core metal by a trough. CONSTITUTION:A liquid falling into the core metal 3 mounted in a perforated plate tray tower 1 is flowed onto a perforated plate 8 while flooded over an inlet weir 5 from the outflow port 10 provided to the outer periphery of the core metal 3 and subjected to gas-separation contact with gas rising from the perforations 9 of the perforated plate 8. In the next step, the mass transfer received liquid is flowed into the flooding pipes 2 and again flowed into the core metal 3 through troughs 4. Each trough 4 is attached between the perforated plates 8 and connects each flooding pipe 2 and the core metal 3. Subsequetly, the liquid flowed into the core metal 3 for use with the flooding pipes 2 is again flowed through the next stage perforated plate to be subjected to mass transfer.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は精留、蒸留、吸収等の操作に使用される気液接
触装置に係り、特に気液接触装置に内蔵される多孔板棚
段の構成に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas-liquid contact device used for operations such as rectification, distillation, and absorption, and particularly relates to a perforated plate tray built into the gas-liquid contact device. It's about configuration.

〔発明の背景〕[Background of the invention]

多孔板棚段で構成される気液接触装置は高い精留性能を
有し、かつ構造が簡単なため気液接触操作の広い分野で
使用されている。多孔板棚段の能力を充分発揮するため
には、多孔板上での気液の流動状態を最良にする必要が
ある。また、多孔板における圧力損失は圧縮機などの消
費電力に直接影響をおよぼすため、極小に抑えなければ
ならない。圧力損失を減少するには、上昇ガス量を減少
し多孔板の孔を通過するガス速度を小さくする方法があ
るが、この方法はウィービング、部分発泡および塔径と
のかねあいにより得策ではない。
A gas-liquid contact device composed of perforated plate trays has high rectification performance and has a simple structure, so it is used in a wide range of gas-liquid contact operations. In order to fully utilize the capabilities of the perforated plate tray, it is necessary to optimize the flow state of gas and liquid on the perforated plate. Furthermore, the pressure loss in the perforated plate has a direct effect on the power consumption of the compressor, etc., so it must be kept to a minimum. In order to reduce the pressure loss, there is a method of reducing the amount of rising gas and reducing the gas velocity passing through the holes in the perforated plate, but this method is not a good idea due to conflicts with weaving, partial foaming, and column diameter.

圧力損失は、乾き圧力損失、湿り圧力損失および表面張
力による圧力損失の総和で与えられるが、対象流体の物
性および処理量が同じであれば、上記圧力損失のうち乾
き圧力損失および表面張力による圧力損失は同一となる
が、湿り圧力損失は多孔板の構造によって異なる。湿り
圧力損失は、物性の液密度と多孔板上の静液深の積で求
められる。
Pressure loss is given by the sum of dry pressure loss, wet pressure loss, and pressure loss due to surface tension. However, if the physical properties of the target fluid and the throughput are the same, the dry pressure loss and the pressure due to surface tension are the same among the above pressure losses. Although the loss is the same, the wet pressure loss differs depending on the structure of the perforated plate. Wet pressure loss is determined by the product of the physical property liquid density and the static liquid depth on the perforated plate.

溢流管を有する多孔板上の液の流れは自然流れであるた
め、静液深は多孔板の出口堰の構造および流れ抵抗で決
定される。また、流れ抵抗は液が多孔板上を横切る距離
で決定される。このため、処理量が少ない小さな塔にお
いては問題となる要因は見当らないが、処理量が大き々
なり塔径が大き曵なると当然流れ抵抗は大きくなり、静
液深は大きくなる。また、多孔板棚段塔の構造において
はこれまでに多孔板上の液の流動状態について種々の実
験を行った結果、多孔板上の静液深りは、h−K (Q
/ b ) 2/3(’K :定数、Q:流量、b:出
口増長さ)となることが分った。したがって、同一構造
の多孔板では、塔径な漸次大きくするに従い多孔板上の
静液深は必要以上の大きさとなり、圧力損失の増加の原
因となる。また、静液深が大き々なれば、ウィービング
および部分発泡の要因となり、効率の低下を招くおそれ
がある。そこで、これら要因をなくすため孔部速度を増
加すれば、圧力損失も増加して悪循環となり、結果的に
は消費電力の増加となって経費の高い多孔板棚段塔とな
る問題があった。
Since the flow of liquid on a perforated plate with overflow pipes is a natural flow, the static liquid depth is determined by the structure and flow resistance of the outlet weir of the perforated plate. Additionally, flow resistance is determined by the distance that the liquid traverses over the perforated plate. Therefore, no problem is found in small columns with a small throughput, but as the throughput increases and the column diameter becomes large, the flow resistance naturally increases and the static liquid depth increases. In addition, in the structure of a perforated plate plate tower, as a result of various experiments conducted on the flow state of liquid on the perforated plate, the static liquid depth on the perforated plate is h-K (Q
/b) 2/3 ('K: constant, Q: flow rate, b: outlet length increase). Therefore, with perforated plates having the same structure, as the column diameter is gradually increased, the depth of static liquid on the perforated plate becomes larger than necessary, causing an increase in pressure loss. Further, if the static liquid depth becomes large, it may cause weaving and partial foaming, which may lead to a decrease in efficiency. Therefore, if the perforation speed is increased to eliminate these factors, the pressure loss will also increase, creating a vicious cycle, resulting in an increase in power consumption, resulting in an expensive perforated plate tray tower.

多孔板上の静液深を極力小さくするには、上記の式より
出口堰を長くすればよいわけである。従来技術において
出口堰を長くするには、一方法より2方流と多方流にす
ればよいが、多方流にすると多孔板上で実際に気液接触
を行うための有効面積が多方流のための溢流管の犠牲と
なって減少し、ひいては塔径の増加、偏流による効率の
低下の原因となり得策とは言えない。したがって、これ
らの問題を回避して気液接触装置を製作し、操作するこ
とが重要な課題である。
In order to minimize the depth of static liquid on the perforated plate, the outlet weir should be made longer according to the above equation. In the conventional technology, in order to lengthen the outlet weir, one method is to use two-way flow and multi-directional flow, but when using multi-directional flow, the effective area for actually performing gas-liquid contact on the perforated plate becomes multi-directional. This is not a good idea as it will cause the increase in column diameter and decrease in efficiency due to uneven flow. Therefore, it is an important challenge to fabricate and operate gas-liquid contact devices that avoid these problems.

第1図ないし第4図に従来技術の多孔板の構造を示す。1 to 4 show the structure of a conventional perforated plate.

多孔板構造は構造上旋回流と十字流とに分別される。ま
た、多孔板上を流れる液体の流路の数より1方流、2方
流、4方流と呼ばれ、これらが多く実用に供されるが、
ここでは多孔板上に液流路が二つある2方流について説
明を行うことにする。図において、棚段塔lに設けた溢
流管2より落下してきた液は入口堰5で溢流管2を液シ
ールした後、入口堰5を乗り越え多孔板8上に流入する
。流入した液は、多孔板8の孔9を上昇する気体と気液
接触しつつ入口堰5から出口堰6に向って多孔板8上を
横切る。出口堰6を通過した液は再び次の溢流管2内に
落下し、上記と同じ過程を経て精留、蒸留、吸収などの
操作を行う。3は心金である。
The perforated plate structure is structurally divided into swirl flow and cross flow. Also, depending on the number of channels of liquid flowing on a perforated plate, they are called one-way flow, two-way flow, and four-way flow, and many of these are used in practical use.
Here, we will explain a two-way flow in which there are two liquid flow paths on a perforated plate. In the figure, the liquid falling from the overflow pipe 2 provided in the tray column l seals the overflow pipe 2 with the inlet weir 5, and then flows over the inlet weir 5 onto the perforated plate 8. The inflowing liquid crosses the porous plate 8 from the inlet weir 5 toward the outlet weir 6 while coming into gas-liquid contact with the gas rising through the holes 9 of the porous plate 8. The liquid that has passed through the outlet weir 6 falls again into the next overflow pipe 2 and undergoes operations such as rectification, distillation, and absorption through the same process as above. 3 is the deposit.

上述したように、多孔板上の静液深はh=K(Q/b)
2′で与えられ、同一条件に対して出口増長さが大きい
程静液深が小さくなり、圧力損失が小さ鳴なる。しかし
、処理量が大きく塔径の大きい多孔板棚段塔においては
、従来技術である旋回流、十字流は出口堰の長さに限界
があり、やむなく必要以上の静液深を採用せざるを得な
い。また、出口増長さを大きくするため多方流にすれば
多孔板上の溢流管の割合が大きくなり、結果的には塔径
の増大をひき起こす。
As mentioned above, the static liquid depth on the perforated plate is h=K(Q/b)
2', and for the same conditions, the larger the outlet length, the smaller the static liquid depth and the smaller the pressure loss. However, in perforated tray towers with large throughput and large column diameter, the conventional techniques of swirl flow and cross flow have a limit to the length of the outlet weir, and it is unavoidable to adopt a static liquid depth greater than necessary. I don't get it. Furthermore, if multidirectional flow is used to increase the length of the outlet, the proportion of overflow pipes on the perforated plate will increase, resulting in an increase in the column diameter.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の問題点に鑑みなされたも
ので1、その目的とするところは、圧力損失がかさく、
運転操作範囲の広い優れた溢流管を有する多孔板棚段塔
における気液接触装置を提供することにある。
The present invention was made in view of the above-mentioned problems of the prior art, and its purpose is to reduce pressure loss,
An object of the present invention is to provide a gas-liquid contact device in a perforated plate column having an excellent overflow pipe with a wide range of operation.

〔発明の概要〕[Summary of the invention]

本発明は、塔内に備えである心金を溢流管の一部として
利用し、外周側に設けられた溢流管と心金とを連結する
といを多孔板と多孔板の間に取り付けて多孔板棚段を構
成したものである。
The present invention utilizes a mandrel provided in the column as a part of the overflow pipe, and attaches a gutter between the perforated plates to connect the overflow pipe and the mandrel provided on the outer periphery side. It consists of board shelves.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る莞液接触装置の一実施例を第5,6
図によって詳細に説明する。図において、lは多孔板棚
段塔で、その中心部に心金3を有し多孔板8を複数個内
蔵している。5は入口堰で、溢流管を兼用している心金
3を液封する役割をする。4は多孔板棚段塔l外周部に
適数設けられた溢流管2と心金3とを連結するといであ
り、多孔板8と多孔板8の間に取り付けられる6、6は
出口堰、7は仕切板、9は多孔板8の孔、lOは流出口
である。
Hereinafter, one embodiment of the liquid contact device according to the present invention will be described in fifth and sixth embodiments.
This will be explained in detail using figures. In the figure, l denotes a perforated plate tray tower, which has a mandrel 3 in its center and houses a plurality of perforated plates 8. Reference numeral 5 denotes an inlet weir, which serves to liquid-seal the mandrel 3, which also serves as an overflow pipe. Reference numeral 4 connects the overflow pipes 2, which are provided in an appropriate number on the outer periphery of the perforated plate tower l, with the mandrel 3, and 6, 6 installed between the perforated plates 8 and 8 is an outlet weir. , 7 is a partition plate, 9 is a hole in the perforated plate 8, and lO is an outlet.

心金3内に落下してきた液は、心金3の外周の数個所の
流出口10より入口堰5を越えて多孔板8上に流入する
。多孔板8上では、多孔板8の孔9より上昇する気体と
気液接触を行い、物質移動が行われる。多孔板8上を横
切った液は、出口堰6を経て溢流管2に流入する。更に
、溢流管2と心金3とを連絡するとい4によって再び心
金3内に流入する。心金3は溢流管を兼用しており、心
金3内に流入した液は再び次段の多孔板8に上記と同様
な方法で流入し、物質移動を行う。
The liquid that has fallen into the mandrel 3 flows over the inlet weir 5 and onto the perforated plate 8 from several outlets 10 on the outer periphery of the mandrel 3. On the porous plate 8, gas-liquid contact occurs with the gas rising from the holes 9 of the porous plate 8, and mass transfer occurs. The liquid that has crossed the perforated plate 8 flows into the overflow pipe 2 via the outlet weir 6. Furthermore, the overflow pipe 2 and the mandrel 3 are connected through a gutter 4, which allows the water to flow into the mandrel 3 again. The mandrel 3 also serves as an overflow pipe, and the liquid that has flowed into the mandrel 3 flows again into the next-stage perforated plate 8 in the same manner as described above, thereby performing mass transfer.

上記のような構成および作用により次の効果を奏するこ
とができる。すなわち、従来の次回流および十字流に比
較して構造上出口堰の長さを大きくすることができるた
め、多孔板上の静液深を極力小さくすることができる。
The configuration and operation described above can provide the following effects. That is, since the length of the exit weir can be structurally increased compared to the conventional next flow and cross flow, the depth of static liquid on the perforated plate can be made as small as possible.

この多孔板上の静液深が小さくなることにより、圧力損
失の減少と共に多孔板のウィービング、部分発泡の要因
も少な4なる。言い換えれば、圧力損失が低く運転操作
範囲を広々とることができる効果がある。また、といが
多孔板と多孔板の間に設置されているため、多孔板上の
有効面積を失うことなく気液接触が有効に行える。一方
、塔径が大きくなるに従い多孔板の強度の問題が大きな
問題となるが、本構造では塔の中心に心金を有している
ため心金が補強の一部となり、多孔板の大形化に対して
数個所の簡単な補強の追加で光分な強度を維持すること
ができる。
By reducing the depth of the static liquid on the perforated plate, the pressure loss is reduced and the factors of weaving and partial foaming of the perforated plate are also reduced. In other words, the pressure loss is low and the operating range can be widened. In addition, since the thorns are installed between the perforated plates, gas-liquid contact can be carried out effectively without losing the effective area on the perforated plates. On the other hand, as the tower diameter increases, the problem of the strength of the perforated plate becomes a big problem, but since this structure has a mandrel in the center of the tower, the mandrel becomes part of the reinforcement, and the large perforated plate Optical strength can be maintained by simply adding reinforcement in a few places.

第7図および第8図に本発明の他の実施例を示す。この
実施例は溢流管2を多孔板棚段塔lの外周に沿って配置
したものである。本実施例によれば、第5,6図の実施
例より出口堰6の長さをさらに大き曵することができ、
溢流管2の面積も大きくとることができる効果がある。
Other embodiments of the present invention are shown in FIGS. 7 and 8. In this embodiment, an overflow pipe 2 is arranged along the outer periphery of a perforated tray column 1. According to this embodiment, the length of the outlet weir 6 can be further increased compared to the embodiments shown in FIGS. 5 and 6.
This has the effect that the area of the overflow pipe 2 can also be increased.

特に、第8図における多孔板構造においては、溢流管2
が全外周に沿って設置され、とい4の数に応じて仕切板
11を設けて構成されているため、出口堰6の長さを充
分にとることができ、塔径が特に大きい場合、または静
液深を非常に小さくする必要がある場合、特に有効であ
る。なお、本発明の実施例においてはといの数を3個と
したものが示されているが、といの数が変わっても本発
明に含まれるものである。
In particular, in the perforated plate structure shown in FIG.
are installed along the entire outer periphery, and partition plates 11 are provided according to the number of gutters 4, so that the outlet weir 6 can be sufficiently long, and when the tower diameter is particularly large, or This is particularly useful when the static liquid depth needs to be very small. In the embodiments of the present invention, the number of troughs is three, but the present invention includes variations in the number of troughs.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明基こよれば、圧力損失が小さく
、運転操作範囲を広(とることができ、気液接触を有効
に行うことができる効果がある。
As described above, according to the present invention, the pressure loss is small, the operating range can be widened, and gas-liquid contact can be carried out effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図および第3,4図は、それぞれ従来技術であ
る旋回流および十字流の多孔板構造を示す説明図、第5
図は、本発明による気液接触装置の一実施例を示す平面
図、第6図はその縦断正面図、第7,8図は本発明によ
る気液接触装置のそれぞれ他の実施例を示す平面図であ
る。 l・・・・・・多孔板棚段塔、2・・・・・・溢流管、
3・・・・・・心金、4・・・・・・とい、5・・・・
・・入口堰、6・・・・・・出口堰、7・・・・・・仕
切板、8・・・・・・多孔板、9・・・・・・多孔板の
孔、−2” 1凶 を 才2図 才3Z 迩′5図 オ6図 オフ図
Figures 1.2 and 3 and 4 are explanatory diagrams showing perforated plate structures for swirl flow and cross flow, respectively, which are conventional techniques, and Figure 5.
The figure is a plan view showing one embodiment of the gas-liquid contact device according to the present invention, FIG. 6 is a longitudinal sectional front view thereof, and FIGS. 7 and 8 are plan views showing other embodiments of the gas-liquid contact device according to the present invention. It is a diagram. 1... Perforated plate plate tower, 2... Overflow pipe,
3・・・・・・Single money, 4・・・・・・, 5.・・・
...Inlet weir, 6...Outlet weir, 7...Partition plate, 8...Perforated plate, 9...Perforated plate hole, -2" 1 evil figure 2 figure figure 3Z 迩'5 figure O 6 figure off figure

Claims (1)

【特許請求の範囲】 1、 内部に複数段の多孔板棚段な有し、上方より液体
を流下させ下方より気体を上昇させて、前気多孔板棚段
上で気液の接触を行わしめる気液接触装置において、棚
段塔内の心金な溢流管の一部とし、少なくとも1個以上
の多孔板外周側に設けられた溢流管と少なくとも1個以
上の心金とを連結するといを多孔板と多孔板の間に取り
付けたことを特徴とする気液接触装置。 2、前記溢流管を棚段塔の外周に沿って部分的に設置し
た特許請求の範囲第1項記載の気液接触装置。 3、r:記溢流管を棚段塔の外周に沿って全周設置した
特許請求の範囲第1項記載の気液接触装置。
[Scope of Claims] 1. It has a plurality of perforated plate shelves inside, and allows liquid to flow down from above and gas to rise from below, thereby bringing the gas and liquid into contact on the perforated plate plates. In a gas-liquid contact device, it is a part of the mandrel overflow pipe in the tray column, and connects the overflow pipe provided on the outer periphery of at least one or more perforated plate with at least one or more mandrel. A gas-liquid contact device characterized in that a trough is attached between perforated plates. 2. The gas-liquid contact device according to claim 1, wherein the overflow pipe is partially installed along the outer periphery of the plate column. 3.r: The gas-liquid contact device according to claim 1, wherein the overflow pipe is installed all around the outer periphery of the plate column.
JP59081726A 1984-04-25 1984-04-25 Gas-liquid contact apparatus Granted JPS59209606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081726A JPS59209606A (en) 1984-04-25 1984-04-25 Gas-liquid contact apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081726A JPS59209606A (en) 1984-04-25 1984-04-25 Gas-liquid contact apparatus

Publications (2)

Publication Number Publication Date
JPS59209606A true JPS59209606A (en) 1984-11-28
JPS643521B2 JPS643521B2 (en) 1989-01-23

Family

ID=13754414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081726A Granted JPS59209606A (en) 1984-04-25 1984-04-25 Gas-liquid contact apparatus

Country Status (1)

Country Link
JP (1) JPS59209606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022826A1 (en) * 1995-01-26 1996-08-01 Bertin & Cie Device for contacting a gas with a liquid, particularly for cleaning a gas
CN103977590A (en) * 2014-05-26 2014-08-13 万华化学集团股份有限公司 Gas-liquid mass transfer element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022826A1 (en) * 1995-01-26 1996-08-01 Bertin & Cie Device for contacting a gas with a liquid, particularly for cleaning a gas
FR2729868A1 (en) * 1995-01-26 1996-08-02 Bertin & Cie DEVICE FOR CONTACTING A GAS AND A LIQUID, PARTICULARLY FOR THE PURIFICATION OF GAS
CN103977590A (en) * 2014-05-26 2014-08-13 万华化学集团股份有限公司 Gas-liquid mass transfer element

Also Published As

Publication number Publication date
JPS643521B2 (en) 1989-01-23

Similar Documents

Publication Publication Date Title
US3994999A (en) Combination wet-dry cooling tower
JPH02277501A (en) Dropping part-tray assembly
US3589689A (en) Vapor-liquid contact process
SU704640A1 (en) Column for heat- and mass-exchange processes
US2916264A (en) Heat exchanger
JPS59209606A (en) Gas-liquid contact apparatus
CN210400126U (en) Falling film uniform distribution device capable of improving film distribution and exhaust performance
JPH0616802B2 (en) Gas-liquid contact tower
US20030086847A1 (en) Flood-limiting devices for gas-liquid reactors
CN206642511U (en) Differential submersible gas wash tower
SU1069848A1 (en) Regular packing for heat mass-exchange and reaction processes
CN213492072U (en) High-efficient rectifying column tower board subassembly
SU1175519A1 (en) Contact tray for mass-transfer apparatus
US1027184A (en) Cooling-tower.
JPS6159761B2 (en)
SU1416153A1 (en) Mass-exchange apparatus
CN217312016U (en) Composite tower plate structure
RU2124939C1 (en) Method of contacting gas and liquid and apparatus for its embodiment
ES8407575A1 (en) Air stream entrained water eliminator for cross flow cooling tower.
SU997705A1 (en) Mass-exchange tray
JPS6039938B2 (en) Rectification column for liquefied gas
SU1151257A1 (en) Contact tray for heat-mass-transfer apparatus
SU1041137A1 (en) Heat mass exchange apparatus
SU789124A1 (en) Heat-exchange apparatus
SU1088739A1 (en) Plate for mass-exchange apparatus