JPS5920954B2 - Waste heat recovery method - Google Patents

Waste heat recovery method

Info

Publication number
JPS5920954B2
JPS5920954B2 JP53015045A JP1504578A JPS5920954B2 JP S5920954 B2 JPS5920954 B2 JP S5920954B2 JP 53015045 A JP53015045 A JP 53015045A JP 1504578 A JP1504578 A JP 1504578A JP S5920954 B2 JPS5920954 B2 JP S5920954B2
Authority
JP
Japan
Prior art keywords
heat transfer
air
temperature
heat
salt mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53015045A
Other languages
Japanese (ja)
Other versions
JPS53122609A (en
Inventor
アルフレツド・ブル−ン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Hydrotherm Corp
Original Assignee
American Hydrotherm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Hydrotherm Corp filed Critical American Hydrotherm Corp
Publication of JPS53122609A publication Critical patent/JPS53122609A/en
Publication of JPS5920954B2 publication Critical patent/JPS5920954B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/22Arrangements of heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は廃熱回収、特に高温ガスから熱を回収する方法
及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to waste heat recovery, and in particular to a method and apparatus for recovering heat from hot gases.

熱交換は、高温または低温の処理条件の如何によらず本
質的にすべての処理作動の重要な面をなす。
Heat exchange is an important aspect of essentially all processing operations, whether hot or cold processing conditions.

通常、経済的には、熱伝達装置を処理流にだいし効果的
に利用することである。
Usually, economics is to utilize heat transfer devices more effectively in the process stream.

廃熱回収は一般に、基本的熱処件の地熱の回収に関し、
例えば、蒸気発生装置において、通常、温度レベルが蒸
気発生には不十分であるが、顕熱が蒸気ドラムに送られ
る水の予熱等加熱の仕事のため得られるレベルである装
置に対流区分がある。
Waste heat recovery generally refers to the recovery of geothermal heat for basic heat treatment.
For example, in a steam generator, there is usually a convection section in the device where the temperature level is insufficient for steam generation, but where sensible heat is available for heating work such as preheating of the water sent to the steam drum. .

例えば、キュポラの運転等、熱は回収されても効果的に
回収されない処理作動もある。
For example, there are some process operations, such as cupola operations, in which heat may be recovered but not effectively recovered.

典型的な鋳造作業において、コークス、石灰岩及び、銑
鉄、〈づ銑等金域部分が装入ドアを介してキュポラ内に
導入される。
In a typical casting operation, coke, limestone, and metal parts such as pig iron and pig iron are introduced into a cupola through a charging door.

低温噴射空気が底部の羽目を介して導入されコークスを
燃焼する媒体となる。
Cold injection air is introduced through the bottom slats and serves as a medium for burning the coke.

さらに空気は排気ファンによって装入ドアを介して導入
される。
Furthermore, air is introduced through the charging door by means of an exhaust fan.

装入ドアの上方に設けたアフターバーナは床を離れる一
酸化炭素の点火源となり、キュポラが生産状態にないと
きキュポラに熱を供給する。
An afterburner located above the charging door provides an ignition source for carbon monoxide leaving the floor and provides heat to the cupola when it is not in production.

噴射空気、装入ドア空気及びアフターバーナ空気として
キュポラに入る空気は通常低温で、アフターバーナで燃
料を消費してまたはキュポラの低部でコークスを消費す
ることによって、作動温度に加熱される。
The air entering the cupola as injection air, charge door air and afterburner air is normally cold and heated to operating temperature by consuming fuel in the afterburner or by consuming coke in the lower part of the cupola.

98f)〜1204℃(180C〜2200°F)の温
度の高温ガスはキュポラの頂部から引き抜かれ、一般に
、垂直方向に配置した水スクラバに通されて、ガスは、
固形物捕収器、例えば、静電集じん器またはバグハウス
内に導入される前に(204〜260℃(406′〜5
00°F)の温度に冷却される。
Hot gases at temperatures between 98F) and 1204C (180C to 2200F) are withdrawn from the top of the cupola and passed through a generally vertically oriented water scrubber, where the gases are
Before being introduced into a solids collector, e.g. an electrostatic precipitator or a baghouse,
00°F).

直接水冷及び洗浄により、大量の蒸気が発生し下流装置
へのガス量を増大する。
Direct water cooling and cleaning generates large amounts of steam and increases the amount of gas to downstream equipment.

少数の工場には、伝熱式または蓄熱式の熱回収装置が設
置されている。
A small number of factories have heat transfer or storage heat recovery equipment installed.

伝熱式としては、高価な高合金熱交換機を使用し、噴射
空気を加熱して高温ガスを冷却する。
The heat transfer type uses an expensive high-alloy heat exchanger to heat the injection air and cool the hot gas.

この方式の熱交換機はきわめて高価であるが、これは、
高い金属湯度(981〜1204℃)(1800°F〜
2200°F)に耐えるのに必要な高合金構造及び、高
温ガスの低温空気にたいする熱伝達係数が悪いことによ
る多量の熱伝達面のためである。
This type of heat exchanger is extremely expensive;
High metal temperature (981-1204℃) (1800℃~
This is due to the high alloy construction required to withstand temperatures (2200°F) and the large amount of heat transfer surface due to the poor heat transfer coefficient of hot gas to cold air.

伝熱式は、日常の開始及び停止時に生ずる周囲湿度から
1093℃(2000°F)範囲の変動と共に1日に1
4回も生ずる(70!′〜1093℃) (1306)
から2000°F)の大きな温度変動がよくあるので、
機械的故障を生ずる。
The heat transfer system operates once per day with fluctuations ranging from ambient humidity to 1093°C (2000°F) during daily start and stop times.
Occurs 4 times (70!'~1093℃) (1306)
Large temperature fluctuations (from 2000°F to 2000°F) are common;
resulting in mechanical failure.

蓄熱式では、高価なメツシュ、ホイールが回転し、交互
に高温ガスによって加熱され、低温空気によって冷却さ
れる。
In a regenerative system, an expensive mesh or wheel rotates and is alternately heated by hot gas and cooled by cold air.

この方式の熱交換機はきわめて大型で、低温空気により
高温ガスからの水分と二酸化いおうを凝縮する場合密封
の破損及び腐食によりかなりの保守と工場閉鎖の原因に
なる。
This type of heat exchanger is very large and causes significant maintenance and plant closures due to seal failure and corrosion when the cold air condenses moisture and sulfur dioxide from the hot gases.

これら伝熱式及び蓄熱式の両方式による廃熱回収装置は
、プラントが作動温度、すなわち、982〜1093℃
(180θから20000F)(ガス温度)で多量の噴
射空気を必要とするときのみに効果的に働く。
These heat transfer type and heat storage type waste heat recovery devices operate at the operating temperature of the plant, that is, 982 to 1093 degrees Celsius.
It works effectively only when a large amount of injection air is required at (180θ to 20000F) (gas temperature).

無負荷中、アフターバーナがキュポラを約704℃(1
300°F)に保持し、噴射空気を必要としないときに
、少量の熱が回収される。
During no load, the afterburner heats the cupola to approximately 704°C (1
300°F) and no injection air is required, a small amount of heat is recovered.

無負荷時間は一日に8時間またはせいぜい12時間であ
る。
The unloaded time is 8 hours or at most 12 hours per day.

対応する溶融時間は8時間または4時間にすぎず、有効
熱回収時間は1日に8ないし4時間である。
The corresponding melting time is only 8 or 4 hours, and the effective heat recovery time is 8 to 4 hours per day.

一般に、このような装置は、燃料を節減するため、燃焼
空気を予熱するのに必要な熱回収に限られていた。
Generally, such devices have been limited to the heat recovery necessary to preheat the combustion air to save fuel.

燃料油の燃焼によると処理作業によっては許されないよ
うなよごれた、まt〕はすすでよごれた排ガスを発生す
るので、ガス燃焼補助装置を必要とする処理作業もある
Some processing operations require gas combustion auxiliary equipment because combustion of fuel oil produces a dirty, soot-stained exhaust gas that is unacceptable for some processing operations.

以上、簡単に述べたように、熱交換機は、普通の熱伝達
媒体全使用して種々の廃熱処理に使用されていた。
As briefly mentioned above, heat exchangers have been used for various waste heat treatments using all common heat transfer media.

米国特許第3,426,733号によれば、閉ループ装
置を使用し、共融塩混合物、芳香族熱伝達油、テトラク
ロロビフェニル化合物等の熱伝達流体により熱を回収す
るが、このような装置は閉ループであるため固有の問題
点があった。
U.S. Pat. No. 3,426,733 discloses the use of closed-loop devices to recover heat with heat transfer fluids such as eutectic salt mixtures, aromatic heat transfer oils, and tetrachlorobiphenyl compounds; Since it is a closed loop, it has its own problems.

米国特許第2,910,244号には、中間熱伝達媒体
として溶融塩混合物を使用して吸熱化学反応を行う方法
及び装置が開示されている。
U.S. Pat. No. 2,910,244 discloses a method and apparatus for carrying out endothermic chemical reactions using molten salt mixtures as intermediate heat transfer media.

本発明の上記及び他の目的は、268〜1372℃(5
0θ〜2500°F)の温度の排ガスまたは廃ガスを発
生するキュポラの運転等の処理作業に中間熱伝達媒体と
して例えばカリウム塩とナトリウム塩からなる共融塩溶
融物を使用する熱交換装置によって達成される。
The above and other objects of the present invention are as follows:
Achieved by heat exchange equipment that uses a eutectic salt melt, e.g., consisting of potassium and sodium salts, as an intermediate heat transfer medium for process operations such as the operation of cupolas producing waste gases or waste gases at temperatures between 0 theta and 2500 degrees Fahrenheit. be done.

他の実施例において、本発明の目的は、処理作業に中間
熱伝達媒体を利用する少なくとも2基の熱交換装置を使
用して達成される。
In other embodiments, the objects of the invention are achieved using at least two heat exchange devices that utilize intermediate heat transfer media for processing operations.

このような装置によれば、熱交換機は、高価な高合金構
造材料の代りに、普通の構造材料を使用して製作でき、
さらに、熱は、第1実施例について説明されているよう
な単一中間熱伝達媒体を使用する場合よりもかなり多く
回収することができる。
With such a device, the heat exchanger can be fabricated using ordinary construction materials instead of expensive high-alloy construction materials;
Furthermore, heat can be recovered significantly more than when using a single intermediate heat transfer medium as described for the first embodiment.

本発明をさらに明確に理解するため、夫々略系銑線図を
示す添付図面を参照して典型的な実施例を以下説明する
For a clearer understanding of the invention, exemplary embodiments will now be described with reference to the accompanying drawings, each of which shows a schematic pig diagram.

第1図には、円筒形キュポラが符号10で総括的に示さ
れ、このキュポラは半球状上蓋14を備える容器12と
、装入ドア16と、羽口18と、符号20で総括的に示
す溶融鉄引抜き組立体とより成る。
In FIG. 1, a cylindrical cupola is indicated generally at 10, which includes a vessel 12 with a hemispherical top 14, a charging door 16, a tuyere 18, indicated generally at 20. Consists of a molten iron drawing assembly.

容器には噴射熱風管路22と、装入ドア熱風管路24と
、アフターバーナ管路28とを備え、装入ドアは管路2
6により外部に開口している。
The container is equipped with a jet hot air line 22, a charging door hot air line 24, and an afterburner line 28, and the charging door is connected to line 2.
6 opens to the outside.

容器12の上部には、符号34で総括的に示す熱回収装
置の熱交換機32と流体連通ずる渡りダクト30を備え
ている。
The upper portion of the vessel 12 is provided with a crossover duct 30 in fluid communication with a heat exchanger 32 of a heat recovery system, indicated generally at 34.

熱回収装置34はまた塩槽36と熱使用装置38とを備
えている。
The heat recovery device 34 also includes a salt bath 36 and a heat use device 38.

共融塩溶融物を保持し、該共融塩と反応しない材料で作
った。
It was made of a material that held the eutectic salt melt and did not react with the eutectic salt.

塩槽36はこの槽36に取付けられたポンプ42の吸込
側と流体連通しており、その■流側は導管44によって
熱交換機32の管すなわち胴側と連通している。
The salt tank 36 is in fluid communication with the suction side of a pump 42 attached to the tank 36, and its flow side is connected by a conduit 44 to the tube or shell side of the heat exchanger 32.

熱交換機32の液体側の出口は導管46によって熱使用
装置38と流体連通し、一方、装置38は導管48によ
って流体流れ連通している。
The liquid side outlet of heat exchanger 32 is in fluid communication with heat use device 38 by conduit 46, while device 38 is in fluid flow communication by conduit 48.

塩槽36は導管50を備えて運転休止させるが、これに
ついては以下で詳述する。
Salt bath 36 is provided with conduit 50 to take it out of service, as will be discussed in more detail below.

前述のように、熱使用装置は、管路22,24及び28
を流れるガスを予熱する熱交換機、空間加熱を行う蒸気
発生装置または、電気才たは圧搾ガス冷媒を発生する蒸
気タービンを備えている。
As previously mentioned, the heat-using devices include conduits 22, 24 and 28.
It is equipped with a heat exchanger that preheats the gas flowing through it, a steam generator that heats the space, or a steam turbine that generates electric or compressed gas refrigerant.

作動を説明すると、熱回収装置34はその中間熱流体に
より、高温ガスから熱を回収し、溶融及び無負荷運転中
に貯熱し、さらに、噴射空気、バーナ空気及び装入ドア
空気を加熱したり、塩中の蒸気を蒸気発生熱交換機に発
生したり等種々の方法で熱を利用するために使用される
In operation, the heat recovery device 34 uses its intermediate thermal fluid to recover heat from the hot gas, store it during melting and no-load operation, and heat the injection air, burner air, and charging door air. It is used to utilize heat in various ways, such as by generating steam in the salt in a steam generating heat exchanger.

冬期には、塩基は最低に設定され熱を最大量回収し、発
生蒸気は工場または隣接事務所及び住居の空間暖房に使
用される。
In winter, the base is set to the lowest setting to recover the maximum amount of heat and the steam produced is used for space heating of the factory or adjacent offices and residences.

夏期には塩基は最高に設定され、噴射空気、バーナ空気
及び装入ドア空気を予熱したり、標準蒸気タービン・発
電機に電気を発生して工場、隣接事務所ならびに住居用
の工場電動機または空調装置を駆動させる。
In the summer, the base is set to its highest setting to preheat the injection air, burner air, and charging door air, and to generate electricity for standard steam turbine generators to power factory motors or air conditioning for the factory, adjacent offices, and residences. Drive the device.

本発明の重要な特徴の1つは、キュポラから回収される
高温ガスが982〜1093℃(1806)〜2000
°F)の時、キュポラの溶融作動により熱伝達流体装置
に熱を貯えかつ、装置が無負荷で、アフターバーナが作
動状態で高温ガスが704℃(1300°F)の時、熱
を拒絶する能力である。
One of the important features of the present invention is that the high temperature gas recovered from the cupola is
The melting action of the cupola stores heat in the heat transfer fluid system when the temperature is 704°C (1300°F) and rejects heat when the system is unloaded, the afterburner is activated and the hot gas is 704°C (1300°F). It is an ability.

典型的な運転は、溶融が30分、空運転が30分、毎日
合計16時間である。
A typical run is 30 minutes melt and 30 minutes dry run for a total of 16 hours each day.

熱回収装置は貯蔵装置として作動するがその際の塩基の
範囲は204〜538℃(400〜1000°F)であ
る。
The heat recovery device operates as a storage device with a base range of 204-538°C (400-1000°F).

低温は熱伝達流体の最大許容温度として選択される最低
安定湯度として設定される。
The low temperature is set as the lowest stable temperature selected as the maximum allowable temperature of the heat transfer fluid.

なお塩温合物の使用により、燃料油により補助燃焼しガ
スとコークスが少なくてすむ。
Furthermore, by using a salt mixture, auxiliary combustion is performed using fuel oil, resulting in less gas and coke.

本発明の他の特徴は高温装入ドア空気を使用することで
ある。
Another feature of the invention is the use of hot charge door air.

装入ドアは通常、キュポラの側面に設けた開口であり、
このキュポラは作動を容易にするため、常時開放してお
り空気をキュポラに流入させる。
The charging door is usually an opening in the side of the cupola;
To facilitate operation, this cupola is always open to allow air to flow into the cupola.

装入ドアの下方の地点または1つ以上の開口を介して装
入ドアのいずれかの側面に空気を添カロして回収装置に
よって加熱される。
Air is added to either side of the charge door at a point below the charge door or through one or more openings and heated by the recovery device.

このような高温空気は、キュポラの下部域に発生する煙
とガスが装入ドアを介しキュポラから去らないようにす
るから、装入ドアに入る低温空気量を減少させる。
Such hot air reduces the amount of cold air entering the charge door because it prevents smoke and gases generated in the lower region of the cupola from leaving the cupola through the charge door.

上昇する煙とガスは、水平方向にキュポラ内に流入する
高温装入ドア空気によって押されまたは誘導されて装入
ドアから離れる。
The rising smoke and gases are pushed or guided away from the charge door by the hot charge door air flowing horizontally into the cupola.

例えば、噴射空気が566.3m37分(標準状態)
(20,000sefm)装入ドア吸込が20.000
scfm 煙道ガス温度が982℃(18000F
)で毎年6000時間、大型キュポラが作動するものと
する。
For example, the injection air is 566.3 m37 minutes (standard condition)
(20,000sefm) Charging door suction is 20,000
scfm Flue gas temperature is 982℃ (18000F
), a large cupola is assumed to operate for 6000 hours each year.

本発明の熱回収装置によれば、煙道ガスを260℃(5
00°F)まで冷却し、回収した熱を使用して、2.9
3 X’ 102KW−hr(100万BtU)につき
平均コスト3ドルのガスとコークス消費量を減じて、年
間100万ドルの節約が実現される。
According to the heat recovery device of the present invention, the flue gas is
00°F) and using the recovered heat, 2.9
Annual savings of $1 million are realized by reducing gas and coke consumption at an average cost of $3 per million BtU.

つぎに第2図には、符号110で総括的に示す円筒形キ
ュポラが示され、とのキュポラは半球状上蓋114を備
えた容器112と、装入ドア116と、羽目118と、
符号120で総括的に示す溶融鉄引抜き組立体とより成
る。
Turning now to FIG. 2, there is shown a cylindrical cupola, indicated generally by the numeral 110, which includes a container 112 with a hemispherical top 114, a charging door 116, a siding 118,
and a molten iron drawing assembly indicated generally at 120.

容器112には高温噴射空気管路122と、装入ドア空
気管路124と、外部に開口する装入ドア通気管路12
6と、アフターバーナ管路128とを備えている。
The container 112 has a hot injection air line 122, a charging door air line 124, and a charging door vent line 12 that opens to the outside.
6 and an afterburner conduit 128.

容器112の上部には、符号136で総括的に示す熱回
収装置の夫々1次及び2次熱交換機132,134と流
体連通する渡りダクト130を備えている。
The upper portion of vessel 112 is provided with a crossover duct 130 in fluid communication with primary and secondary heat exchangers 132, 134, respectively, of a heat recovery system, indicated generally at 136.

熱回収装置136にも(図示せざる)塩槽を備え、溶融
塩は中間熱伝達流体の1つより成る。
Heat recovery device 136 also includes a salt bath (not shown), where the molten salt comprises one of the intermediate heat transfer fluids.

1次熱交換器132は導管140および導管142と1
44を介し夫々熱交換機146,148の管あるいは胴
側と流1体連通している。
The primary heat exchanger 132 is connected to conduits 140 and 142 and 1.
44, they are in fluid communication with the tubes or shell sides of heat exchangers 146, 148, respectively.

熱交換器146と148の1次熱伝達媒体側の出口は夫
々導管150と152によってそして導管154を介し
1次熱交換機132と流体連通している。
The primary heat transfer media side outlets of heat exchangers 146 and 148 are in fluid communication with primary heat exchanger 132 by conduits 150 and 152, respectively, and via conduit 154.

2次熱交換機134は導管156をによってそして導管
158と160を介して夫々熱交換機162と164の
管あるいは胴側と流体連通している。
Secondary heat exchanger 134 is in fluid communication through conduit 156 and with the tube or shell sides of heat exchangers 162 and 164 through conduits 158 and 160, respectively.

熱交換機162と164の出口は夫々導管166と16
8によって流体連通し、これら導管は組合さって導管1
70を介して2次熱交換器134に戻っている。
The outlets of heat exchangers 162 and 164 are connected to conduits 166 and 16, respectively.
8, these conduits are combined into conduit 1
70 and returns to the secondary heat exchanger 134.

被カロ熱流体を含む導管180は導管182によって熱
交換機164と166と流体連通し、熱交換機146の
出口は導管184に通じ、この導管は導管128,12
4及び122に分割されている。
Conduit 180 containing the caloric thermal fluid is in fluid communication with heat exchangers 164 and 166 by conduit 182, with an outlet of heat exchanger 146 leading to conduit 184, which connects conduits 128, 12
4 and 122.

他の被カD熱流体を含む導管186は導管188によっ
て熱交換機162と148に流体連通し、熱交換機14
8の出口は導管190と流体連通している。
Conduit 186 containing another thermal fluid is in fluid communication with heat exchangers 162 and 148 by conduit 188, and heat exchanger 14
The outlet of 8 is in fluid communication with conduit 190.

2次熱交換器134の出口は導管192によって湿式ス
クラバ194に通じ、管路196によって沈殿器198
と排気ファン100とを経て大気に通気している。
The outlet of the secondary heat exchanger 134 is connected by conduit 192 to a wet scrubber 194 and by conduit 196 to a precipitator 198.
The air is vented to the atmosphere through an exhaust fan 100 and an exhaust fan 100.

次表は、噴射空気が226.527713/分 (標準
状態) (8,000sefm)装入ドア吸込が226
.52m3/分(標準状態) (8,000sefm)
で、煙道ガス温度が9.82℃(18000F)で年間
6000時間に及ぶキュポラの運転条件を示す。
The following table shows that the injection air is 226.527713/min (standard condition) (8,000sefm) and the charging door suction is 226.527713/min (standard condition).
.. 52m3/min (standard condition) (8,000sefm)
shows the cupola operating conditions for 6000 hours per year with a flue gas temperature of 9.82°C (18000F).

本発明の第2実施例による熱回収装置では、煙道ガスを
204℃(400°F)寸で冷却し、回収した熱を使用
して蒸気を発生しさらにガスとコークスの消費量を減じ
て年間40万ドルの節約を実現した。
A heat recovery system according to a second embodiment of the invention cools the flue gas to 204°C (400°F) and uses the recovered heat to generate steam, further reducing gas and coke consumption. Achieved annual savings of $400,000.

1次及び2次熱交換機132,134の中間熱伝達媒体
は夫々、塩基合物と水である。
The intermediate heat transfer media of the primary and secondary heat exchangers 132, 134 are a base compound and water, respectively.

次表■は無負荷状態のキュポラの作動条件を示す。The following table ■ shows the operating conditions of the cupola under no-load conditions.

キュポラIは1次及び2次熱交換機において使用した中
間熱伝達油により同様に作動され次表■に示す条件を有
する。
Cupola I was operated in the same way with the intermediate heat transfer oil used in the primary and secondary heat exchangers and had the conditions shown in Table 1 below.

次表■は無負荷条件を示す。The following table ■ shows the no-load conditions.

なお、気流温度は異なるが、排ガス温度と流量は同じで
、その差により燃料条件が変化する。
Note that although the airflow temperature is different, the exhaust gas temperature and flow rate are the same, and the fuel conditions change depending on the difference.

本発明の熱回収装置は、ガス量を大幅に減少するので、
種々の工程に関連する汚染調整装置(すなわち、湿式ス
クラバ、亀気集じん機、バグ・・ウスまたは機械式集じ
ん機)の構成及び保守を著しく改善する。
Since the heat recovery device of the present invention significantly reduces the amount of gas,
Significantly improves the construction and maintenance of pollution control equipment associated with various processes (i.e., wet scrubbers, dust collectors, bugs, or mechanical dust collectors).

湿式スクラバを有する既存の鋳物キュポラにおいて、ス
クラバで急冷する前に煙道ガスを感冷すると水の消費量
はかなり減少する。
In existing cast cupolas with wet scrubbers, water consumption is significantly reduced when the flue gases are cooled before being quenched in the scrubber.

この水の蒸発の減少により装置のファンが処理すべき飽
和ガスの量と重量を著しく減少する。
This reduction in water evaporation significantly reduces the amount and weight of saturated gas that the equipment fan must process.

従って、直接噴霧水冷ではなく熱回収によって、ガスを
に982℃(1800°F)から260℃(500°F
)に冷却することによって流量を31パーセント減少す
る。
Therefore, by heat recovery rather than direct spray water cooling, the gas can be moved from 982°C (1800°F) to 260°C (500°F).
) to reduce the flow rate by 31 percent.

本発明の熱回収装置は次のような多くの利益を有する。The heat recovery device of the present invention has many benefits, including:

(1)針基装置の熱容量が大きいので多量の熱を蓄積、
貯蔵させる。
(1) The needle base device has a large heat capacity, so it accumulates a large amount of heat.
Let it be stored.

回収エネルギの再使用により荷をピークにさせたり、廃
熱源とは異なる使用パターンを存する他の条件を充足す
ることができる。
Reuse of recovered energy can be used to peak loads or satisfy other conditions that have different usage patterns than waste heat sources.

(2)交換機と溶融塩との間の熱伝達係数がきわめて大
きいので、余熱伝達速度はガス対空気熱交換装置の速度
よりもかなり高くなる。
(2) Because the heat transfer coefficient between the exchanger and the molten salt is very large, the residual heat transfer rate is much higher than that of a gas-to-air heat exchanger.

塩フィルム伝達係数はガス対空気熱交換機の空気フィル
ム伝達係数よりも約50倍大きい。
The salt film transfer coefficient is approximately 50 times greater than the air film transfer coefficient of a gas-to-air heat exchanger.

従って所要熱伝達表面積は仕事率が等しいガス対空気交
換機に安する表面積の約半分である。
The heat transfer surface area required is therefore approximately half that required for an equal power gas-to-air exchanger.

(3)上記のように熱伝達係数が大きいので、交換機表
面温度が溶融塩温度の数度内に保たれる。
(3) Since the heat transfer coefficient is large as described above, the exchanger surface temperature is maintained within a few degrees of the molten salt temperature.

高温によって、塩装置交換機の金属表面はガス対空気交
換機の金属表面よりも500度低温になる。
The high temperature causes the metal surfaces of the salt unit exchanger to be 500 degrees cooler than the metal surfaces of the gas-to-air exchanger.

この低い金属温度は構造の経済性及び作動の信頼性に寄
与する。
This lower metal temperature contributes to economy of construction and reliability of operation.

塩装置交換機にはガス対空気交換機に要する高合金の代
りに標準構造材料が使用される。
Standard construction materials are used in salt unit exchangers instead of the high alloys required in gas-to-air exchangers.

(4交換機と塩基度のほぼ均等は循環塩の大きな熱容量
と相まって、煙道ガス温度の急激な変動とは関係のない
交換面が得られる。
(The four exchangers and near equality in basicity, combined with the large heat capacity of the circulating salt, provide an exchange surface that is independent of rapid fluctuations in flue gas temperature.

従って、塩装置交換機は、ガス対空気交換機に共通する
大きな金属温度変動をうけない。
Therefore, salt unit exchangers are not subject to the large metal temperature fluctuations common to gas-to-air exchangers.

(5)塩希釈装置により回収熱の再使用の方法及び速度
についての選択にかなりの融通性を与えている。
(5) The salt diluter provides considerable flexibility in choosing the method and rate of reuse of recovered heat.

この熱は空気の予熱、蒸気の発生、直接加熱等に使用す
ることができる。
This heat can be used for preheating air, generating steam, direct heating, etc.

他の廃熱回収装置にはこのような融通性はない。Other waste heat recovery devices do not have this flexibility.

(6)大鋳造工場における多数のキュポラ等長廃熱源は
単−針基循環装置により作動され、制御、循環及び再使
用装置がきわめて経済的となる。
(6) Multiple cupola isometric waste heat sources in a large foundry are operated by a single-needle base circulation system, making the control, circulation and reuse system extremely economical.

(7)溶融塩は非可燃性かつ非腐食性で、これを使用す
る装置は大気圧と定位とで作動する。
(7) Molten salt is non-flammable and non-corrosive, and equipment using it operates at atmospheric pressure and position.

塩はまた538℃(1000QF)まで熱的に安定して
いる。
The salt is also thermally stable up to 538°C (1000QF).

(8)塩希釈技術(すなわち、熱媒体として使用する溶
融塩の流動性を保持するために停止時に塩に水を加え、
また始動開始にともなって塩を濃縮して定常運転状態に
戻す技術)の採用により、このような開始及び停止作動
中の溶融塩の固化問題が解消する。
(8) Salt dilution techniques (i.e., adding water to the salt at shutdown to preserve the fluidity of the molten salt used as a heat transfer medium;
Furthermore, by adopting a technology that condenses salt at the start of startup and returns it to a steady operating state, the problem of solidification of molten salt during startup and shutdown operations can be resolved.

本発明を以上、キュポラに組合せた熱回収装置の導入に
ついて説明したが、この装置は、金属加工、化学処理ま
たは精製処理等のユニット作動にも使用され、特に、大
気に排出されないうちに除しん装置内で分離される微粉
を含む高温のよごれたガスを発生する処理に有用である
Although the present invention has been described above with reference to the introduction of a heat recovery device in combination with a cupola, this device can also be used to operate units such as metal processing, chemical processing or refining processes, in particular to remove dust before it is released into the atmosphere. Useful for processes that generate hot, dirty gases containing fines that are separated within the equipment.

除しん装置通過前に、高温のよごれたガスは204〜2
60℃(408〜500°F)に冷却しなければならな
いから、本発明の方法及び装置は既存の方法に代り特に
経済的にすぐれている。
Before passing through the dust removal equipment, the high temperature dirty gas is heated to 204~2
Because cooling to 60 DEG C. (408-500 DEG F.) is required, the method and apparatus of the present invention is a particularly economical alternative to existing methods.

さらに、2基以上の熱交換機をタンデム状に配置し、温
度が異なる中間熱伝達流体、たとえば、溶融塩、油及び
水、または溶融塩、油及油等を使用する。
Furthermore, two or more heat exchangers are arranged in tandem, and intermediate heat transfer fluids with different temperatures are used, such as molten salt, oil and water, or molten salt, oil and oil.

熱伝達流体の動作温度は、(温度が通常夫々538℃(
10000F)及び316℃(6000F)の)塩と油
の熱安定性と水の蒸気圧(17,4kg/Cl1L)
(247psia)で通常204℃(4000F)の蒸
気圧により異なる。
The operating temperature of the heat transfer fluid is (temperature is typically 538°C, respectively).
Thermal stability of salts and oils (10000F) and 316°C (6000F) and vapor pressure of water (17.4kg/Cl1L)
(247 psia) and typically varies depending on the vapor pressure at 204°C (4000F).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々、本発明の実施例を示す略系統
線図である。 主要な部分の符号の説明、10,110・・・キュポラ
、12,112・・・容器、14,114・・・半球状
上蓋、16,116・・・装入ドア、18,118・・
・羽目、20,120・・・溶融鉄引抜組立体、30゜
130・・・渡りダクト、32.132.134,14
6゜148.162,164・・・熱交換機、34,1
36・・・熱回収装置、36・・・塩檜、38・・・熱
使用装置、42・・・ポンプ、110・・・排気ファン
、194・・・湿式スクラバ、198・・・沈澱器。
1 and 2 are schematic system diagrams showing embodiments of the present invention, respectively. Explanation of symbols of main parts, 10,110...Cupola, 12,112...Container, 14,114...Semispherical upper lid, 16,116...Charging door, 18,118...
・Panel, 20,120... Molten iron drawn assembly, 30°130... Crossover duct, 32.132.134,14
6゜148.162,164...heat exchanger, 34,1
36... Heat recovery device, 36... Salt cypress, 38... Heat use device, 42... Pump, 110... Exhaust fan, 194... Wet scrubber, 198... Precipitator.

Claims (1)

【特許請求の範囲】 1260℃乃至1372℃の温度の排ガスから熱を回収
する方法において、(イ)間接的熱伝達方式で前記排ガ
スを塩混合物へ通し、(ロ)間接的熱伝達方式で前記の
加熱された塩混合物を熱伝達流体へ通し前記の加熱され
た塩混合物を冷却し、(1)工程(ロ)の冷却された塩
混合物を工程((イ)へ戻すことより成る方法。 2 前記排ガスが982℃乃至1205℃の温度であり
、約204℃乃至260℃の温度に冷却される前記特許
請求の範囲第1項に記載の方法。 3 排ガスがキュポラから発生する排ガスであり、(イ
)前記ガスを間接的熱伝達方式で塩混合物に通し、 (0)前記の7JD熱された塩混合物を間接的熱伝達方
式でキュポラ内にその後導入される空気流に通し、 (・ウ 工櫃→の冷却された塩混合物を工程(→へ戻
す、ことよシなる特許請求の範囲第1項あるいは2項記
載の方法。 4 工程(ロ)の加熱された空気流が、キュポラで必要
な噴射空気、装入ドア空気及びアフターバーナー空気の
要求量を与える特許請求の範囲第3項記載の方法。 5 キュポラが一時停止の状態にあり、且つ排ガスが約
704℃の温度で、前記の空気流がアフターバーナー空
気流を力n熱しつつ引抜かれる特許請求の範囲第3項の
方法。 6 前記の加熱された塩混合物が前記の一時停止中に貯
蔵される前記特許請求の範囲第5項に記載の方法。 7 停止中に希釈剤が前記塩混合物に添加される前記特
許請求の範囲第3項に記載の方法。 8 ユニット作動で発生する260℃乃至1372℃の
湿度の排ガスから熱を回収する方法において、(→間接
熱伝達方式で前記排ガスを、異なる温度で作動する少な
くとも2つの連続熱交換帯域内の中間熱伝達媒体塩へ通
し、(ロ)異なる温度レベルで前記中間伝達流体から熱
を回収し、(・)冷却された中間熱伝達媒体塩を工程(
→に戻すことよシ成る方法。 9 作動温度が高い第1の中間熱伝達媒体塩を第1熱伝
達帯域に通し、作動温度が低い第2の中間熱伝達媒体塩
を次の熱帯域に通す前記特許請求の範囲第8項に記載の
方法。 10前記回収された熱を利用して、前記ユニット作動に
導入される空気を予熱する前記特許請求の範囲第9項に
記載の方法。 11 前記予熱された気流は前記キュポラで必要な噴
射空気、装入ドア空気及びアフターバーナ空気を付与す
る前記特許請求の範囲第10項に記載の方法。 12 前記排ガスは982℃乃至1205℃の温度で、
約204℃乃至260℃の温度に冷却れる前記特許請求
の範囲第11項に記載の方法。 13前記キユポラは一時停止状態にあり、前記排出され
るガスは約704℃の温度で、アフターバーナ気流を加
熱する前記空気流と共に引抜かれる特許請求の範囲第1
2項に記載の方法。
[Scope of Claim] A method for recovering heat from exhaust gas having a temperature of 1260° C. to 1372° C., comprising: (a) passing said exhaust gas through a salt mixture in an indirect heat transfer manner; A method comprising: (1) passing the heated salt mixture of step (b) through a heat transfer fluid to cool said heated salt mixture; and returning the cooled salt mixture of step (b) to step (b). A method according to claim 1, wherein the exhaust gas is at a temperature of 982° C. to 1205° C. and is cooled to a temperature of about 204° C. to 260° C. 3. The exhaust gas is an exhaust gas generated from a cupola; b) passing said gas through the salt mixture in an indirect heat transfer manner; (0) passing said 7JD heated salt mixture in an indirect heat transfer manner through an air stream subsequently introduced into the cupola; The method according to claim 1 or 2, in particular, in which the cooled salt mixture from the box → is returned to the step (→). 4. The heated air stream of step (b) 5. A method according to claim 3 for providing the required quantities of injection air, charge door air and afterburner air. 6. The method of claim 3, wherein the salt mixture is withdrawn under heating from an afterburner air stream. 6. The method of claim 5, wherein said heated salt mixture is stored during said pause. 7. A method according to claim 3, wherein a diluent is added to the salt mixture during shutdown. 8. A method for recovering heat from humid exhaust gases of 260° C. to 1372° C. generated in unit operation. (→ passing said exhaust gas in an indirect heat transfer manner through an intermediate heat transfer medium salt in at least two successive heat exchange zones operating at different temperatures; (b) recovering heat from said intermediate transfer fluid at different temperature levels; Then, (・) cooled intermediate heat transfer medium salt is processed (
The only way to do this is to return to →. 9. According to claim 8, wherein a first intermediate heat transfer medium salt having a higher operating temperature is passed through a first heat transfer zone and a second intermediate heat transfer medium salt having a lower operating temperature is passed to the next heat transfer zone. Method described. 10. The method of claim 9, wherein the recovered heat is used to preheat air introduced into the unit operation. 11. The method of claim 10, wherein the preheated air stream provides the necessary injection air, charge door air and afterburner air in the cupola. 12 The exhaust gas has a temperature of 982°C to 1205°C,
12. The method of claim 11, wherein the method is cooled to a temperature of about 204<0>C to 260<0>C. 13. Claim 1, wherein the cupola is in a suspended state and the exhausted gas is withdrawn at a temperature of about 704° C. together with the air stream heating the afterburner air stream.
The method described in Section 2.
JP53015045A 1977-02-14 1978-02-14 Waste heat recovery method Expired JPS5920954B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76808777A 1977-02-14 1977-02-14
US000000768087 1977-02-14
US81316977A 1977-07-05 1977-07-05
US000000813169 1977-07-05

Publications (2)

Publication Number Publication Date
JPS53122609A JPS53122609A (en) 1978-10-26
JPS5920954B2 true JPS5920954B2 (en) 1984-05-16

Family

ID=27118006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53015045A Expired JPS5920954B2 (en) 1977-02-14 1978-02-14 Waste heat recovery method

Country Status (4)

Country Link
JP (1) JPS5920954B2 (en)
CA (1) CA1108852A (en)
DE (1) DE2805840C2 (en)
GB (1) GB1585748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182754U (en) * 1984-11-07 1986-05-31
JPS61209714A (en) * 1985-03-13 1986-09-18 Nippon Kokan Kk <Nkk> Heat insulating device for steel stock in hot rolling line

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369955A (en) * 1980-06-25 1983-01-25 Park Ki D Cupola furnace system
DE3142860A1 (en) * 1981-10-29 1983-05-11 Italimpianti (Deutschland) Industrieanlagen GmbH, 4000 Düsseldorf "METHOD AND DEVICE FOR PREHEATING"
SE448740B (en) * 1982-03-02 1987-03-16 Skf Steel Eng Ab SET AND DEVICE FOR THE REGENERATION OF COW 712 LAUNDRY BY REDUCING IRON OXIDE WITH REDUCING GAS
DE3503610A1 (en) * 1985-02-02 1986-08-07 Klaus Prof. Dr.-Ing. Dr.-Ing. E.H. 5804 Herdecke Knizia METHOD AND DEVICE FOR GENERATING AND RECOVERING PROCESS HEAT
JPS62224659A (en) * 1986-03-26 1987-10-02 Kawasaki Steel Corp Method for recovering sensible heat of top gas in vertical furnace for refining ferroalloy
DE102006058025A1 (en) 2006-12-07 2008-06-19 Krones Ag Device for generating process heat for a packaging device
CN102679602B (en) * 2012-04-27 2014-04-23 中国电器科学研究院有限公司 Exhaust gas heat recovery and utilization system for surface treatment workshop

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910244A (en) * 1955-09-20 1959-10-27 Pierce John B Foundation Heat transfer method and apparatus
AU423211B1 (en) * 1966-01-06 1972-04-13 Escher Hans Gas extraction system for open top shaft furnaces
US3426733A (en) * 1967-09-19 1969-02-11 Peter Von Wiesenthal Furnace and related process involving combustion air preheating
US3623549A (en) * 1970-08-14 1971-11-30 Smitherm Industries Heat exchange methods and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182754U (en) * 1984-11-07 1986-05-31
JPS61209714A (en) * 1985-03-13 1986-09-18 Nippon Kokan Kk <Nkk> Heat insulating device for steel stock in hot rolling line

Also Published As

Publication number Publication date
JPS53122609A (en) 1978-10-26
CA1108852A (en) 1981-09-15
GB1585748A (en) 1981-03-11
DE2805840A1 (en) 1978-08-17
DE2805840C2 (en) 1986-01-02

Similar Documents

Publication Publication Date Title
US4340207A (en) Waste heat recovery apparatus
US4094148A (en) Thermal storage with molten salt for peaking power
JPH0449164Y2 (en)
US4546603A (en) Coal gasification composite power generating plant
CN102041101B (en) Gasification method with gas waste heat utilization
JPS62503110A (en) Chemical and energy recovery methods
CN106755718B (en) The fume waste heat utilization and dust removal integrated system and technique that pneumatic steelmaking generates
US4720968A (en) Method and apparatus for driving an electrical power plant
JPS5920954B2 (en) Waste heat recovery method
US4257579A (en) Waste heat recovery process and apparatus
JP2007039608A (en) Method and device for utilizing circulating coolant gas of coke dry quenching apparatus
FI86578B (en) FOERFARANDE OCH ANORDNING FOER AVKYLNING AV HETA GASER.
CN107478067A (en) Heat recovery system
US3913315A (en) Sulfur recovery from fluidized bed which heats gas in a closed circuit gas turbine
HU177192B (en) Combined boiler equipment utilizing the heat of flue gas for glass ovens of recuperative system
CN207113635U (en) Heat recovery system
Nicholson Recuperative and regenerative techniques at high temperature
JP3709669B2 (en) Gasification integrated combined power plant
RU2082929C1 (en) Device for cooling and recovery of heat furnace waste gases
JPS61211607A (en) Method and device for recovering heat energy in steam generating system
US4738835A (en) Method of recovering alkali chemicals from flue gases containing alkali metal vapor
CN100397023C (en) Method forrecovering heat quantity carried by yellow phosphorus waste slag and heat quantity produced by reaction tail gas and their comprehensive utilization
RU2067273C1 (en) Method of cooling melting furnace and melting furnace, being cooled
JPS6274009A (en) Method for generating electric power by recovery of pressure from top of blast furnace
JP3008251B2 (en) Method for generating gas for operating a gas turbine in a combined gas / steam power plant and apparatus for implementing the method