JPS59208871A - Manufacture of solid-state image pickup element - Google Patents
Manufacture of solid-state image pickup elementInfo
- Publication number
- JPS59208871A JPS59208871A JP58083549A JP8354983A JPS59208871A JP S59208871 A JPS59208871 A JP S59208871A JP 58083549 A JP58083549 A JP 58083549A JP 8354983 A JP8354983 A JP 8354983A JP S59208871 A JPS59208871 A JP S59208871A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- transfer gate
- mask
- region
- gate region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000012535 impurity Substances 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 54
- 235000012239 silicon dioxide Nutrition 0.000 claims description 27
- 239000000377 silicon dioxide Substances 0.000 claims description 27
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 19
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 claims description 17
- 229920002120 photoresistant polymer Polymers 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 14
- 238000003384 imaging method Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 1
- 150000007513 acids Chemical class 0.000 claims 1
- 230000000873 masking effect Effects 0.000 claims 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical class F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 9
- 239000011574 phosphorus Substances 0.000 abstract description 9
- 238000005530 etching Methods 0.000 abstract description 7
- 238000005468 ion implantation Methods 0.000 abstract description 6
- 230000001590 oxidative effect Effects 0.000 abstract description 6
- 239000006185 dispersion Substances 0.000 abstract 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- -1 boron ions Chemical class 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14831—Area CCD imagers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は固体撮像素子の製造方法に関すイ)。[Detailed description of the invention] The present invention relates to a method for manufacturing a solid-state imaging device.
近年、半導体・集積回路技術の急速な兄達を背景に、固
体撮像素子の開発が強力に推進されている。この固体撮
像素子には画像歪、残像、焼き付きがなく、かつ小型軽
量、低消費電力であることから、家庭用テレビカメラを
中心に、撮像管の代替として実用化されつつある。しか
しながら、近い将来実用化されるであろう高品位テレビ
ジョン・システムに対応するためには、現行の400
X 500程度の画素数ではまた不足であり、またテレ
ビカメラ光学系の小型化や固体撮像素子の歩留り向上の
ためには、チップサイズを現行の%インチ系よりも更に
縮小化する必要がある。この大画素数化およびチップサ
イズの縮小化を実現するためには、フォトリングラフイ
一工程に縮小投影型露光装置を用いることのほかに、製
造プロセス自身を微細化に適した形に改める必要がある
。In recent years, with the rapid advancement of semiconductor and integrated circuit technology, the development of solid-state imaging devices has been strongly promoted. This solid-state image sensor is free from image distortion, afterimages, and burn-in, and is small, lightweight, and consumes low power, so it is being put into practical use as a replacement for image pickup tubes, mainly in home television cameras. However, in order to support high-definition television systems that will be put into practical use in the near future, the current 400
The number of pixels of about 500 x is still insufficient, and in order to miniaturize television camera optical systems and improve the yield of solid-state image sensing devices, it is necessary to further reduce the chip size compared to the current % inch system. In order to achieve this increase in the number of pixels and reduction in chip size, in addition to using a reduction projection exposure system in one step of photolithography, it is necessary to modify the manufacturing process itself to be suitable for miniaturization. There is.
第1図は固体撮像素子の一例を説明するための平面配置
図である。この固体撮像素子はインターライン転送方式
電荷転送撮像素子と呼ばれるもので入射光量に応じた4
5号電荷を蓄積するための光電変換部11と、この光電
変換部11に蓄積された信号電荷を一水平走査周期(フ
ィールドまたはフレーム)ごとに読み出すための転送ケ
ート領域12と、読み出した信号電荷を一水平走査周期
(IH)ごとに垂直方向に転送するための垂直レジスタ
13と、各垂直レジスフの一端に電気的に結合して、信
号電荷を水平方向に転送するための水平レジスタ14と
、この水平レジスタ14からの信号電荷を順次電圧信号
に変換するための出力回路15とから′41へ成されて
いる。FIG. 1 is a plan layout diagram for explaining an example of a solid-state image sensor. This solid-state image sensor is called an interline transfer type charge transfer image sensor, and it
A photoelectric conversion unit 11 for accumulating No. 5 charges, a transfer gate region 12 for reading out the signal charges accumulated in the photoelectric conversion unit 11 for each horizontal scanning period (field or frame), and readout signal charges. a vertical register 13 for transferring the signal charge in the vertical direction every horizontal scanning period (IH); a horizontal register 14 electrically coupled to one end of each vertical register for transferring the signal charge in the horizontal direction; An output circuit 15 for sequentially converting signal charges from the horizontal register 14 into voltage signals is connected to '41.
第2図は第1図に示した撮像素子のA−A’断面図であ
る。ここで説明を簡準にするために本撮像素子はN−チ
ャネルデバイスきする。P型基板半導体16の主面に絶
縁層17を介して垂直レジスタの電荷転送電極18が設
けられている。垂直レジスフ19は基板半導体の導電型
と逆の導電型であるN型層から成る埋込みチャネルで構
成されている。また転送ケート領域20の表面には基板
半導体と同−導電型をもつP型層21が設けられている
。また電荷転送電極18は、垂直レジスタ19および転
送ゲート領域20を被うように配置されている。22は
基板半導体とP−N接合を形成してなる光電変侠部で、
光電変換部22以外は金属層nで光遮蔽されている。FIG. 2 is a sectional view taken along line AA' of the image sensor shown in FIG. Here, to simplify the explanation, the present image sensor is assumed to be an N-channel device. A charge transfer electrode 18 of a vertical register is provided on the main surface of the P-type substrate semiconductor 16 with an insulating layer 17 interposed therebetween. The vertical resistor 19 is constituted by a buried channel made of an N-type layer having a conductivity type opposite to that of the substrate semiconductor. Further, a P-type layer 21 having the same conductivity type as the substrate semiconductor is provided on the surface of the transfer gate region 20. Further, the charge transfer electrode 18 is arranged to cover the vertical register 19 and the transfer gate region 20. 22 is a photoelectric transformer section formed by forming a P-N junction with the substrate semiconductor;
Components other than the photoelectric conversion section 22 are shielded from light by a metal layer n.
才た24は基板不純物濃度が高いチャネルストップ領域
で、各光電変換部22および垂直レジスタ19を分離し
ている。Reference numeral 24 denotes a channel stop region with a high substrate impurity concentration, which separates each photoelectric conversion section 22 and vertical register 19 from each other.
次に第3図〜第6図は第1図および第2図に示した固体
撮像素子を製造するのCご用いられていた従来の工程を
説明するための図で、第1図におけるA−A’断面図を
主要工程ごとに示した。Next, FIGS. 3 to 6 are diagrams for explaining the conventional process used to manufacture the solid-state image sensor shown in FIGS. 1 and 2. A' cross-sectional view is shown for each main process.
まず、第3図に示すように13Ω・儂のP型シリコン基
板16の主表面に酸化性雰囲気中で高温酸化処理するこ
とにより約1600^の二酸化シリコン膜を形成し、既
知の写真蝕刻技術を用いて垂直レジスタ19を形成する
部分の二酸化シリコン膜を除去し、マスク25を形成す
る。次にこのマスク25を用いてリンをイオン注入法に
より選択的に注入した後、再び酸化性雰囲気中で高温酸
化処理することにより該部分に約1600^の二酸化シ
リコン膜を形成する。その後高温処理することにより、
リンを2μm程度の深さにまで拡散させて、垂直レジス
タ19の埋込みチャネルとなるN型層を形成する。First, as shown in FIG. 3, a silicon dioxide film of approximately 1600^ was formed on the main surface of a 13Ω/my P-type silicon substrate 16 by high-temperature oxidation treatment in an oxidizing atmosphere, and then a known photoetching technique was applied. Then, the silicon dioxide film in the portion where the vertical register 19 will be formed is removed using a mask 25. Then, a mask 25 is formed. Next, using this mask 25, phosphorus is selectively implanted by ion implantation, and then high-temperature oxidation treatment is performed again in an oxidizing atmosphere to form a silicon dioxide film with a thickness of about 1600^ in the area. Afterwards, by high temperature treatment,
Phosphorus is diffused to a depth of about 2 μm to form an N-type layer that will become a buried channel of the vertical resistor 19.
次にリン注入のマスクとした二酸化シリコン膜25を弗
酸系のエツチング液で除去した後再び全面を熱酸化し、
主表面の全面に約500にの二酸化シリコン膜を形成す
る。次いでシランおよびアンモニアを用いる既知の方法
により約1100^の窒化シリコン膜26を沈積し、チ
ャネルストップ領域24を形成する表面上の窒化シリコ
ン膜だけを既知のプラズマエツチング法により除去した
後、この窒化シリコン膜26をマスクとしてボロンをイ
オン注入シチャネルストップ領域24を形成する。その
後熱酸化を行なうことにより、窒化シリコン膜26で被
覆されていないチャネルストップ領域24の表面上に約
8000^の二酸化シリコン膜27を形成する(第4図
)。Next, the silicon dioxide film 25 used as a mask for phosphorus implantation was removed using a hydrofluoric acid etching solution, and then the entire surface was thermally oxidized again.
A silicon dioxide film having a thickness of approximately 500 nm is formed over the entire main surface. A silicon nitride film 26 of about 1100^ thickness is then deposited by a known method using silane and ammonia, and only the silicon nitride film on the surface forming the channel stop region 24 is removed by a known plasma etching method. Using the film 26 as a mask, boron ions are implanted to form a channel stop region 24. Thereafter, by performing thermal oxidation, a silicon dioxide film 27 of approximately 8000^ thickness is formed on the surface of the channel stop region 24 not covered with the silicon nitride film 26 (FIG. 4).
次に窒化シリコン膜26を燐酸等のエツチング液で除去
した後、チャネルストップ領域24の表面上の二酸化シ
リコン膜のみを残して、他を弗酸系のエツチング液で除
去し、その後、熱酸化により約100OAの二酸化シリ
コン膜28を形成する。そして既知の写真蝕刻技術を用
いて転送ゲート領域2゜を形成する部分以外をフォトレ
ジスト29で被覆し、このフメ日/シスト29をマスク
としてボロンを二酸化シリコン膜28を介してイオン注
入し、転送ゲート領域20の閾値電圧を制御するP型層
2】を形成する(第5図)。Next, after removing the silicon nitride film 26 with an etching solution such as phosphoric acid, only the silicon dioxide film on the surface of the channel stop region 24 is left, and the rest is removed with a hydrofluoric acid-based etching solution, and then thermal oxidation is performed. A silicon dioxide film 28 of about 100 OA is formed. Then, by using a known photolithographic technique, the area other than the area where the transfer gate region 2 is to be formed is covered with a photoresist 29, and boron ions are implanted through the silicon dioxide film 28 using this mask 29 as a mask, and then transferred. A P-type layer 2 which controls the threshold voltage of the gate region 20 is formed (FIG. 5).
次にP型層21を形成するのに用いたフォトレジスト2
9を除去し、全面に多結晶シリコン膜を既知のシランの
熱分解法によって約6000^沈積し、その後、この多
結晶シリコン膜に導電性を持たせるためにリンを拡散す
る。そして既知の写真蝕刻技術とプラズマエ、チンク法
を用いて電荷転送電極18以外の部分の多結晶シリコン
膜を除去する。Next, the photoresist 2 used to form the P-type layer 21
9 is removed, a polycrystalline silicon film of about 6000^ is deposited on the entire surface by a known silane thermal decomposition method, and then phosphorus is diffused in order to make this polycrystalline silicon film conductive. Then, the polycrystalline silicon film in areas other than the charge transfer electrodes 18 is removed using known photolithographic techniques and plasma etching and tinting methods.
次いで、この′電荷転送電極18を形成する多結晶シリ
コン膜をマスクとして、この多結晶シリコン膜で被覆さ
れていない部分の二酸化シリコン膜28を弗酸系のエノ
ナング液で除去し、その後、再びこの多結晶シリコン膜
をマスクとしてリンを選択的に注入し、光電変換部22
のN型層を形成する(第6図)。Next, using the polycrystalline silicon film forming the charge transfer electrode 18 as a mask, the portions of the silicon dioxide film 28 that are not covered with the polycrystalline silicon film are removed using a hydrofluoric acid-based enonening solution. Phosphorus is selectively implanted using the polycrystalline silicon film as a mask, and the photoelectric conversion section 22
An N-type layer is formed (FIG. 6).
次に電荷転送電極18および光電変換部22の表面上に
熱酸化により約750穴の二酸化シリコン膜を形成した
後、気相生長で約11μ7nのリンカラス膜を生長させ
、絶縁層17を形成する。次いて既知の写真蝕刻技術を
用いて光電変換部22以外を光遮蔽のための金属層23
で被覆する(第2図)。Next, a silicon dioxide film with about 750 holes is formed on the surfaces of the charge transfer electrode 18 and the photoelectric conversion section 22 by thermal oxidation, and then a link glass film of about 11 μ7n is grown by vapor phase growth to form the insulating layer 17. Next, using a known photo-etching technique, a metal layer 23 for shielding parts other than the photoelectric conversion part 22 is formed.
(Figure 2).
このような従来の固体撮像素子の製造方法に従えば、ま
ず最初に垂直レジスタ】9の埋込みチャネルとなるN型
層を形成し、次ζここのN型層に目合わせをして転送ケ
ート領域20のP型層2Iを形成し、次いで再び前記N
型層に目合わせをして光電変換部22(7)N型層を形
成している。このため垂直レジスタ19と光電変換部2
2との形成精度、言い換えれば転送ゲート領域20のチ
ャネル長の形成精度はマスク目金わせ精度によって決定
されることになる。According to the conventional manufacturing method of a solid-state image sensor, an N-type layer is first formed which will become the buried channel of the vertical register 9, and then a transfer gate area is formed by aligning the N-type layer here. 20 P-type layers 2I are formed, and then the N-type layer 2I is formed again.
The N-type layer of the photoelectric conversion section 22 (7) is formed in alignment with the mold layer. Therefore, the vertical register 19 and the photoelectric conversion section 2
In other words, the formation accuracy of the channel length of the transfer gate region 20 is determined by the mask alignment accuracy.
例えば転送ゲート領域20のマスク上のチャネル長を1
5μm1マスク目合わせ精度を±0.5μmとすると、
出来上がりのチャネル長はlO〜2.0μ7nの間でば
らつくことになる。これは転送ケート領域20の閾値電
圧がウェハごとに約3V〜6vの間でばらつくことにな
り、固体撮像素子の動作に大きな支障をきたす。さらに
、転送ケート領域20のP型層21と光電変換部22と
は2回のマスク目金わせ工程を経て形成されるため、マ
スク目金わせ精度を±0.5μm とした場合、最小1
.0μmの重ね合わせの余裕が必吸となる。これに伴い
一画素当りのサイズも必然的に大きくなり、大画素数化
およびチンブザイスのね小化をはかる上で大きな障害と
なる。For example, the channel length on the mask of the transfer gate region 20 is set to 1
Assuming that the alignment accuracy for 5μm 1 mask is ±0.5μm,
The resulting channel length will vary between lO and 2.0μ7n. This causes the threshold voltage of the transfer gate region 20 to vary between approximately 3V and 6V from wafer to wafer, which greatly impedes the operation of the solid-state image sensor. Furthermore, since the P-type layer 21 and the photoelectric conversion section 22 in the transfer gate region 20 are formed through two mask alignment processes, if the mask alignment accuracy is ±0.5 μm, the minimum
.. An overlapping margin of 0 μm is essential. Along with this, the size per pixel inevitably increases, which becomes a major obstacle in increasing the number of pixels and reducing the size of the chimney size.
本発明の目的は上記の欠点を除去し、大画素数化および
チップ→ノイズの縮小化が可能な固体撮像素子の製造方
法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a solid-state image sensor that eliminates the above-mentioned drawbacks and allows for a large number of pixels and a reduction in chip-to-noise.
本発明にすれば、第1の導電型からなる半導体基板上に
マトリックス状に配置され、前記基板と反対の第2の導
電型からなる複数個の光電変換部と、前記第2の導電型
の埋込みチャネルで構成された複数列の電りj転送装置
からなるシフトレジスタ部と、列方向に沿う前記光電変
換部と対応する前記シフトレジスタの間に設けられ、前
記第1の導電型で不純物d度の低い第1の半導体領域か
らなる転送ゲート領域と、前記第1の導電型で不純物濃
度の高い第2の半導体領域からなり、前記光電変換部と
前記シフトレジスタ部を互いに電気的に分離するチャネ
ルストップ領域とて構成される固体撮像素子の製造にお
いて、前記yC市変換部と前記シフトし・シスタ部を窒
化シリコン1漠で被覆した後に該窒化シリコン膜をマス
クとして前記転送ケート領域および前記チャネルストッ
プ領域に前記第1の半導体領域を形成し、前記転送′r
−1−領域をフォトレジストで被覆した後に前記窒化シ
リコン膜および前記フォトレジストをマスクとして前記
チャネルストップ領域に前記第2の半導体領域を形成し
、前記フォトレジストを除去した後に前記窒化シリコン
膜をマスクとして二酸化シリコン膜を形成し、前記窒化
シリコン膜を除去した後に前記二酸化シリコン膜をマス
クとして前記光電変換部および前記シフトレジスタ部に
前記第2の導電型を形成し、次に前記転送ケート領域上
の前記二酸化シリコン膜を除去する工程を具備したこと
を特徴とする固体撮像素子のN漬方法が得られる。According to the present invention, a plurality of photoelectric conversion units are arranged in a matrix on a semiconductor substrate of a first conductivity type, and are of a second conductivity type opposite to the substrate, and a plurality of photoelectric conversion units of a second conductivity type opposite to the substrate, and A shift register section consisting of a plurality of rows of electric power transfer devices constituted by buried channels is provided between the shift register section corresponding to the photoelectric conversion section along the column direction, and the impurity d is of the first conductivity type. a transfer gate region consisting of a first semiconductor region with a low impurity concentration, and a second semiconductor region of the first conductivity type with a high impurity concentration, electrically separating the photoelectric conversion section and the shift register section from each other. In the manufacture of a solid-state image sensor configured as a channel stop region, after covering the yC city conversion portion and the shift/sister portion with silicon nitride, the transfer gate region and the channel are coated using the silicon nitride film as a mask. The first semiconductor region is formed in the stop region, and the transfer 'r
-1- After covering the region with a photoresist, the second semiconductor region is formed in the channel stop region using the silicon nitride film and the photoresist as a mask, and after removing the photoresist, the silicon nitride film is used as a mask. After removing the silicon nitride film, the second conductivity type is formed in the photoelectric conversion section and the shift register section using the silicon dioxide film as a mask, and then the second conductivity type is formed on the transfer gate region. There is obtained a method for soaking a solid-state image sensor in N, characterized by comprising the step of removing the silicon dioxide film.
次に、本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.
説明を簡単にするために本発明の実施例はN−チャネル
デバイスとする。For ease of explanation, the embodiment of the present invention is an N-channel device.
第7図〜第12図は前記本発明の詳細な説明するための
図で、本発明によって製造される固体撮像素子の平面配
置■図は第1図と同一なため、第1図におけるA−A’
断面図を主要工程ごとに示した。7 to 12 are diagrams for explaining the present invention in detail, and since the planar arrangement of the solid-state image sensing device manufactured according to the present invention is the same as that in FIG. 1, A'
Cross-sectional views are shown for each major process.
また第2図〜第6図と同一のものには同一番号を付しで
ある。Components that are the same as those in FIGS. 2 to 6 are designated by the same numbers.
まず、第7図に示すように13Ω・儂のP型シリコン基
板16の主表面に酸化性雰囲気中で高温酸化処理するこ
とにより約1600^の二酸化シリコン膜30を形成し
た後、シランおよびアンモニアを用いる既知の方法によ
り窒化シリコン膜31を沈積する。次に、この窒化シリ
コン膜31上にフォトレジスト32を塗布し、既知の写
真蝕刻技術とプラズマエツチング法を用いてチャネルス
トップ領域24および転送ゲート領域20を形成する部
分の窒化シIJコン膜31を除去する。次いでボロンを
フォトレジスト32をマスクとして加速エネルギー約5
0 KeV、イオン注入ドーズ量的2.0 XIO”〆
12でイオン注入し、転送ゲート領域20の閾値電圧を
制御するP型層21を形成する。このときチャネルスト
7ブ領域24を形成する部分にもP型層21と同じ?A
IfのP型層33が形成される。First, as shown in FIG. 7, a silicon dioxide film 30 of about 1,600^ was formed on the main surface of a 13Ω/my P-type silicon substrate 16 by high-temperature oxidation treatment in an oxidizing atmosphere, and then silane and ammonia were added. A silicon nitride film 31 is deposited using known methods. Next, a photoresist 32 is coated on this silicon nitride film 31, and a portion of the silicon nitride IJ film 31 where the channel stop region 24 and transfer gate region 20 are to be formed is formed using known photolithography and plasma etching techniques. Remove. Next, boron is accelerated with an energy of about 5 using the photoresist 32 as a mask.
Ion implantation is performed at 0 KeV and an ion implantation dose of 2.0 Is it the same as P-type layer 21?A
A P-type layer 33 of If is formed.
次に再び写真蝕刻技術を用いて転送ゲート領域20を形
成する部分のみをフォトレジスト34で覆った後、フォ
トレジスト32と34をマスクとして、ホロンを加速エ
ネルギー約100 KeV 、イオン注入ドーズ量的2
.OxlO”/cIrL”でイオン注入し、基板不純物
濃度が高いチャネルストップ領域24を形成する。Next, using photolithography again, only the portion where the transfer gate region 20 will be formed is covered with a photoresist 34, and then, using the photoresists 32 and 34 as a mask, the holons are accelerated at an energy of about 100 KeV and an ion implantation dose of 2.
.. OxlO''/cIrL'' ions are implanted to form a channel stop region 24 with a high substrate impurity concentration.
なお、このチャネルストップ領域24fこは前工程でP
型層33が形成されていたが、イオン注入ドース゛値が
本工程に比べて一桁小さいため、チャネルストッパーと
しての機能は本工程によって決定される(第8図)。Note that this channel stop region 24f was formed with P in the previous process.
Although a mold layer 33 has been formed, since the ion implantation dose value is one order of magnitude smaller than that in this step, its function as a channel stopper is determined by this step (FIG. 8).
次にチャネルストップ領域24を形成するマスクとして
用いたフォトレジスト32と34を除去した後に、窒化
シリコン膜31をマスクとして熱酸化を有ない、チャネ
ルストップ領域24上および転送ゲート領域20上に約
800OAの二酸化シリコン膜35を形成する(第9図
)。Next, after removing the photoresists 32 and 34 used as masks for forming the channel stop region 24, approximately 800 OA is applied over the channel stop region 24 and transfer gate region 20 without thermal oxidation using the silicon nitride film 31 as a mask. A silicon dioxide film 35 is formed (FIG. 9).
次に窒化シリコン膜31を燐酸等のエツチング液で除去
した後、チャネルストップ領域24および転送ケート領
域20上の二酸化シリコン膜35のみを残して、他の二
酸化シリコン膜30を弗酸系のエツチング液で除去する
。次いで二酸化シリコン膜35をマスクとしてリンをイ
オン注入した後、酸化性雰囲気中で高温酸化処理するこ
とにより約160OAの二酸化シリコン膜36を形成す
る。その後高温処理することにより、前工程でイオン注
入されたリンを約2μmの深さにまで拡散させて、垂直
レジスタ19の埋込みチャネルとなるN型層と光電変換
部22のN型層を同時に形成する。この工程により垂直
レジスタ19と光電変換部22とは所謂セルファライン
で形成されたことになり、従来の製造方法で問題となっ
ていたマスク目金わせ精度不足による転送ゲート領域2
0のチャネル長のばらつきは皆無となる(第10図)。Next, after removing the silicon nitride film 31 with an etching solution such as phosphoric acid, leaving only the silicon dioxide film 35 on the channel stop region 24 and transfer gate region 20, the other silicon dioxide film 30 is removed using a hydrofluoric acid etching solution. Remove with . Next, using the silicon dioxide film 35 as a mask, phosphorous is ion-implanted, and then high-temperature oxidation treatment is performed in an oxidizing atmosphere to form a silicon dioxide film 36 of about 160 OA. After that, by high temperature treatment, the phosphorus ion-implanted in the previous step is diffused to a depth of approximately 2 μm, and an N-type layer that will become the buried channel of the vertical resistor 19 and an N-type layer of the photoelectric conversion section 22 are simultaneously formed. do. Through this process, the vertical register 19 and the photoelectric conversion section 22 are formed by a so-called self-line, and the transfer gate region 2 due to insufficient mask alignment accuracy, which was a problem in the conventional manufacturing method.
There is no variation in the channel length of 0 (FIG. 10).
次に写真蝕刻技術を用いて転送ゲート領域20以外をフ
ォトレジスト37で被覆し、このフォトレジスト37を
マスクとして転送ゲート領域20上の二酸化シリコン膜
35を除去する(第11図)。Next, the area other than the transfer gate region 20 is covered with a photoresist 37 using photolithography, and the silicon dioxide film 35 on the transfer gate region 20 is removed using the photoresist 37 as a mask (FIG. 11).
次に前記フォトレジスト37を除去した後、二酸化シリ
コン膜36を弗葭系のエツチング液で除去し、その後、
熱酸化ζこより約100OAの二酸化シリコン膜38を
形成する。次いで既知のシランの熱分解法によって約6
00OAの多結晶シリコン膜をウェハ全面に沈積し、そ
の後、この多結晶シリコン膜に導電性を持たせるために
リンを拡散する。そして既知の写真蝕刻技術とプラズマ
エツチング法を用いて電荷転送電極■8以外の部分の多
結晶シリコン膜を除去する。次に熱酸化により約75O
Aの二酸化シリコン膜を形成した後、気相生長で約1.
1μ771のリンガラス腺を生長させ、前記二酸化シリ
コン膜35 、38と合わせて絶縁膜17を形成する。Next, after removing the photoresist 37, the silicon dioxide film 36 is removed using a filtrate-based etching solution, and then,
A silicon dioxide film 38 having a thickness of about 100 OA is formed by thermal oxidation ζ. Then, by the known pyrolysis method of silane, about 6
A 00OA polycrystalline silicon film is deposited over the entire wafer, and then phosphorous is diffused to make the polycrystalline silicon film conductive. Then, the polycrystalline silicon film in the area other than the charge transfer electrode (18) is removed using known photolithography and plasma etching. Next, about 75O by thermal oxidation
After forming the silicon dioxide film A, about 1.
A phosphorus gland having a thickness of 1 μ771 is grown, and together with the silicon dioxide films 35 and 38, an insulating film 17 is formed.
次いで既知の写真蝕刻技術を用いて光電に撲部22以外
を光遮蔽のための金属層23で被怪する(第12図)。Next, using a known photo-etching technique, the area other than the photoelectrically affected area 22 is covered with a metal layer 23 for shielding light (FIG. 12).
以上、実施例の説明から明らかなように、本発明によれ
ば固体撮像素子の垂直レジスタと光電変換部および転送
ゲート領域の閾値電圧を制御する不純物層とが7″5T
謂セルフアラインで形成できるため、従来の製造ノj法
で問題上なっていたマスク1」合わぜ梢度不足ζこよる
転送ゲート領域のチャネル長のほらつきは皆無となる。As is clear from the above description of the embodiments, according to the present invention, the impurity layer for controlling the threshold voltage of the vertical register, photoelectric conversion section, and transfer gate region of the solid-state image sensor is 7"5T.
Since it can be formed in a so-called self-aligned manner, there is no fluctuation in the channel length of the transfer gate region due to the insufficient cross-sectional area of the mask 1, which was a problem in the conventional manufacturing process.
さらにマスクの重ね合わせの余裕を必要さしないので、
−画素当りのサイズが縮小化でき、その結果、大画素数
化およびチノゾザイスの縮小化がaT*Qとなり、その
効果は大きい。Furthermore, since there is no need for overlapping masks,
- The size per pixel can be reduced, and as a result, the number of pixels is increased and the size is reduced to aT*Q, which has a large effect.
図面0叩1】単な;脱明
第1図はインターライン転送力式固体撮像素子の一例の
平iii Qc: 160図、第2図は第1図ζこ示す
固体撮像素子のA−へ′線における断面図、第3図〜第
6図は従来の製造方法の一例を眺”J4するために、工
程順に示した断面図、第7図〜第12図は本発明の製造
方法を説ψJするために、工程114に示した断面図で
ある。Figure 1 shows an example of an interline transfer force type solid-state imaging device. 3 to 6 are cross-sectional views shown in the order of steps to illustrate an example of a conventional manufacturing method, and FIGS. 7 to 12 are sectional views for explaining the manufacturing method of the present invention. FIG.
11 、22・・光ia忽換部、12 、20・・・転
送ケ゛−ト領域、13 、19・・−垂直レジスタ、1
4・・・水平レジスタ、15・・・出力回路、16・・
・基板半導体、17・・・絶縁層、18・・・電荷転送
電極、23・・金属層、2・1・・チー、ネルス1−7
ブ領域、25 、27 、28 、3(+ 、 35
、 :((i 、 3F、・二fQ化ンリコン膜、26
、31・・屋化ソリコン欣、129 、32 、 ’
、i4 。11, 22... Optical IA converter, 12, 20... Transfer gate area, 13, 19... Vertical register, 1
4...Horizontal register, 15...Output circuit, 16...
- Substrate semiconductor, 17... Insulating layer, 18... Charge transfer electrode, 23... Metal layer, 2.1... Qi, Nels 1-7
area, 25, 27, 28, 3(+, 35
, :((i, 3F, 2fQ chloride film, 26
, 31...Yaka Sorikon Kin, 129 , 32, '
, i4.
37・・フォトレジスタ。37...Photo register.
代理人j丙L 内 原 晋1・′ ・1、、
′、、、、=
第1 覆
/イ イ2イ=3
夕j号りビE≧9
千3図
2タ
ノ
ン
ノ−Agent j Hei L Susumu Uchihara 1・' ・1,,
′、、、、= 1st overturn / I 2 I = 3 Evening j issue Ribi E ≥ 9 103 Figure 2 Tanon no -
Claims (1)
配置され、前記基板さ反対の第2の導電型からなる複数
個の光電変換部と、前記第2の導電型の叩込みチャネル
で構成さイ9た複数列の電荷転送装置からなるシフトレ
ジスタ部と、列方向に沿う前記光1((、dl換部と対
応する前記シフトレジスタの間に設けられ、前記第1の
導電型で不純物濃度の低い第1の半導体領域からなる転
送ゲート領域と、前記第1の導電型で不純物濃度の高い
第2の半導体領域からなり、前記光電変換部と前記シフ
トレジスタ部を互いに′電気的に分離するチャネルスト
ップ鎖酸とで構成される固体撮像素子の製造において、
前記光電変換部と前記シフトレジスタ部を窒化シリコン
膜で被覆した後に該窒化シリコン膜をマスクさして前記
転送ゲート領域および前記チャネルストップ領域に前記
第1の半導体領域を形成し、前記転送ゲート(ijJ域
をフォトレジストで被覆した後に前記窒化シリコン膜お
よび前記フォトレジストをマスクとして前記チャネルス
]・ツブ領域に前記第2の半導体領域を形成し、前記フ
ォトレジストを除去した後に前記窒化シリコン膜をマス
クとして二酸化シリコン膜を形成し、前記窒化シリコン
膜を除去した後に前記二酸化シリコン膜をマスクとして
前記光電変換部および前記シフトレジスタ部に前記第2
の導電型を形成し、次に前記転送ゲート領域上の前記二
酸化シリコン膜を除去する工程を具備したことを特徴と
する固体撮1駅素子の製造方法。A plurality of photoelectric conversion sections are arranged in a matrix on a semiconductor substrate of a first conductivity type, and are composed of a plurality of photoelectric conversion sections of a second conductivity type opposite to the substrate, and a implanted channel of the second conductivity type. A shift register section consisting of a plurality of rows of charge transfer devices, and a shift register section corresponding to the light 1 ((, dl transfer section) along the column direction; a transfer gate region consisting of a first semiconductor region with a low impurity concentration, and a second semiconductor region of the first conductivity type with a high impurity concentration, electrically isolating the photoelectric conversion section and the shift register section from each other. In manufacturing solid-state imaging devices composed of channel stop chain acids,
After covering the photoelectric conversion section and the shift register section with a silicon nitride film, the first semiconductor region is formed in the transfer gate region and the channel stop region by masking the silicon nitride film, and the first semiconductor region is formed in the transfer gate region (ijJ region). forming the second semiconductor region in the channel/tube region using the silicon nitride film and the photoresist as a mask, and removing the photoresist and using the silicon nitride film as a mask; After forming a silicon dioxide film and removing the silicon nitride film, the silicon dioxide film is used as a mask to cover the photoelectric conversion section and the shift register section.
1. A method for manufacturing a solid-state sensor one-station device, comprising the steps of: forming a conductivity type, and then removing the silicon dioxide film on the transfer gate region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58083549A JPS59208871A (en) | 1983-05-13 | 1983-05-13 | Manufacture of solid-state image pickup element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58083549A JPS59208871A (en) | 1983-05-13 | 1983-05-13 | Manufacture of solid-state image pickup element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59208871A true JPS59208871A (en) | 1984-11-27 |
Family
ID=13805585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58083549A Pending JPS59208871A (en) | 1983-05-13 | 1983-05-13 | Manufacture of solid-state image pickup element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59208871A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01292857A (en) * | 1988-05-20 | 1989-11-27 | Fujitsu Ltd | Manufacture of interline-type solid state image sensor |
JPH0277158A (en) * | 1988-09-13 | 1990-03-16 | Toshiba Corp | Solid image pick-up device |
-
1983
- 1983-05-13 JP JP58083549A patent/JPS59208871A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01292857A (en) * | 1988-05-20 | 1989-11-27 | Fujitsu Ltd | Manufacture of interline-type solid state image sensor |
JPH0277158A (en) * | 1988-09-13 | 1990-03-16 | Toshiba Corp | Solid image pick-up device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8063959B2 (en) | Backside illumination image pickup device, method of producing backside illumination image pickup device, and semiconductor substrate for backside illumination image pickup device | |
JP3530159B2 (en) | Solid-state imaging device and method of manufacturing the same | |
US8399914B2 (en) | Method for making solid-state imaging device | |
KR100832721B1 (en) | Method for fabricaing cmos image sensor | |
JP2007110133A (en) | Cmos image sensor and manufacturing method thereof | |
JPH05267695A (en) | Infrared image sensing device | |
US20070069259A1 (en) | CMOS image sensor and method of manufacturing the same | |
JP3008163B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JP2000164849A (en) | Photoelectric transfer device, solid-state image pickup device using the same and manufacture of the same | |
JPS59208871A (en) | Manufacture of solid-state image pickup element | |
JPS6057780A (en) | Solid-state image pickup device and its manufacture | |
US20080160731A1 (en) | Method for fabricating cmos image sensor | |
EP0075924A2 (en) | Solid state image pick-up device having a high resolution and a high sensitivity | |
JP2000022119A (en) | Solid state image device and fabrication thereof | |
JPS59208870A (en) | Manufacture of solid-state image pickup element | |
JP5832414B2 (en) | CHARGE COUPLED ELEMENT, ITS MANUFACTURING METHOD, ITS DRIVING METHOD, AND SOLID-STATE IMAGING DEVICE HAVING CHARGE COUPLED ELEMENT | |
JPH02304974A (en) | Manufacture of solid image-pickup element | |
KR970006269B1 (en) | Fabrication of ccd | |
KR100311490B1 (en) | Method for manufacturing s0lid state image sensor | |
JPH06326183A (en) | Manufacture of semiconductor device | |
JPS59130466A (en) | Solid-state image pickup element | |
JPH04218966A (en) | Solid state pickup device and fabrication and driving thereof | |
JPH01211966A (en) | Solid-state sensing element and manufacture thereof | |
JP2697554B2 (en) | Method for manufacturing solid-state imaging device | |
US20070161144A1 (en) | Method for Manufacturing CMOS Image Sensor |