JPS5920881B2 - Fluid control valve surge pressure prevention circuit - Google Patents

Fluid control valve surge pressure prevention circuit

Info

Publication number
JPS5920881B2
JPS5920881B2 JP48129336A JP12933673A JPS5920881B2 JP S5920881 B2 JPS5920881 B2 JP S5920881B2 JP 48129336 A JP48129336 A JP 48129336A JP 12933673 A JP12933673 A JP 12933673A JP S5920881 B2 JPS5920881 B2 JP S5920881B2
Authority
JP
Japan
Prior art keywords
valve
fluid
control valve
fluid control
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48129336A
Other languages
Japanese (ja)
Other versions
JPS5078778A (en
Inventor
則夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP48129336A priority Critical patent/JPS5920881B2/en
Publication of JPS5078778A publication Critical patent/JPS5078778A/ja
Publication of JPS5920881B2 publication Critical patent/JPS5920881B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、作動回路の圧力流体を低圧側へ開放制御する
流体制御弁を作動操作せしめる流体制御弁装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid control valve device that operates a fluid control valve that controls opening of pressure fluid in an operating circuit to a low pressure side.

従来、例えばバランスピストン形のリリーフ弁や減圧弁
等の流体制御弁における作動操作は、第1図に示すよう
に、流体制御弁1の制御室に有するベントポート2を低
圧側のタンク5へ開放接続する流体路6に固定絞り3と
操作弁4とを直列に配設し、操作弁4の操作による流体
路6の導通遮断で流体制御弁1の作動を行なっている。
Conventionally, the operation of a fluid control valve such as a balance piston type relief valve or a pressure reducing valve is performed by opening a vent port 2 in a control chamber of a fluid control valve 1 to a tank 5 on the low pressure side, as shown in FIG. A fixed throttle 3 and a control valve 4 are arranged in series in a connected fluid path 6, and the fluid control valve 1 is operated by shutting off the fluid path 6 by operating the control valve 4.

ところが、ベントポート2をタンク5へ連通して流体制
御弁1のアンロード作動を行なうとき、固定絞り3によ
ってベントポート2に背圧が発生し弁の最低設定圧を低
くすることができなく、また固定絞り3の絞り開度を大
きくすると、ベントポート2の圧力が急激に降下するた
め流体制御弁1のタンクボートT側にサージ圧が発生し
、流体制御弁1やタンクボート7に配管した戻り管8な
どを破損すると同時に大きな衝撃音が発生し騒音の原因
になるという等の欠点があった。
However, when unloading the fluid control valve 1 by communicating the vent port 2 with the tank 5, back pressure is generated in the vent port 2 by the fixed throttle 3, making it impossible to lower the minimum set pressure of the valve. In addition, when the throttle opening of the fixed throttle 3 is increased, the pressure at the vent port 2 drops rapidly, which generates surge pressure on the tank boat T side of the fluid control valve 1. There is a drawback that when the return pipe 8 or the like is damaged, a large impact sound is generated, causing noise.

本発明は、係る欠点を解消して流体制御弁の良好な作動
制御ができる流体制御弁装置を提供するもので、以下一
実施例を図面に基づき説明する。
The present invention provides a fluid control valve device that eliminates such drawbacks and can perform good operational control of a fluid control valve.One embodiment will be described below with reference to the drawings.

第2図において、1はバランスピストン形のリリーフ弁
から成る流体制御弁で、制御室に有するベントポート2
を低圧側のタンク5へ開放接続する流体路6にパイロッ
ト操作式開閉弁Aと操作弁4とを直列に配設している。
In Fig. 2, 1 is a fluid control valve consisting of a balance piston type relief valve, and a vent port 2 is provided in the control chamber.
A pilot-operated on-off valve A and an operating valve 4 are arranged in series in a fluid path 6 which is open and connected to a tank 5 on the low pressure side.

7は流体制御弁1のタンクポートで戻り管8によりタン
ク5へ接続している。
7 is a tank port of the fluid control valve 1, which is connected to the tank 5 through a return pipe 8.

9はパイロット操作式開閉弁Aの弁本体で、流入路10
及び流出路11とそれぞれ連通する環状溝12・13を
有する小径孔14、及び該小径孔と同軸上の大径孔15
からなる異径孔を連設している。
9 is the valve body of the pilot-operated on-off valve A, and the inflow passage 10
and a small diameter hole 14 having annular grooves 12 and 13 communicating with the outflow passage 11, respectively, and a large diameter hole 15 coaxial with the small diameter hole.
A series of holes of different diameters are provided.

16は異径孔に移動自在に挿入させて有しランド部17
・18及びばね受部19を形成した弁体で、小径孔14
にランド部11・18を挿入してランド部17の図示左
方にタンク8と連通した弁室20が形成され、大径孔1
5には常時弁体16を図示右方へ付勢するよう弁本体9
とばね受部19間にばね21を装入した弁室22が形成
されている。
16 is a land portion 17 which is movably inserted into a hole of different diameters.
・A valve body formed with 18 and a spring receiving part 19, and a small diameter hole 14
A valve chamber 20 communicating with the tank 8 is formed on the left side of the land portion 17 in the figure by inserting the land portions 11 and 18 into the large diameter hole 1.
5 is a valve body 9 so as to always urge the valve body 16 to the right in the figure.
A valve chamber 22 in which a spring 21 is inserted is formed between the spring receiving portion 19 and the spring receiving portion 19 .

23は大径孔15が開口する弁本体9の側面に密閉固着
して弁体16の図示右方への移動端を規制するカバーで
ある。
Reference numeral 23 denotes a cover that is tightly fixed to the side surface of the valve body 9 where the large-diameter hole 15 opens to restrict the end of movement of the valve body 16 to the right in the figure.

弁体16の一方のランド部18の環状溝12側には、流
入路10と流出路11間の流通面積をゆるやかに変化で
きるよう切欠溝24を形成せしめ、該切欠溝24は前記
流通面積を弁体16が図示右方へ移動すれば増大し、図
示左方へ移動すれば減少するような形状に設けている。
A notch groove 24 is formed on the annular groove 12 side of one land portion 18 of the valve body 16 so that the flow area between the inflow passage 10 and the outflow passage 11 can be changed gradually. The valve body 16 is shaped so that it increases as it moves to the right in the figure, and decreases as it moves to the left in the figure.

流出路11と弁室22は並列に設けたパイロット流路2
5・26により連通され、一方のパイロット流路25に
は弁本体9に螺合して開度調整自在な絞り弁27が設置
され他方のパイロット流路26には流出路11より弁室
22への流れを許容し逆向きの流れを規制するチコツク
弁28が設けられている。
The outflow passage 11 and the valve chamber 22 are a pilot flow passage 2 provided in parallel.
5 and 26, one pilot flow path 25 is provided with a throttle valve 27 that is screwed onto the valve body 9 and whose opening degree can be freely adjusted, and the other pilot flow path 26 is provided with a flow path from the outflow path 11 to the valve chamber 22. A tip valve 28 is provided to allow the flow of the water and restrict the flow in the opposite direction.

29は弁室20の半径方向より弁本体9に螺合した先端
テーパ面の開度調整部材で、該部材の進退により弁体1
6の図示右方の移動端を規制するものである。
Reference numeral 29 denotes an opening degree adjustment member having a tapered end surface that is screwed into the valve body 9 from the radial direction of the valve chamber 20, and the valve body 1 is adjusted by moving the member back and forth.
6 is for regulating the moving end on the right side in the drawing.

そしてパイロット操作式開閉弁Aの流入路10をリリー
フ弁1のベントボート2と、流出路11をシャットオフ
弁4と、弁室20を戻り管8とにそれぞれ接続すること
によりIJ IJ−フ弁1の作動操作回路が構成される
By connecting the inflow passage 10 of the pilot-operated on-off valve A to the vent boat 2 of the relief valve 1, the outflow passage 11 to the shutoff valve 4, and the valve chamber 20 to the return pipe 8, the IJ IJ-F valve is connected. One operation operation circuit is configured.

次に係る構成の作動を説明する。Next, the operation of the configuration will be explained.

第2図の図示状態では操作弁4による流体路6の導通で
リリーフ弁1はアンロード作動されている。
In the state shown in FIG. 2, the relief valve 1 is operated in an unloading manner by the operation valve 4 making the fluid path 6 conductive.

この状態から操作弁4を操作して流体路6を遮断すると
、ベントボート2側の流体路6に圧力が立ち上がり、該
流体路の圧力流体は弁本体9のパイロット流路26及び
チェック弁28を通過して弁室22内へ導入する。
When the operating valve 4 is operated to shut off the fluid path 6 from this state, pressure rises in the fluid path 6 on the vent boat 2 side, and the pressure fluid in the fluid path flows through the pilot flow path 26 and check valve 28 of the valve body 9. It passes through and is introduced into the valve chamber 22.

弁体16は弁室22内へ導入した圧力流体が作用する右
端面の有効受圧面積に基因する作用力によってばね21
をたわませ図示左方へ移動され、流入路10と流出路1
1間は弁体16のランド部18により閉止されるか又は
開度調整部材29によって調整される微小開度で連通さ
れる。
The valve body 16 is activated by the spring 21 due to the acting force based on the effective pressure-receiving area of the right end surface on which the pressure fluid introduced into the valve chamber 22 acts.
is deflected and moved to the left in the figure, and the inlet passage 10 and the outlet passage 1 are
1 is closed by the land portion 18 of the valve body 16, or communicated with a minute opening adjusted by the opening adjusting member 29.

したがって流体制御弁1のベントボート2における流体
の流れがなくなるか微少になって該流体制御弁はオンロ
ード作動して作動回路の圧力流体を設定圧に制御する。
Therefore, the fluid flow in the vent boat 2 of the fluid control valve 1 disappears or becomes very small, and the fluid control valve operates on-load to control the pressure fluid in the operating circuit to the set pressure.

次に流体制御弁をアンロード作動するため操作弁4を操
作して流体路6を導通すると、弁室22内の圧力が降下
し、弁体16はばね21によって流入路10と流出路1
1間の流通面積を増大させる図示右方へ付勢されている
ため、絞り弁27によって制御される弁室22内の流体
排出速度に応じた速度で右方へ移動する。
Next, when the operating valve 4 is operated to conduct the fluid passage 6 to unload the fluid control valve, the pressure inside the valve chamber 22 decreases, and the valve body 16 is moved between the inlet passage 10 and the outlet passage 1 by the spring 21.
Since it is biased toward the right in the figure to increase the flow area between the valve chambers 1 and 1, it moves to the right at a speed corresponding to the fluid discharge speed in the valve chamber 22 controlled by the throttle valve 27.

流入路10と流出路11間の流通面積は弁体16のラン
ド部18に形成された切欠溝24によってゆるやかに増
大し、これに応じて流体路6よりの流体は漸増加しなが
らタンク5へ流通し、ベントボート2の圧力は漸次降下
する。
The flow area between the inflow path 10 and the outflow path 11 gradually increases due to the notched groove 24 formed in the land portion 18 of the valve body 16, and accordingly, the fluid from the fluid path 6 gradually increases and flows into the tank 5. The pressure in the vent boat 2 gradually decreases.

一方ベントポート2の圧力降下にともない流体制御弁1
が作動してタンクボート7はタンク5に漸次連通される
ことになり、そして弁体16がカバー23に当接するこ
とによって流入路10と流出路11間は完全に開かれて
ベントボート2側の流体路6内の圧力は完全に抜け、流
体制御弁1はアンロード作動される。
On the other hand, as the pressure of vent port 2 decreases, fluid control valve 1
is activated, and the tank boat 7 is gradually brought into communication with the tank 5. Then, as the valve body 16 comes into contact with the cover 23, the space between the inlet passage 10 and the outlet passage 11 is completely opened, and the vent boat 2 side is opened. The pressure in the fluid path 6 is completely released, and the fluid control valve 1 is operated to unload.

したがってアンロード作動時に流体制御弁1のタンクボ
ート7がタンク5へ瞬時に連通なされることはなく、タ
ンクボート7側でのサージ圧の発生が防止される。
Therefore, during the unloading operation, the tank boat 7 of the fluid control valve 1 is not instantaneously communicated with the tank 5, and generation of surge pressure on the tank boat 7 side is prevented.

開度調整部材29は、アンロード作動時における初期の
流入路10と流出路11間の開度を調整するもので、流
体路6中の圧力降下を設定し、絞り弁27は流体路6の
圧力を完全に抜くのに要する時間を調整するもので、絞
り弁27と開度調整部材29とをそれぞれ調整すること
によって流体制御弁1のアンロード作動における応答性
を任意に調整できるものである。
The opening adjustment member 29 is used to adjust the initial opening between the inflow passage 10 and the outflow passage 11 during unloading operation, and sets the pressure drop in the fluid passage 6. This adjusts the time required to completely release the pressure, and by adjusting the throttle valve 27 and the opening adjustment member 29, the responsiveness of the unloading operation of the fluid control valve 1 can be adjusted as desired. .

第3図は本発明の他実施例を示し、第2図のものと同部
分は同符号で示してあり、重複をさけるため第2図のも
のと異なっている部分について説明する。
FIG. 3 shows another embodiment of the present invention, in which the same parts as those in FIG. 2 are designated by the same reference numerals, and to avoid duplication, only the parts different from those in FIG. 2 will be described.

流体制御弁1の流体路6には操作弁4が上流側にパイロ
ット操作式開閉弁Aが下流側にそれぞれ配設されている
In the fluid path 6 of the fluid control valve 1, an operating valve 4 is provided on the upstream side, and a pilot-operated on-off valve A is provided on the downstream side.

弁体16の両端に形成された弁室20・22のうち弁室
22は操作弁4の上流側流体路6とパイロット流路25
・26を介して連通し、該上流側流体路の圧力流体が流
入路10と流出路11間の流通面積を減少する方向へ弁
体16を移動させるように構成し、弁室20は操作弁4
の下流側流体路6の圧力が導入路30を介して導入され
弁体16を前記流通面積を増加する方向へ移動させるよ
うに構成している。
Of the valve chambers 20 and 22 formed at both ends of the valve body 16, the valve chamber 22 is connected to the upstream fluid passage 6 of the operating valve 4 and the pilot passage 25.
26, the pressure fluid in the upstream fluid path moves the valve body 16 in a direction that reduces the flow area between the inflow path 10 and the outflow path 11, and the valve chamber 20 is an operating valve. 4
The pressure in the downstream fluid path 6 is introduced through the introduction path 30 to move the valve body 16 in the direction of increasing the flow area.

作動は、第3図の図示状態より操作弁4を操作して流体
路6を遮断すると、操作弁4の上流側流体路に圧力が立
ち上がり、また下流側流体路の圧力はすばやく降下する
In operation, when the operation valve 4 is operated to shut off the fluid path 6 from the state shown in FIG. 3, pressure rises in the fluid path upstream of the operation valve 4, and pressure in the downstream fluid path quickly drops.

よって、弁体16はパイロット流路25・26より弁室
22内へ導入された前記上流側流体路の圧力流体による
作用力で切欠溝24によって形成される流入路10と流
出路11間の流通面積を減少する方向へ移動され、流体
制御弁1はオンロード作動する。
Therefore, the valve body 16 is activated by the acting force of the pressure fluid of the upstream fluid path introduced into the valve chamber 22 from the pilot flow paths 25 and 26 to prevent the flow between the inflow path 10 and the outflow path 11 formed by the notch groove 24. The fluid control valve 1 is moved in the direction of decreasing the area, and the fluid control valve 1 is operated on-road.

この状態より操作弁4を操作して流体路6を導通ずると
、操作弁4の上下流側間の圧力が実質的に等しくなるた
め、弁室20・22内の圧力は実質的に等しくなり、弁
体16はばね21により前記流通面積を増大する方向へ
移動される。
When the operating valve 4 is operated from this state to make the fluid path 6 conductive, the pressures between the upstream and downstream sides of the operating valve 4 become substantially equal, so the pressures within the valve chambers 20 and 22 become substantially equal. , the valve body 16 is moved by the spring 21 in a direction that increases the flow area.

このとき、弁室22よりの排出流体量が絞り弁27によ
って規制され、弁体16は移動がゆるやかに制御されて
前記流通面積を漸次増大するため、ベントポート2の圧
力は急激に降下せず漸次降下する。
At this time, the amount of fluid discharged from the valve chamber 22 is regulated by the throttle valve 27, and the movement of the valve body 16 is controlled slowly to gradually increase the circulation area, so the pressure in the vent port 2 does not drop suddenly. Gradually descend.

よってタンクポート7のタンク5への連通は漸次なされ
てタンクポート7側にサージ圧が発生するのを防止する
Therefore, the tank port 7 is gradually communicated with the tank 5, thereby preventing surge pressure from being generated on the tank port 7 side.

このように本発明は、流体制御弁の制御室を低圧側へ開
放接続する流体路に操作弁とパイロット操作式開閉弁と
を直列に配設し、パイロット操作式開閉弁は流体路の流
通面積をゆるやかに変化できるよう形成して弁体を移動
自在に有し、操作弁によって流体路が遮断されたとき該
操作弁の上流側の圧力流体により弁体をばねに抗し流通
面積を減少する方向へ移動させると共に、操作弁によっ
て流体路が導通されたときばねにより移動する弁体によ
って排出される流体量を絞り弁で規制せしめて該弁体の
移動速度を可調整にし流体路よりの流体を漸増しながら
低圧側へ流通させるよう設けたことにより、操作弁の簡
単な操作によって流体制御弁の制御室を低圧側へ開放接
続する流体路の流通面積を任意の度合で増大変化でき、
流体制御弁の作動が良好に漸次制御されてサージ圧の発
生を確実に防止することができ、かつ流体路を従来の如
く固定絞り弁で常に絞ることもなく該流体路の流通面積
が大きく設けられて制御室の圧力を降下し易く流体制御
弁の最低設定圧を容易に低くすることができる。
In this way, the present invention arranges an operating valve and a pilot-operated on-off valve in series in a fluid path that connects the control chamber of a fluid control valve to the low-pressure side, and the pilot-operated on-off valve reduces the flow area of the fluid path. The valve body is formed to be able to change slowly and has a movable valve body, and when the fluid path is blocked by the operation valve, the pressure fluid on the upstream side of the operation valve forces the valve body against the spring and reduces the flow area. At the same time, when the fluid passage is made conductive by the operation valve, the flow rate of the valve body moved by the spring is regulated by the throttle valve, and the moving speed of the valve body is adjustable. By providing the flow to the low pressure side while gradually increasing the flow rate, the flow area of the fluid path connecting the control chamber of the fluid control valve to the low pressure side can be increased or changed to any degree by a simple operation of the operating valve.
The operation of the fluid control valve is gradually controlled in a good manner, and the generation of surge pressure can be reliably prevented, and the fluid path is not constantly throttled with a fixed throttle valve as in the past, and the flow area of the fluid path is set large. As a result, the pressure in the control chamber can be easily lowered, and the minimum set pressure of the fluid control valve can be easily lowered.

また、流体制御弁の最低設定圧を低くできることによっ
て該流体制御弁を配設する作動回路の動力損失を最小限
に抑えることができ、さらに流体路における操作弁の上
流側圧力流体とばねとによってパイロット操作式開閉弁
の弁体を移動するようにしているので、弁体を電磁石で
移動させたりするものと比らべ弁体移動量を長く設ける
ことができて流体路の流通面積の微小制御が容易に得ら
れる。
In addition, by lowering the minimum set pressure of the fluid control valve, it is possible to minimize power loss in the operating circuit in which the fluid control valve is disposed, and furthermore, by reducing the pressure fluid and spring on the upstream side of the operating valve in the fluid path, Since the valve body of the pilot-operated on-off valve is moved, the amount of movement of the valve body can be set longer than when the valve body is moved using an electromagnet, allowing fine control of the flow area of the fluid path. can be easily obtained.

しかも圧力流体の排出流体量を絞り弁で規制スるように
しているため、絞り弁の絞り作用による弁体の移動速度
を安定制御することができる等の特長を有する。
Moreover, since the amount of discharged pressure fluid is regulated by the throttle valve, it has the advantage that the moving speed of the valve body due to the throttling action of the throttle valve can be stably controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は流体制御弁装置の従来例を示す流体回路図、第
2図はパイロット操作式開閉弁を断面した本発明の第1
実施例を示す流体回路図、第3図は本発明の第2実施例
を示す流体回路図である。 1・・・・・・流体制御弁、4・・・・・・操作弁、6
・・・・・・流体路、16・・・・・・弁体、21・・
・・・・ばね、22・・・・・・弁室、25・・・・・
・パイロット流路、27・・・・・・絞り弁、A・・・
・・・パイロット操作式開閉弁。
Fig. 1 is a fluid circuit diagram showing a conventional example of a fluid control valve device, and Fig. 2 is a cross-sectional view of a pilot-operated on-off valve according to the present invention.
FIG. 3 is a fluid circuit diagram showing a second embodiment of the present invention. 1... Fluid control valve, 4... Operation valve, 6
...Fluid path, 16... Valve body, 21...
... Spring, 22 ... Valve chamber, 25 ...
・Pilot flow path, 27... Throttle valve, A...
...Pilot-operated on-off valve.

Claims (1)

【特許請求の範囲】[Claims] 1 流体制御弁の制御室を低圧側へ開放接続する流体路
に操作弁とパイロット操作式開閉弁とを直列に配設し、
パイロット操作式開閉弁は流体路の流通面積をゆるやか
に変化できるよう形成して弁体を、移動自在に有し、操
作弁によって流体路が遮断されたとき該操作弁の上流側
の圧力流体により弁体をばねに抗し流通面積を減少する
方向へ移動させると共に、操作弁によって流体路が導通
されたときばねにより移動する弁体によって排出される
流体量を絞り弁で規制せしめて該弁体の移動速度を可調
整にし流体路よりの流体を漸増しながら低圧側へ流通さ
せるよう設けたことを特徴とする流体制御弁装置。
1. An operating valve and a pilot-operated on-off valve are arranged in series in a fluid path that connects the control chamber of the fluid control valve to the low pressure side,
The pilot-operated on-off valve has a movable valve body formed so that the flow area of the fluid path can be changed gradually, and when the fluid path is shut off by the operation valve, the pressure fluid on the upstream side of the operation valve The valve body is moved in a direction that reduces the flow area against the spring, and the amount of fluid discharged by the valve body moved by the spring is regulated by a throttle valve when the fluid passage is opened by the operation valve. 1. A fluid control valve device characterized in that the moving speed of the fluid control valve device is adjustable so that fluid from a fluid path is gradually increased and circulated to a low pressure side.
JP48129336A 1973-11-16 1973-11-16 Fluid control valve surge pressure prevention circuit Expired JPS5920881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48129336A JPS5920881B2 (en) 1973-11-16 1973-11-16 Fluid control valve surge pressure prevention circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48129336A JPS5920881B2 (en) 1973-11-16 1973-11-16 Fluid control valve surge pressure prevention circuit

Publications (2)

Publication Number Publication Date
JPS5078778A JPS5078778A (en) 1975-06-26
JPS5920881B2 true JPS5920881B2 (en) 1984-05-16

Family

ID=15007074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48129336A Expired JPS5920881B2 (en) 1973-11-16 1973-11-16 Fluid control valve surge pressure prevention circuit

Country Status (1)

Country Link
JP (1) JPS5920881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008213A1 (en) * 1988-02-24 1989-09-08 Hitachi Construction Machinery Co., Ltd. Valve device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133147A (en) * 1980-03-11 1981-10-19 Meiki Co Ltd Injection device of injection molding machine
JPS6064301U (en) * 1983-10-12 1985-05-07 内田油圧機器工業株式会社 Unload circuit device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859988U (en) * 1971-11-09 1973-07-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008213A1 (en) * 1988-02-24 1989-09-08 Hitachi Construction Machinery Co., Ltd. Valve device
US5140815A (en) * 1988-02-24 1992-08-25 Hitachi Construction Machinery Co., Ltd. Valve apparatus

Also Published As

Publication number Publication date
JPS5078778A (en) 1975-06-26

Similar Documents

Publication Publication Date Title
JP3710836B2 (en) Feedback poppet valve
EP1001197B1 (en) Pilot operated pressure valve
KR20020061600A (en) Slow opening gas valve
JP4602335B2 (en) Pressure supply valve
US3592223A (en) Pilot-operated modulating valve system and flow stabilizer incorporated therein
US4095611A (en) Modulating flow control valve assembly
JPS6044541B2 (en) Improvement of poppet relief valve
CA1195206A (en) Electrohydraulic valve
US3896844A (en) Fluid flow regulating apparatus
US4119016A (en) Hydraulic control device
JPS5920881B2 (en) Fluid control valve surge pressure prevention circuit
US3477472A (en) Servocontrol valve and system
US3563272A (en) Servocontrol valve and system
US3771553A (en) Pilot-operated shut-off valve
EP0661487B1 (en) Valve
PH27061A (en) Line pressure regulator
US4099893A (en) Pump with electrically actuated flow control
US3885583A (en) Pressure compensating valve mechanism for hydraulic control valves
JP2837218B2 (en) Pre-controlled pressure reducing valve
US4331179A (en) Regulator/valve controller
JP3534319B2 (en) Unloading device used for hydraulic circuit
JP4749103B2 (en) Load sensing control device
US3923075A (en) Power transmission
US4296771A (en) Quiet impulse steam trap
JP2649817B2 (en) Flow control valve