JPS59208436A - Method for detecting leakage of ammoniacal liquor into cooling water - Google Patents

Method for detecting leakage of ammoniacal liquor into cooling water

Info

Publication number
JPS59208436A
JPS59208436A JP8381883A JP8381883A JPS59208436A JP S59208436 A JPS59208436 A JP S59208436A JP 8381883 A JP8381883 A JP 8381883A JP 8381883 A JP8381883 A JP 8381883A JP S59208436 A JPS59208436 A JP S59208436A
Authority
JP
Japan
Prior art keywords
water
cooling
cooling water
cooler
cog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8381883A
Other languages
Japanese (ja)
Inventor
Kaoru Isaki
伊崎 馨
Takeshi Kawaguchi
武 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8381883A priority Critical patent/JPS59208436A/en
Publication of JPS59208436A publication Critical patent/JPS59208436A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Industrial Gases (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To detect the leakage of ammoniacal liquor into cooling water, by using a detector for cyanogen in water in which a silver ion electrode is used as a detecting electrode, and utilizing the fact that an abnormality high potential is indicated when a potential is measured in a water to be detected wherein hydrogen cyanide and hydrogen sulfide are commonly contained. CONSTITUTION:When a cooling pipe 14 in an ammoniacal liquor cooler 13 is broken by the causes such as corrosion and the ammoniacal liquor leaks into the cooling water, the ammoniacal liquor passes through a cooling water pipe 5 and flows into a COG cooler 1. Since hydrogen cyanide and hydrogen sulfide are included in the ammoniacal liquor, a detector 19 for cyanogen in water, which is provided in the COG cooler 1, detects HS<->, detects the change in potential, and performs meter indication. Based on the signal from the detector 19, a warning indicator is operated, the buzzer of a warning unit is sounded, and a warning lamp is lighted.

Description

【発明の詳細な説明】 本発明は冷却水中への安水漏洩検知方法に関する。[Detailed description of the invention] The present invention relates to a method for detecting ammonium water leakage into cooling water.

コークス工場で多量に発生するコークス炉ガス(以下、
COGということがあゐ)は精製されて精製コークス炉
ガスとして燃料用等に用いられるが、精製工程の中にタ
ール分離工程があり、このタール分離に当って間接冷却
及び直接冷却が行なわれる。間接冷却とはCOGを冷却
水にて相互非接触状態で冷却するもので、例えばCOG
を冷却管の内部に通し、冷却管の外部に冷却水を通して
冷却を行なうもので、冷却水としては通常、海水が用い
られる。直接冷却は間接冷却の次工程として行なわれる
もので、COGに安水(COGを冷却した際、COG中
の同伴水分が凝縮して生じたアンモニアを多量に含んだ
水をいう)を降り注いで冷却を行なうものである。
Coke oven gas (hereinafter referred to as
COG (also referred to as COG) is purified and used as refined coke oven gas for fuel, etc., but the refining process includes a tar separation process, and indirect cooling and direct cooling are performed during this tar separation. Indirect cooling refers to cooling COG with cooling water without contacting each other. For example, COG
Cooling water is passed through the inside of the cooling pipe and cooling water is passed outside the cooling pipe, and seawater is usually used as the cooling water. Direct cooling is performed as the next step after indirect cooling, and is performed by pouring ammonium water (water containing a large amount of ammonia, which is produced by condensing the moisture entrained in COG when COG is cooled) onto the COG. This is what we do.

直接冷却において、降シ注がれてCOG冷却器下部に溜
った安水は安水冷却器に導かれ、冷却水によシ冷却され
てCOG冷却水として循環使用されるが、上記安水冷却
器の冷却管が腐食等の原因により破損を起こす場合があ
り、この場合、安水冷却器内における液圧は冷却水より
も安水の方が大で □あるため、わずかな冷却管の破損
でも安水が冷却水中に洩れ込む危険がある。
In direct cooling, ammonium water that is poured down and collected at the bottom of the COG cooler is led to the ammonium water cooler, cooled by cooling water, and circulated as COG cooling water. The cooling pipes of the equipment may be damaged due to corrosion, etc. In this case, the liquid pressure inside the ammonium water cooler is greater in the ammonium water than in the cooling water, so slight damage to the cooling pipes may occur. However, there is a risk of cheap water leaking into the cooling water.

本発明は上記の点に鑑みなされたもので、冷却管の破損
により冷却水中に安水が洩れ込んだとき、水中シアン検
知器を用いて当該安水の漏洩を早期に検知し、有害物質
の海等への排流を事前に防止せんとするものである。
The present invention was made in view of the above points, and when ammonium water leaks into cooling water due to a breakage of a cooling pipe, an underwater cyanide detector is used to detect the leakage of the ammonium water at an early stage, and to detect harmful substances. The aim is to prevent wastewater from being discharged into the sea, etc.

即ち本発明は、コークス炉ガスの直接冷却に使用し九安
水を冷却水で間接的に冷却するだめの冷却管の破損に起
因する安水の冷却水中への漏洩を検知する方法において
、検知電極として銀イオン電極を用いた水中シアン検知
器を使用して硫化水素濃度を測定し、その濃度変化から
冷却水中への安水の漏洩を検知することを特徴とする冷
却水中への安水漏洩検知方法でおる。
That is, the present invention provides a method for detecting leakage of ammonium water into cooling water due to breakage of a cooling pipe in a tank used for directly cooling coke oven gas and indirectly cooling Kuan water with cooling water. Ammonium water leakage into cooling water characterized by measuring hydrogen sulfide concentration using an underwater cyanide detector using a silver ion electrode as an electrode, and detecting ammonium water leakage into cooling water from the change in concentration. It depends on the detection method.

本発明は検知電極として銀イオン電極を用いた水中シア
ン検知器を使用して安水の漏洩を検知する。この場合、
安水にはシアン化水素の他に硫化水素が含まれており、
この硫化水素がシアン濃度測定に対する妨害要因となる
から、シアン濃度を直接検知することはできない。
The present invention detects leakage of ammonium water by using an underwater cyanide detector using a silver ion electrode as a detection electrode. in this case,
Ammonium water contains hydrogen sulfide as well as hydrogen cyanide.
Since this hydrogen sulfide interferes with cyanide concentration measurement, the cyanide concentration cannot be directly detected.

本発明は検知電極として銀イオン電極を用いた水中シア
ン検知器を使用して、シアン化水素と硫化水素の共存す
る被検水における電位を測定したとき、異常に高い電位
を示すことを利用して、冷却水中への安水の漏洩を検知
し、安水漏洩量を測定することにより冷却水中のシアン
濃度を推定するものである。
The present invention uses an underwater cyanide detector that uses a silver ion electrode as a detection electrode to measure the potential in test water where hydrogen cyanide and hydrogen sulfide coexist, and takes advantage of the fact that it shows an abnormally high potential. The cyanide concentration in the cooling water is estimated by detecting the leakage of ammonium water into the cooling water and measuring the amount of ammonium water leakage.

以下、本発明の実施例を図面に基き説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図はCOGの冷却工程を示すものである。冷却工程
は間接冷却と直接冷却とからなり、1は間接冷却に用い
られるCOG冷却器、2は直接冷却に用いられるCOG
冷却器を示す。COGはCOG導管ろより冷却器1内の
冷却管4内に導かれ、この冷却管4内を通過する際、冷
却水導管5よシ冷却器1内に流入する冷却水6によって
冷却される。冷却器1を出たCOGはCOG導管7を通
って冷却器2に入り、ここで、冷却器2上方より降り注
がれる安水8によって冷却され、冷却器2を出たCOG
けCOG導管9を通り、次工程、例えばナフタリン除去
工程に送られる。
FIG. 1 shows the cooling process of COG. The cooling process consists of indirect cooling and direct cooling, 1 is a COG cooler used for indirect cooling, and 2 is a COG cooler used for direct cooling.
The cooler is shown. The COG is guided through the COG conduit filter into a cooling pipe 4 in the cooler 1, and as it passes through the cooling pipe 4, it is cooled by cooling water 6 flowing into the cooler 1 through a cooling water pipe 5. The COG that has left the cooler 1 passes through the COG conduit 7 and enters the cooler 2, where it is cooled by ammonium water 8 that is poured from above the cooler 2.
It passes through the COG conduit 9 and is sent to the next process, for example, a naphthalene removal process.

安水導管10より冷却器2内に流れ込み、その上方より
降り注がれ、冷却の用に供された安水は冷却器2下方よ
り安水導管11を通って流出し、ギヤポンプ12等の循
環機構によって再び冷却器() 2上方に導かれ、循環使用されるようになっている。こ
の循環系統の途中に安水冷却器1δが設置される。ギヤ
ポンプ12によって送シ出された安水は冷却器13の冷
却管14内に入り、との冷却管14内を通過する際、冷
却水導管15よシ冷却器16内に流入する冷却水16に
よって冷却される。安水の冷却に用いられた冷却水16
は冷却水導管5を経てCOG間接冷却用の冷却器1に導
かれ、前述した如きCOGの間接冷却の用に供され、且
つ冷却水導管17を通って排水溝18に排水され、更に
該排水溝18を経て公共海域へ流される。当該冷却水1
6としては通常、海水が用いられる。
The ammonium water flows into the cooler 2 from the ammonium water conduit 10 and is poured from above, and the ammonium water used for cooling flows out from the lower part of the cooler 2 through the ammonium water conduit 11 and circulates through the gear pump 12, etc. A mechanism guides it again to the upper part of the cooler (2), where it is used for circulation. An ammonium water cooler 1δ is installed in the middle of this circulation system. The ammonium water pumped by the gear pump 12 enters the cooling pipe 14 of the cooler 13, and as it passes through the cooling pipe 14, it is cooled by the cooling water 16 flowing through the cooling water conduit 15 and into the cooler 16. cooled down. Cooling water 16 used for cooling cheap water
The water is led to the cooler 1 for indirect cooling of the COG through the cooling water conduit 5, and is used for indirect cooling of the COG as described above. It will be swept into public waters via Ditch 18. The cooling water 1
6 is usually seawater.

COG導管6よシ送り込まれるCOGの温度は約80C
であυ、該COGは冷却器1によって55〜60tZ’
に冷却され、更に冷却器2によって約30Cに冷却され
る。
The temperature of COG fed through COG conduit 6 is approximately 80C.
Therefore, the COG is 55 to 60tZ' depending on the cooler 1.
It is further cooled to about 30C by cooler 2.

安水8の温度は冷却水として使用後は31〜33Cであ
シ、該安水は冷却器1δによりて27〜29Cに冷却さ
れる。
The temperature of ammonium water 8 is 31 to 33C after being used as cooling water, and the ammonium water is cooled to 27 to 29C by cooler 1δ.

19は冷却器1に設置した公知の水中シアン検(4) 知器で、該検知器19はその先端が冷却器1内の冷却水
中に浸漬される状態で設置される。
Reference numeral 19 denotes a known underwater cyanide detector (4) installed in the cooler 1, and the detector 19 is installed with its tip immersed in the cooling water in the cooler 1.

上記検知器19は検知電極と比較電極とを内部液と共に
隔膜でカバーした構造と外っており、検知電極として銀
イオン電極が、内部液としてAg(ON)t−がそれぞ
れ用いられている。隔膜はシアン化水素ガスを透過する
性質を持っておシ、検知器の先端をシアン化水素を含む
水に浸すと、気相中にパージされたシアン化水素ガスが
内部に透過し、内部液と反応し、その結果、検知電極の
電位変化が生じ、この電位変化を検出してメータ指示を
行々う構造となっている。
The detector 19 has a structure in which the detection electrode and the reference electrode are covered with an internal liquid by a diaphragm, and a silver ion electrode is used as the detection electrode, and Ag(ON)t- is used as the internal liquid. The diaphragm has the property of permeating hydrogen cyanide gas, and when the tip of the detector is immersed in water containing hydrogen cyanide, the hydrogen cyanide gas purged into the gas phase permeates inside and reacts with the internal liquid, resulting in The structure is such that a potential change occurs in the sensing electrode, and this potential change is detected to provide meter indication.

被検水中にシアン化水素の他に硫化水素が存在すると、
同様にH8″′が内部液と反応するため電位変化が生じ
るが、このときの電位はシアン化水素単独の場合に比べ
て約1000倍の値を示す。従って、直接、CN−検知
を行なうことはできないが、H8−検知を行なうことが
できるので、シアン化水素と硫化水素が共存する被検水
においては、 I(S−検知を行なうととKよって、C
N−の存在を推定することか可能である。
If hydrogen sulfide is present in addition to hydrogen cyanide in the test water,
Similarly, as H8'' reacts with the internal solution, a potential change occurs, but the potential at this time is about 1000 times higher than that of hydrogen cyanide alone.Therefore, direct CN- detection is not possible. However, since H8- detection can be performed, in test water where hydrogen cyanide and hydrogen sulfide coexist, I(S- detection is performed, and therefore C
It is possible to infer the existence of N-.

水中シアン検知器19には公知の警報機構を設けること
ができる。そのためには通常、水中シアン検知器19に
増幅器、指示警報器、警報ユニットが順次接続される。
The underwater cyanide detector 19 can be provided with a known alarm mechanism. For this purpose, an amplifier, an indicator alarm, and an alarm unit are normally connected to the underwater cyanide detector 19 in this order.

安水冷却器13の冷却管14が腐食等の原因により破損
して安水が冷却水中に漏洩した場合、この安水は冷却水
導管5を通ってCOG冷却器1内に流れ込む。安水には
シアン化水素と共に硫化水素が含壕れるので、COG冷
却器1に設置された水中シアン検知器19はH8−を検
知し、電位変化を検出してメータ指示を行なうと共に、
検知器19からの信号によって指示警報器が作動し、警
報ユニットのブザーが鳴り且つ警報ランプが点灯する。
If the cooling pipe 14 of the ammonium water cooler 13 is damaged due to corrosion or the like and the ammonium water leaks into the cooling water, this ammonium water flows into the COG cooler 1 through the cooling water conduit 5. Since ammonium water contains hydrogen sulfide as well as hydrogen cyanide, the underwater cyanide detector 19 installed in the COG cooler 1 detects H8-, detects potential changes, and gives meter indications.
The indicator alarm is activated by the signal from the detector 19, the buzzer of the alarm unit sounds, and the alarm lamp lights up.

この警報動作によって冷却水導管17のバルブ20が閉
じられ、安水を含んだ冷却水の排水溝18への排水が停
止され、それにより、公共海域への排流が事前に防止さ
れる。
This alarm action closes the valve 20 of the cooling water conduit 17, stopping the cooling water containing ammonium hydroxide from being discharged into the drainage ditch 18, thereby preventing the cooling water from being discharged into the public sea area.

水中シアン検知器19の設置場所は間接冷却用のCOG
冷却器1に限定されず、安水冷却器15に設置してもよ
く、或いは冷却水導管5の任意の箇所に設置してもよい
The underwater cyanide detector 19 is installed at a COG for indirect cooling.
It is not limited to the cooler 1, and may be installed in the ammonium water cooler 15, or may be installed at any location in the cooling water conduit 5.

以下、実験例を示す。Experimental examples are shown below.

実施例 海水1?P/にそれぞれ安水を5oz、 10oz、 
150t、 2oot混入した被検水を調製し、水中シ
アン検知器にてそれぞれの電位(mV)を測定した。結
果を第2図に示す。同図において縦軸の「海水への安水
混入量」は「海水への安水漏洩量」を意味する。上記安
水混入量(安水漏洩量)から計算して求めた推定シアン
濃度(但し、安水中のシアン濃度を500PPMとする
)を上方横軸に示す。
Example seawater 1? Add 5oz, 10oz of ammonium water to P/, respectively.
Test water mixed with 150t and 2oot was prepared, and the potential (mV) of each was measured using an underwater cyanide detector. The results are shown in Figure 2. In the figure, the ``amount of ammonium chloride mixed into seawater'' on the vertical axis means ``amount of ammonium chloride leaked into seawater.'' The estimated cyanide concentration calculated from the amount of ammonium water mixed in (ammonium water leakage amount) (the cyanide concentration in ammonium water is assumed to be 500 PPM) is shown on the upper horizontal axis.

実施例 COG間接冷却用の海水の使用量に対する検知可能な安
水漏洩量を測定した。結果を第3図に示す。
Example COG The amount of detectable leakage of ammonium water relative to the amount of seawater used for indirect cooling was measured. The results are shown in Figure 3.

図中、2は海水使用量可能範囲を示す。同図によれば、
海水使用量可能範囲において、わずか0.05〃Hとい
う微量の安水漏洩量でも検出でき、高い検知精度を有す
ることが判る。
In the figure, 2 indicates the possible range of seawater usage. According to the same figure,
It can be seen that within the possible seawater usage range, leakage of ammonium water as small as 0.05 H can be detected, indicating high detection accuracy.

以上説明したように、本発明によれば、COG直(7) 液冷却用として用いられる安水を循環使用するための安
水冷却器における冷却管が腐食等の原因によシ破損を起
こし、安水が冷却水中に洩れ込んだとしても、水中シア
ン検知器を用いて硫化水素濃度を測定し、その濃度変化
を検出することにより、冷却水中への安水の漏洩を早期
に検知することができ、その結果、安水に含まれるシア
ン化水素等の有害物質を海、河川等へ排流することを事
前に防止できる効果があり、公害発生防止の見地から極
めて有益な発明である。
As explained above, according to the present invention, the cooling pipe in the ammonium water cooler for circulating the ammonium water used for liquid cooling is damaged due to causes such as corrosion. Even if ammonium water leaks into the cooling water, it is possible to detect the leakage of ammonium water into the cooling water at an early stage by measuring the hydrogen sulfide concentration using an underwater cyanide detector and detecting changes in the concentration. As a result, the present invention has the effect of preventing harmful substances such as hydrogen cyanide contained in ammonium water from being discharged into the sea, rivers, etc., and is an extremely useful invention from the standpoint of preventing pollution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の安水漏洩検知方法を実施し九〇〇〇冷
却工程を示す概略図、第2図は海水への安水混入量と検
知器電位との関係を示すグラフ、第3図はCOG間接冷
却用の海水の使用量に対する検知可能な安水漏洩量を示
すグラフである。 8・・・安水  14・・・冷却管  16・・・冷却
水19・・・水中シアン検知器 (8)
Figure 1 is a schematic diagram showing the 9000 cooling process of implementing the ammonium water leak detection method of the present invention, Figure 2 is a graph showing the relationship between the amount of ammonium water mixed into seawater and the detector potential, and Figure 3 The figure is a graph showing the amount of detectable ammonium water leakage versus the amount of seawater used for COG indirect cooling. 8...Anonymous water 14...Cooling pipe 16...Cooling water 19...Underwater cyanide detector (8)

Claims (1)

【特許請求の範囲】[Claims] コークス炉ガスの直接冷却に使用し九安水を冷却水で間
接的に冷却するための冷却管の破損に起因する安水の冷
却水中への漏洩を検知する方法において、検知電極とし
て銀イオン電極を用いた水中シアン検知器を使用して硫
化水素濃度を測定し、その濃度変化から冷却水中への安
水の漏洩を検知することを特徴とする冷却水中への安水
漏洩検知方法。
A silver ion electrode is used as a detection electrode in a method for detecting leakage of ammonium water into cooling water due to breakage of a cooling pipe used to directly cool coke oven gas and to indirectly cool Kuan water with cooling water. A method for detecting leakage of ammonium water into cooling water, characterized in that hydrogen sulfide concentration is measured using an underwater cyanide detector using an underwater cyanide detector, and leakage of ammonium water into cooling water is detected from changes in the concentration.
JP8381883A 1983-05-13 1983-05-13 Method for detecting leakage of ammoniacal liquor into cooling water Pending JPS59208436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8381883A JPS59208436A (en) 1983-05-13 1983-05-13 Method for detecting leakage of ammoniacal liquor into cooling water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8381883A JPS59208436A (en) 1983-05-13 1983-05-13 Method for detecting leakage of ammoniacal liquor into cooling water

Publications (1)

Publication Number Publication Date
JPS59208436A true JPS59208436A (en) 1984-11-26

Family

ID=13813261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8381883A Pending JPS59208436A (en) 1983-05-13 1983-05-13 Method for detecting leakage of ammoniacal liquor into cooling water

Country Status (1)

Country Link
JP (1) JPS59208436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384827A (en) * 2011-11-23 2012-03-21 安徽淮化股份有限公司 Leak detection device for U-shaped waste heat boiler pipe column
CN104006937A (en) * 2014-06-06 2014-08-27 甘肃酒钢集团宏兴钢铁股份有限公司 One-off detection method for multiple leakage points of horizontal tube cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384827A (en) * 2011-11-23 2012-03-21 安徽淮化股份有限公司 Leak detection device for U-shaped waste heat boiler pipe column
CN104006937A (en) * 2014-06-06 2014-08-27 甘肃酒钢集团宏兴钢铁股份有限公司 One-off detection method for multiple leakage points of horizontal tube cooler

Similar Documents

Publication Publication Date Title
CN108693335A (en) Wind turbines lubricating oil on-line monitoring system
US7353691B2 (en) High performance generator stator leak monitoring system
US5492004A (en) Measurement of hydrogen leakage through stator windings into generator coolant water and oxygenation of the coolant water
JPS59208436A (en) Method for detecting leakage of ammoniacal liquor into cooling water
EA028971B1 (en) Liquid metal cooled nuclear reactor, system for monitoring oxygen thermodynamic activity in such reactors and method for monitoring oxygen thermodynamic activity
Vissers et al. A hydrogen monitor for detection of leaks in LMFBR steam generators
CA2323920A1 (en) Methods and apparatus for monitoring water process equipment
CA1295851C (en) Instrument to measure leakage of steam from a steam trap
FI94553B (en) A method for finding a leak in a pipeline system
JPH11118750A (en) Apparatus for setting of reference electrode
JP3328550B2 (en) Seawater leak detector
CN209821184U (en) Water quality on-line monitoring device
JPH07181097A (en) Method for detecting new leak source under track leak gas atmosphere
KR940008458B1 (en) Breakage inspection method of blast furnace
JPS5819219B2 (en) corrosion test equipment
JPS6020037Y2 (en) High temperature corrosion test equipment
JP4204712B2 (en) Cation detection device, cation detection method, water treatment device, and ultrapure water production device
JPS56127715A (en) Method of detecting leak in cooling liquid circulating system in high pressure gas atmosphere
Greer et al. Instruments and Their Application in the Control of Industrial Wastes [with Discussion]
SU1693472A1 (en) Method of studying behavior of hydrogen of corrosion origin
JPS61256235A (en) Leakage detector for condensate storage tank
Ostendorf et al. Modern monitoring of a treated industrial effluent
CN118443897A (en) Early warning method for fire-fighting pipeline corrosion
Garber et al. Instrumentation for Hydrogen Sulfide Measurement
FR2769304A1 (en) Control of aeration of biological water treatment vessels