JPS59208072A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS59208072A
JPS59208072A JP8384083A JP8384083A JPS59208072A JP S59208072 A JPS59208072 A JP S59208072A JP 8384083 A JP8384083 A JP 8384083A JP 8384083 A JP8384083 A JP 8384083A JP S59208072 A JPS59208072 A JP S59208072A
Authority
JP
Japan
Prior art keywords
target
magnetic
magnetic field
sulfide
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8384083A
Other languages
Japanese (ja)
Inventor
Takao Toda
任田 隆夫
Tomizo Matsuoka
富造 松岡
Yosuke Fujita
洋介 藤田
Masahiro Nishikawa
雅博 西川
Jun Kuwata
純 桑田
Atsushi Abe
阿部 惇
Koji Nitta
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8384083A priority Critical patent/JPS59208072A/en
Publication of JPS59208072A publication Critical patent/JPS59208072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control the magnetic field intensity distribution of a target surface and to perform stable sputtering of an oxide, sulfide, etc. in a sputtering device which uses the oxide and sulfide for a target by providing plural pairs of specifically constructed magnetic poles near the target. CONSTITUTION:Many permanent magnets 2-9 are attached to the cathode part of a sputtering device on which a target is placed by connecting 2 and 9, 3 and 8, 4 and 7, 5 and 6 via another permanent magnet 1 and attaching the same to both ends of respective yokes 10, thereby forming a magnetic circuit. Coils 17 are wound via insulating materials 13, 14 on the yoke 10 and the magnitude and direction of the current to be conducted to the coils are changed to control the intensity distribution of the magnetic field (arrows I , II) on the surface of a target 20 attached to the cathode. An insulator such as an oxide, sulfide, or the like is stably sputtered even under the low gaseous pressure by such control of the magnetic field, by which the sputtering is accomplished with a uniform electro-optical characteristic distribution and film thickness distribution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化物または硫化物絶縁体の薄膜形成装置に関
し、とりわけターゲットに酸化物または硫化物絶縁体を
用いたスパッタリンク装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for forming a thin film of an oxide or sulfide insulator, and more particularly to a sputter link apparatus using an oxide or sulfide insulator as a target.

従来例の構成とその問題点 従来スフSツタリンク装置においては、νη界方向に垂
直に磁界を印加してスパッタリングを行なうと、磁界が
ない場合に比較して低ガス圧中でも安定なスパッタリン
クが行なえることが知られている。その1こめ、rこと
えば長方形のターゲット表面上に磁界を形成するために
、陰極内部に永久磁石が埋め込まれたスパッタリング装
置が市販されている。しかしこのようなスパッタリング
装置で薄膜を形成した場合、ターゲット−基板間距離の
バラッ+、スパッタ室の構造の幾何学的対称性の欠如、
ガス圧分布や磁界強度分布の不均一性、基板温度分布の
不均一性などによりターゲットのり3の長さの基板線域
内においても、電気、光学的特性分布の膜厚分布が5%
以上も生ずるという欠点がある。なお、このような欠点
は、酸化物や硫化物絶縁体をターゲットに用いた場合に
特に顕著であった。
Configuration of conventional example and its problems In the conventional SufuS Tsutalink device, when performing sputtering by applying a magnetic field perpendicular to the νη field direction, stable sputter linking can be performed even at low gas pressure compared to when there is no magnetic field. It is known that First, in order to form a magnetic field on the surface of a rectangular target, sputtering apparatuses in which a permanent magnet is embedded inside the cathode are commercially available. However, when forming a thin film using such a sputtering apparatus, there are problems such as variations in the distance between the target and the substrate, lack of geometric symmetry in the structure of the sputtering chamber,
Due to non-uniform gas pressure distribution, non-uniform magnetic field strength distribution, non-uniform substrate temperature distribution, etc., even within the substrate line area of target glue 3 length, the film thickness distribution of electrical and optical properties is 5%.
There is a drawback that more than one problem occurs. Note that such drawbacks were particularly noticeable when an oxide or sulfide insulator was used as a target.

発明の目的 本発明は電気光学的特性分布や膜厚分布の不均一性を解
消し、低カス圧でも安定に酸化物や硫化物絶縁体をスパ
ッタリングすることができる成膜速度の大きいスバ・ン
タリンジ装置を提供することを目的とする。
Purpose of the Invention The present invention solves the non-uniformity of electro-optical property distribution and film thickness distribution, and provides a high-speed deposition process that can stably sputter oxide and sulfide insulators even at low gas pressures. The purpose is to provide equipment.

発明の構成 本発明のスパッタリング装置は、陰極内部またはターゲ
ット近傍に、陰極上に配設されたターゲット表面に平行
な成分を有する磁界を前記ターゲット表面上に形成する
複数対の磁極を設け、この複数対の磁極のうちの少なく
とも一対の磁極の磁束密度を可変してターゲット表面上
に形成される磁界強度分布の形状を制御して、低カス圧
でも安定にスパッタリングすることができると共に電気
、光学的特性分布や膜厚分布の不均一性を回避するよう
に構成したことを特徴とする。
Composition of the Invention The sputtering apparatus of the present invention is provided with a plurality of pairs of magnetic poles that form a magnetic field on the target surface having a component parallel to the target surface disposed on the cathode, inside the cathode or in the vicinity of the target. By varying the magnetic flux density of at least one pair of magnetic poles to control the shape of the magnetic field strength distribution formed on the target surface, stable sputtering can be performed even at low gas pressure, and electrical and optical It is characterized by being configured to avoid non-uniformity in property distribution and film thickness distribution.

実施例の説明 以下、本発明の実施例を第1図〜第6図に基づいて説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on FIGS. 1 to 6.

第1図と第2図は本発明のスバ・ソタリンジ装置の陰極
部分を示す。(1)〜(9)は永久磁石で、例えばここ
では士ユーり温度の高い希土類コバルト磁石が使用され
ており、永久磁石(2)と(9)、(3)と(8)、(
4)と(7)、(5)と(6)は永久磁石(1)を介し
て中央相互間が連結される各B−りOOの両端に配設さ
れ磁気回路が構成されている。なお、各ヨークα0は透
磁率の高い純鉄から作られており、永久磁石(1)と(
2)と(9)、(1)と(5)と(6)を接続するヨー
クaOには、それぞれテフロン製の電気絶縁スリーづ0
])〜(141を介して磁極の磁束密度および磁力線の
方向を変化させるためのコイル09〜08)が巻かれて
いる。(1つはそれぞれコイル09〜0ねの電流導入端
子である。図面において磁極(1)〜(9)に記入され
たN、Sは極性を表わす。第3図はこのように構成され
た磁界発生部が組み込まれた陰極部分の断面図を示す。
Figures 1 and 2 show the cathode section of the Suba-Sotaringe device of the present invention. (1) to (9) are permanent magnets, for example, rare earth cobalt magnets with high temperature are used here, and permanent magnets (2) and (9), (3) and (8), (
4) and (7), (5) and (6) are arranged at both ends of each B-ri OO whose centers are connected via the permanent magnet (1) to form a magnetic circuit. In addition, each yoke α0 is made of pure iron with high magnetic permeability, and the permanent magnet (1) and (
The yokes aO connecting 2) and (9), (1), (5) and (6) are each equipped with an electrically insulating sleeve made of Teflon.
]) to (coils 09 to 08 for changing the magnetic flux density of the magnetic poles and the direction of the lines of magnetic force via 141) are wound. (One is the current introduction terminal for coils 09 to 0, respectively. In the drawing, N and S written in magnetic poles (1) to (9) represent polarity. Figure 3 shows the magnetic field configured in this way. Figure 3 shows a cross-sectional view of the cathode part with the generator installed.

(III)は冷却水入口で、ヨーク0υとコイルOツ〜
0杓およびターゲット翰の冷却水供給管〔図示せず〕に
接続され、使用済の冷却水は水出口〔図示せず〕から排
出される。前記コイル(1籟〜(18)に流す電流の大
きさや方向を変化させることにより、タープ・ソトα)
表面上の磁界(矢印I 、n)の強度分布を制御するこ
とができtこ。
(III) is the cooling water inlet, yoke 0υ and coil O2~
It is connected to a cooling water supply pipe (not shown) of the zero scoop and target can, and used cooling water is discharged from a water outlet (not shown). By changing the magnitude and direction of the current flowing through the coil (1 to (18)),
The intensity distribution of the magnetic field (arrows I, n) on the surface can be controlled.

第4図は、長さ、幅、厚さがそれぞれ37cm。In Figure 4, the length, width, and thickness are each 37 cm.

12cm 、 0.5 c+nのニオづ酸鉛焼結体(空
孔率40%)のターゲットを用い、ターゲット表面から
7 crnmfれた位置に10c+nX30(2)の米
国、〕−ニンジ社製、品番CG−7059カラス基板を
設置し、基板温度400℃でアルゴンと酸素の4対1混
合ハス雰囲気中で、7 X 1O−3Torrの圧力で
高周波スパッタリンクした場合の薄膜の膜厚分布を示す
。破線(a)はコイル09〜08)に電流を流さなかつ
jコ場合の膜厚分布を示し、この場合±15%であった
が、コイル051〜θ8)に流す?J流を制御すること
により実線(b)に示されるように±2%の膜厚分布の
薄膜を形成することができた。また、比誘電率や絶縁破
壊電界強度の分布も改善され、60±5%、(1,5X
106±5%)V/ひの薄膜が形成された。薄膜の誘電
率や絶縁破壊電界強度は、基板温度分布やターゲットの
温度分布、ターゲットの均一性、ターゲット−基板間の
プラズマの状態に大きく依存する。持に空孔率が10%
以上の焼結体をターゲットに用いた場合、ターゲットの
温度分布やプラズマの不均一性などが生じやすく、電気
的特性の均一な薄膜を得るためには、これらの精度の高
い制御が必要となる。本発明では、ターゲット表面上の
磁界分布を精度よく制御することにより電気的特性の均
一な薄膜を得ることができたものである。
Using a target of 12 cm, 0.5 c + n lead niodate sintered body (porosity 40%), a 10 c + n x 30 (2) 10 cm + n x 30 (2), manufactured by Ninji Co., Ltd., USA, product number CG, was placed at a position 7 crnmf from the target surface. The film thickness distribution of a thin film is shown when a -7059 glass substrate is installed and high-frequency sputter linking is performed at a pressure of 7×1O−3 Torr in a 4:1 mixture atmosphere of argon and oxygen at a substrate temperature of 400° C. The broken line (a) shows the film thickness distribution when no current is applied to the coils 09-08), and in this case it was ±15%, but when the current is applied to the coils 051-θ8)? By controlling the J flow, a thin film with a film thickness distribution of ±2% could be formed as shown by the solid line (b). In addition, the distribution of relative permittivity and dielectric breakdown electric field strength has been improved to 60 ± 5% (1,5X
A thin film of 106±5%) V/hi was formed. The dielectric constant and dielectric breakdown field strength of a thin film largely depend on the substrate temperature distribution, target temperature distribution, target uniformity, and plasma state between the target and the substrate. The porosity is 10%.
When the above sintered bodies are used as targets, the target temperature distribution and plasma non-uniformity are likely to occur, and highly accurate control of these is required to obtain a thin film with uniform electrical properties. . In the present invention, a thin film with uniform electrical characteristics can be obtained by precisely controlling the magnetic field distribution on the target surface.

また、硫化物の焼結体(空孔率10%以上)をタープ・
ソトに用いた場合も同様の効果が得られた。
In addition, tarp and sulfide sintered bodies (porosity of 10% or more)
A similar effect was obtained when used in soto.

特に硫化亜鉛を主成分とする蛍光体薄膜をスノヌツタリ
ング法で形成した場合、発光効率がプラズマの状態、タ
ーゲット表面の温度分布、基板温度分布などに大きく影
響を受けることが判明しプこが、この場合も本発明の装
置により発光力 奮高く、広い面積に渡って均一な蛍光
体薄膜を得ることができた。
In particular, when a phosphor thin film containing zinc sulfide as a main component is formed by the Sunonutsuttaring method, it has been found that the luminous efficiency is greatly affected by the plasma condition, temperature distribution on the target surface, substrate temperature distribution, etc. In this case as well, it was possible to obtain a phosphor thin film with high luminous power and uniformity over a wide area using the apparatus of the present invention.

本発明の装置により形成した酸化物絶縁体簿膜と硫化亜
鉛を主成分とする蛍光体薄膜を組み合わせて薄膜工しク
ドロルミネセンス表示パネルを形成したところ、発光輝
度および効率が高く、広い面積に亘り均一な表示パネル
を再現性良く形成することができた。
When a quadroluminescent display panel was formed by combining an oxide insulator film formed by the apparatus of the present invention and a phosphor thin film whose main component is zinc sulfide, it showed high luminance and efficiency, and a large surface area. A uniform display panel could be formed with good reproducibility.

なお、以上の実施例では永久磁石による磁界と、電磁石
による磁界を加え合わぜてタープ・リド表面」二の磁界
分布を制御したが、永久磁石を用いずに電磁石のみでも
同様の効果が得られることは明らかである。
In addition, in the above example, the magnetic field from the permanent magnet and the magnetic field from the electromagnet were combined to control the magnetic field distribution on the tarp/lid surface, but the same effect can be obtained by using only the electromagnet without using the permanent magnet. That is clear.

また、上記実施例においては陰極内部に磁界発生部を組
み込まれたが、これは第5図と第6図に示すように、タ
ーゲット(イ)の周辺に磁極(イ)を設置しても同様の
効果が得られた。eυは陰極、(ハ)はコイル、(ハ)
はヨークである0 発明の詳細 な説明のように本発明のスパッタリンク装置によれば、
ターゲット表面上の磁界分布を制御してターゲットから
飛び出す粒子の密度分布やターゲットの温度分布を補正
し、またターゲットと基板との間のプラズマ密度分布を
も制御してその結果基板温度をも均一にすることができ
、大面積の基板上にも膜厚分布や電気、光学的特性の均
一な酸化物や硫化物の薄膜を形成することができるもの
である。
In addition, in the above embodiment, the magnetic field generating part was incorporated inside the cathode, but this is the same even if the magnetic pole (A) is installed around the target (A), as shown in Figures 5 and 6. The effect was obtained. eυ is the cathode, (c) is the coil, (c)
is a yoke 0 According to the sputter link device of the present invention as described in the detailed description of the invention,
The magnetic field distribution on the target surface is controlled to correct the density distribution of particles ejected from the target and the temperature distribution of the target, and the plasma density distribution between the target and the substrate is also controlled, resulting in a uniform substrate temperature. It is possible to form a thin oxide or sulfide film with uniform thickness distribution and electrical and optical properties even on a large-area substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明−のスパッタリンク装置の一実施例の陰
極部分の要部平面図、第2図は第1図のX−X断面図、
第3図は第1図と第2図に示す磁界発生部が組み込まれ
た陰極部分の断面図、第4図は作詞した薄膜の膜厚分布
図、第5図と第6図は本発明のスパッタリンク装置の陰
極部分の他の実施例を示す平面図とY−Y断面図である
。 (1)〜(9)(イ)・磁極、00■ ヨーク、OD〜
α(イ)・・電気絶縁スリーづ、00〜08)(ハ) 
コイル、c2(トクーゲ・ソト、t21)・陰極 代理人   森  本  義  弘 第1図 第2図 第3図 A( 第4図 1→反上の距彪挟(cm)
FIG. 1 is a plan view of the main part of the cathode part of an embodiment of the sputter link device of the present invention, FIG. 2 is a sectional view taken along line XX in FIG. 1,
FIG. 3 is a cross-sectional view of the cathode part in which the magnetic field generating section shown in FIGS. 1 and 2 is incorporated, FIG. FIG. 6 is a plan view and a YY sectional view showing another embodiment of the cathode portion of the sputter link device. (1)~(9)(a)・Magnetic pole, 00■ Yoke, OD~
α (A)...Electrical insulation three, 00-08) (C)
Coil, c2 (Tokuge Soto, t21) / cathode agent Yoshihiro Morimoto Figure 1 Figure 2 Figure 3 A ( Figure 4 1 → anti-up distance (cm)

Claims (1)

【特許請求の範囲】 1、陰極内部またはターゲット近傍に、陰極上に配設さ
れたターゲット表面に平行な成分を有する磁界をfi[
記ターゲット表面上に形成する複数対の磁極を設け、こ
の複数対の磁極のうちの少なくとも一対の磁極の磁束密
度を可変してターゲット表面上に形成される磁界強度分
布の形状を制御するよう構成したスパッタリンク装置。 2、 複数対の磁極のうち少なくとも一対の磁極を電磁
石にして磁極の磁束密度を可変するようにしたことを特
徴とする特許請求の範囲第1項記載のスノ\ツタリー、
Jジ装置。 3、 ターゲットの平面形状を長方形とし、複数のmF
5を、前記ターゲットの裏面近傍でターゲットの一方の
長辺に沿って複数の磁極を配設し、他方の長辺に沿って
前記磁極と逆極性の磁極を配設したことを特徴とする特
許請求の・範囲第1項記載のスパッタリン′)装置。 4、 ターゲットを、酸化物または硫化物絶縁体とする
と共にその密度を理論密度の90〜40%(空孔率10
〜60%)の焼結体としたことを特徴とする特許請求の
範囲第1項記載のスパッタリンク装置。
[Claims] 1. A magnetic field having a component parallel to the target surface disposed on the cathode is applied inside the cathode or near the target by fi [
A configuration is provided in which a plurality of pairs of magnetic poles are formed on the target surface, and the shape of the magnetic field strength distribution formed on the target surface is controlled by varying the magnetic flux density of at least one pair of magnetic poles among the plurality of pairs of magnetic poles. sputter link equipment. 2. The snow/tube according to claim 1, characterized in that at least one pair of the plurality of pairs of magnetic poles is an electromagnet so that the magnetic flux density of the magnetic poles can be varied.
Jji device. 3. The planar shape of the target is rectangular, and multiple mF
Patent No. 5, characterized in that a plurality of magnetic poles are arranged along one long side of the target near the back surface of the target, and a magnetic pole of opposite polarity to the magnetic pole is arranged along the other long side. Sputtering apparatus according to claim 1. 4. The target is an oxide or sulfide insulator, and its density is 90 to 40% of the theoretical density (porosity: 10
60%) of the sintered body.
JP8384083A 1983-05-12 1983-05-12 Sputtering device Pending JPS59208072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8384083A JPS59208072A (en) 1983-05-12 1983-05-12 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8384083A JPS59208072A (en) 1983-05-12 1983-05-12 Sputtering device

Publications (1)

Publication Number Publication Date
JPS59208072A true JPS59208072A (en) 1984-11-26

Family

ID=13813898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8384083A Pending JPS59208072A (en) 1983-05-12 1983-05-12 Sputtering device

Country Status (1)

Country Link
JP (1) JPS59208072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810346A (en) * 1987-08-21 1989-03-07 Leybold Aktiengesellschaft Magnetron type sputtering cathode
US4824540A (en) * 1988-04-21 1989-04-25 Stuart Robley V Method and apparatus for magnetron sputtering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810346A (en) * 1987-08-21 1989-03-07 Leybold Aktiengesellschaft Magnetron type sputtering cathode
US4824540A (en) * 1988-04-21 1989-04-25 Stuart Robley V Method and apparatus for magnetron sputtering

Similar Documents

Publication Publication Date Title
US4179351A (en) Cylindrical magnetron sputtering source
EP0173164B1 (en) Microwave assisting sputtering
JPS61190070A (en) Sputter device
KR101164047B1 (en) Sputtering apparatus
US7578908B2 (en) Sputter coating system
AU746645B2 (en) Method and apparatus for deposition of biaxially textured coatings
JPH05505215A (en) Magnetron sputter ion plating
US20060008593A1 (en) Device for carrying out a plasma-assisted process
US4673482A (en) Sputtering apparatus
US5531877A (en) Microwave-enhanced sputtering configuration
US5397448A (en) Device for generating a plasma by means of cathode sputtering and microwave-irradiation
US4597847A (en) Non-magnetic sputtering target
JP3045752B2 (en) Thin film sputtering method and apparatus
JPS59208072A (en) Sputtering device
JPH0645093A (en) Plasma generation apparatus
JPH0480357A (en) Sputtering system and its target electrode
CN1224771A (en) Apparatus for sputtering or arc evaporation
RU2101383C1 (en) Cathode spraying method
JPH0517869A (en) Sputtering method and device
US3483114A (en) Rf sputtering apparatus including a wave reflector positioned behind the target
Matsuda et al. Development of large area sputter-coating method using magnetized ac plasmas with inclined electrodes
JPS6386865A (en) Thin film forming device
US20240194462A1 (en) Sputtering apparatus
JPH0565632A (en) Apparatus for coating base with indium/tin oxide
JPH05195213A (en) Sputtering device