JPS59208011A - Method for desulfurizing molten steel - Google Patents

Method for desulfurizing molten steel

Info

Publication number
JPS59208011A
JPS59208011A JP8363983A JP8363983A JPS59208011A JP S59208011 A JPS59208011 A JP S59208011A JP 8363983 A JP8363983 A JP 8363983A JP 8363983 A JP8363983 A JP 8363983A JP S59208011 A JPS59208011 A JP S59208011A
Authority
JP
Japan
Prior art keywords
molten steel
inert gas
desulfurization
vacuum
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8363983A
Other languages
Japanese (ja)
Inventor
Tetsuya Fujii
徹也 藤井
Masao Oguchi
征男 小口
Yasuhiro Kakio
垣生 泰弘
Fumio Sudo
数土 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8363983A priority Critical patent/JPS59208011A/en
Publication of JPS59208011A publication Critical patent/JPS59208011A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To desulfurize molten steel while degassing it by blowing an inert gas for causing the reflux of the molten steel and a powdered desulfurizing agent from plural tuyeres each having a specified inside diameter or below when the molten steel is vacuum-degassed. CONSTITUTION:Two pipes 2, 3 extended downward from the bottom of a vacuum vessel 1 are immersed in molten steel 5 in a ladle 4, and an inert gas is blown into the pipe 2 to vaccum-degas the molten steel 5 while circulating it in the ladle 4 and the vessel 1. At this time, plural tuyeres 7 each having <=6mm. inside diameter are attached to the pipe 2, and a powdered desulfurizing agent suspended in the inert gas is blown from the tuyeres 7 to carry out desulfurization as well as vacuum degassing.

Description

【発明の詳細な説明】 この発明はRH1152ガス法により溶鋼説ガス処理を
行ないながら同時に溶鋼の脱硫処理を行なう方ン去1こ
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for performing gas treatment on molten steel and simultaneously desulfurizing the molten steel using the RH1152 gas method.

最近では鋼材の材料特性の向上を目的として、鋼中硫黄
濃度が10ppIIl程度以下の極低硫鋼に対する需要
が増大しており、そのため工業的に低コストで極低S濃
度まで溶鋼を脱硫する技術の開発が強く要請されている
。従来このように低濃度域まで溶鋼を脱硫する方法とし
ては、転炉等の精針炉から取鍋中に出門された溶鋼に対
し、その取鍋内の溶a中にCaO粉末等の微粉末状の脱
硫剤を搬送ガスとしての不活性ガスとともに吹込んで脱
硫する所謂取組インジェクション法が知られており、こ
の方法では硫黄濃度のみについては相当程度まで下げる
ことが可能である。しかるに極低硫鋼に対しては通常は
硫黄濃度が低いことのみならず、同暗に窒素濃度や水素
濃度も低いことが要求されることが多いが、前述の取鍋
インジェクション法では脱窒系や脱水素は同時に行なわ
れず、逆にインジェクション処理中に大気の巻込みや脱
硫剤によって溶鋼中窒素9度や水素濃度が上昇してしま
うことが多い。そのため取鍋インジェクション法により
脱硫処理を旅した後には、溶鋼を真空脱ガス処理して、
窒素濃度、水素濃度の低減を図る必要がある。
Recently, with the aim of improving the material properties of steel materials, there has been an increasing demand for ultra-low sulfur steel with a sulfur concentration of about 10 ppIIl or less, and for this reason, technology has been developed to industrially desulfurize molten steel to an extremely low S concentration at low cost. There is a strong demand for the development of Conventionally, as a method for desulfurizing molten steel to a low concentration range, the molten steel discharged from a refining furnace such as a converter into a ladle is treated with fine powder such as CaO powder in the molten a in the ladle. A so-called "trickling injection method" is known in which desulfurization is carried out by injecting a desulfurizing agent with a carrier gas together with an inert gas as a carrier gas, and with this method, it is possible to reduce only the sulfur concentration to a considerable extent. However, for ultra-low sulfur steel, it is often required not only to have a low sulfur concentration, but also to have low nitrogen and hydrogen concentrations, but the ladle injection method described above requires a denitrification system. and dehydrogenation are not carried out at the same time, and on the contrary, the nitrogen concentration and hydrogen concentration in the molten steel often rise due to atmospheric entrainment and desulfurization agents during the injection process. Therefore, after undergoing desulfurization treatment using the ladle injection method, the molten steel is subjected to vacuum degassing treatment.
It is necessary to reduce nitrogen and hydrogen concentrations.

上述のように極低硫濃度でしかも客素濃度、水素濃度が
低い溶鋼を得るためには、従来は脱硫処理と脱ガス処理
とを別の工程で行なわざるを得す、そのため生産能率が
低い問題があった。またそればかりでなく、転炉等の精
錬炉から取鍋に出鋼された溶鋼を脱硫処理と脱カス処理
のため:二長i間保持する必要があり、そのため精錬炉
からの出(6濁度を1700℃以上といった(0めて高
温とする必要が生じ、その結呆vi錬炉の耐火物の損傷
が黴しく、生産コストの面からも大ぎな問題があった。
As mentioned above, in order to obtain molten steel with an extremely low sulfur concentration, low visitor element concentration, and low hydrogen concentration, conventionally desulfurization treatment and degassing treatment had to be performed in separate processes, resulting in low production efficiency. There was a problem. In addition, molten steel discharged from a refining furnace such as a converter into a ladle must be held for two long periods for desulfurization and descaling treatment. It became necessary to raise the temperature to 1,700°C or higher, which caused moldy damage to the refractories in the refractory furnace, which caused major problems in terms of production costs.

以上の問題を解決し得る可能性のある方法の一つとして
、例えば特公昭45−22204@公報に図示されてい
るように、真空脱ガス処理を行ないながら同時に脱硫処
理を行なう方法が提案されている。この方法はRH脱ガ
ス処理装首において溶鋼を取C9−真空槽間に還流させ
るために上昇管内に吹込まれる不活性ガスとともに微粉
末状の脱硫剤を吹込むものであり、脱ガス処理と同時に
脱硫処理を行なうことができる。しかしながら前記提案
の方法では特に10pI)III程度以下の朽低偵域ま
で脱硫することは考慮されておらず、実際本発明者筈が
通常のRH脱ガス装置を用いてその上昇管の羽口に不活
性ガスとともに脱硫剤微粉末を吹込む実験を行なったと
ころ1oppm程度以下という極低硫域まで安定して脱
硫することは困難であった。したがって前記提案の方法
をそのまま極低硫吊の製造に工業的に適用することは困
難である。
As one method that may potentially solve the above problems, a method has been proposed in which vacuum degassing treatment and desulfurization treatment are performed at the same time, as illustrated in, for example, Japanese Patent Publication No. 45-22204@. There is. In this method, a finely powdered desulfurizing agent is injected together with inert gas that is blown into the riser pipe in order to return the molten steel between C9 and the vacuum tank at the RH degassing treatment neck. Desulfurization treatment can be performed at the same time. However, the method proposed above does not take into account desulfurization down to a low detection area of about 10 pI) III or less, and in fact, the inventor of the present invention used an ordinary RH degassing device to desulfurize the tuyere of the riser pipe. When an experiment was conducted in which fine powder of a desulfurizing agent was injected together with an inert gas, it was difficult to desulfurize stably down to the extremely low sulfur range of about 1 oppm or less. Therefore, it is difficult to industrially apply the proposed method as it is to the production of extremely low sulfur content.

この発明は以上の事情に鑑みてなされたもので、特公昭
45−22204号の提案の方法を改良し、綱中硫黄溌
度が101JllI!l程度以下の極低濃度でしかも窒
素濃度、水素密度が低い極低硫鋼を一工程で工業的に安
定して製造し得る方法を提供することを目的とするもの
である。
This invention was made in view of the above circumstances, and is an improvement on the method proposed in Japanese Patent Publication No. 45-22204, and the sulfur resistance in the wire is 101JllI! The object of the present invention is to provide a method capable of industrially stably producing ultra-low sulfur steel in one step, which has an extremely low concentration of about 1 or less, and also has a low nitrogen concentration and low hydrogen density.

不発明者等は前述の特公昭45−22204号の方法を
改良して、硫黄漬磨ioppm程度以下といった極低硫
濃度まで溶鋼を脱硫する方法を見出ずべく、種々実験・
検討を重ねた結果、脱硫剤微粉末を不活性ガスとともに
上昇管内l\吹込むための羽目の内径およびその羽口本
数が脱硫率に影響を及ばずことを見出し、この発明をな
すに至ったのである。
The inventors improved the method of the above-mentioned Japanese Patent Publication No. 45-22204 and conducted various experiments and experiments in order to find a method for desulfurizing molten steel to an extremely low sulfur concentration, such as less than the ioppm level of sulfur pickling.
As a result of repeated studies, it was discovered that the inner diameter of the tuyeres and the number of tuyere for injecting the desulfurizing agent fine powder into the riser pipe together with an inert gas did not affect the desulfurization rate, and this invention was achieved. .

ずなわちこの発明の脱硫方法は、真空増の下面から下方
に延びる2木の管を取鎖内百般中にン2ごさせ、一方の
管(すなわち上界管)内に不活にガスを吹込んで溶二j
を取置−真空(Δ間:こおいて循こさせつつ溶鋼を真空
処理するに際して、前記不;舌性ガス中に粉末状脱硫剤
を懸濁させて吹込むことにより溶鋼の脱硫処理を脱ガス
処理と同時に行なう方法において、前記不活性ガスおよ
び粉状脱硫剤を吹込むための羽口として、内径6 j’
jlll以下の柵い羽口を複数本同時に用いることを特
徴とするものである。
In other words, the desulfurization method of this invention consists of two pipes extending downward from the lower surface of the vacuum inlet into the chain, and an inert gas injected into one of the pipes (i.e., the upper pipe). Blow it in and melt it
When vacuum treating molten steel while circulating it in a vacuum (between ∆), the desulfurization treatment of the molten steel is carried out by suspending and injecting a powdered desulfurizing agent into the above-mentioned non-toxic gas. In the method carried out simultaneously with gas treatment, a tuyere with an inner diameter of 6 j'
It is characterized by the simultaneous use of a plurality of fence tuyeres of a size smaller than 1.5 mm.

以下この発明の方法をより具体的に説明する。The method of this invention will be explained in more detail below.

第1図はこの発明の方法を実施している状況の一例を概
略的に示すものであって、真空ナゴ1の下面から下方へ
延びる2人の管、すなわち上昇管2および下降管3の下
部は取鍋4の溶635中に沿岱されている。また真空槽
1の上部には排気口6が形成されており、この排気口6
から図示しないパ圧排気装置により真空槽1内を減圧す
ることによって取@4内の溶(]5が真空槽1内に吸上
げられる。、さ゛ろに前記上昇管2の中間部には、ト2
に詳國に説明するように内径(31111ii以下のス
テンレスこ4警筈からなる檜数本の羽ロアが]、うけら
れている。これらの羽D7から上昇管2内の旧S目中に
不活性ガスを吹込めば、上昇管2内の搭乗が気泡を含有
するため)二見に1け密度が低下して上昇運動を開始し
、これによりW qがIi;!鍋4から上昇管2内を上
昇し、真空槽1から下降管2を経て取鍋4内へ戻る、所
冒溶84’q +〒流が取(を−真空桁間に生じ、溶鋼
の居ガス処理ツメな8れる。この際、6ケだ不活性ガス
にCaO等の徽f力状の脱硫剤を8濁させて前記上昇管
20羽ロアから溶鋼中へ吹込むことによって、脱ガス処
理と同時に脱硫処理がなされる。なお第1図の倒では、
?粉状脱硫剤8を粉体供給装置9から各羽ロアへ搬送す
る搬送管として、各羽ロアごどに独立して粉体供給装置
9に)引結された個別搬送管10A〜100が用いられ
ている。
FIG. 1 schematically shows an example of a situation in which the method of the present invention is implemented, and shows the lower portions of two pipes extending downward from the bottom surface of the vacuum nago 1, that is, the ascending pipe 2 and the descending pipe 3. is included in the melt 635 of ladle 4. Further, an exhaust port 6 is formed in the upper part of the vacuum chamber 1;
Then, by reducing the pressure inside the vacuum chamber 1 with a pressure exhaust device (not shown), the melt (] 5 in the tube 4 is sucked up into the vacuum chamber 1. In addition, in the middle part of the riser pipe 2, G2
As explained in detail in 2007, the inner diameter (several cypress blade lowers made of stainless steel of 31111ii or less) is inserted.From these blades D7 to the old S eye in the riser pipe 2 When active gas is injected, the density immediately decreases by an order of magnitude (because the boarding in the riser pipe 2 contains air bubbles) and starts an upward movement, thereby increasing W q to Ii;! The molten steel 84'q + 〒flow rises from the ladle 4 through the riser pipe 2 and returns from the vacuum chamber 1 to the ladle 4 via the downcomer pipe 2. At this time, the degassing treatment is carried out by adding a desulfurizing agent such as CaO to an inert gas and blowing it into the molten steel from the lower of the 20 risers. At the same time, desulfurization treatment is performed.In addition, in the lower part of Figure 1,
? Individual conveyance pipes 10A to 100 connected to the powder supply device 9 independently for each vane lower are used as conveyance tubes for conveying the powder desulfurization agent 8 from the powder supply device 9 to each vane lower. It is being

この発明の方法においては前述のように不活性ガスとと
もに微粉状脱硫剤を上昇管2内の溶鋼中に吹込むための
羽目として、内径6n+m以下、望ましくは内径4mm
以下のものを復数本用いている。
In the method of this invention, as described above, as a means for injecting the fine powder desulfurization agent into the molten steel in the riser pipe 2 together with the inert gas, the inner diameter is 6n+m or less, preferably 4mm.
I use several of the following.

このように定めた理由を本発明者等の実験に基いて次に
説明する。
The reason for this determination will be explained below based on experiments conducted by the inventors.

取鎖内の1001〜ンの溶鋼に対し、90%Ca O−
10%Ca F 2からなる微ち)末脱硫剤(44νn
以下の直径の粒子が96重G%を占めるもの)をΔrガ
スとともに上昇管内へ吹込んで脱ガスおよび脱硫処理を
行なうに際して、ステンレス摺雪製パイプからなる吹込
み羽目の内径および本数を種々変更し、その羽目内径お
よび本数が脱8率に及ぼす影響を調べた。但し脱硫剤の
吹込みaは溶鋼11〜ン当り20k(lとし、処理開始
時の丙申S濃度が30〜4o pppmの溶鋼に対し、
約20分間にわたって前述のi免硫剤を80〜120k
L/w:h、へrガスを1800〜2200 N 1 
/ rthの速度で吹込み、処理後の溶鋼中S溌度をG
1定した。その結果を第1表に示す。
90% Ca O-
10% CaF2 powder desulfurization agent (44νn
When injecting particles with the following diameters into the riser pipe together with Δr gas for degassing and desulfurization, the inner diameter and number of the blowing blades made of stainless steel pipes were varied. We investigated the effects of the inner diameter and number of linings on the shedding rate. However, the injection of desulfurization agent a is 20k (l) per 11 to 100 m of molten steel, and for molten steel with a Heishin S concentration of 30 to 4 ppm at the start of treatment,
80 to 120 k
L/w: h, hr gas 1800-2200 N 1
/ rth, and the S resistance in the molten steel after treatment is G.
It was fixed at 1. The results are shown in Table 1.

第1表から、羽目の内径を小として、羽口本数を増加さ
せることによって脱硫率か向上することが明らかである
。特に、溶銑予佑処理および転炉精錬によって経済的に
@製可能な最低S濃度と考えられる30〜40pp11
1の溶鋼をioppm程度以下まで脱硫するためには、
内径(3mr(H以下、望ましくは4mm以下の羽口な
用いる必要がある。
From Table 1, it is clear that the desulfurization rate can be improved by decreasing the inner diameter of the tuyere and increasing the number of tuyeres. In particular, 30 to 40 pp11 is considered to be the lowest S concentration that can be produced economically by hot metal pre-treatment and converter refining.
In order to desulfurize the molten steel No. 1 to about ioppm or less,
It is necessary to use a tuyere with an inner diameter of 3 mr (H or less, preferably 4 mm or less).

上述のように羽口内径および水数が脱硫率に影響を及ぼ
す理由は次のように考えられる。すなわち、羽口本数が
少なければ、上昇管内で不活性ガスおよび脱硫剤が偏在
して上昇し、その結果溶鋼と脱硫剤との接触、混合のn
会が減少して溶鋼が均一に脱硫されなくなり、また羽目
内径が大きければ気泡が大きくなって杓状脱硫剤も2臭
状態で上昇管内を上昇し、その結果溶鋼に対する脱硫剤
の拡散混合が充分になされなくなって脱硫率が低下する
ものと考えられる。また羽口本数が少なくかつ羽口内径
が大きければ、上述のように気泡が瞑在して上昇しかつ
比校的大気泡どなるが、この場合気泡の上昇管内での滞
在時間も短くなり、そのためガス吹込み僅が一定であれ
ばある口開において上昇管内のi?l!に)中に存在す
る気泡袴体稍が小さくなってエアリフトポンプの作用が
小さくなり、溶鋼の循TM流員が低下して溶鋼と脱硫剤
との接触、混合の憬会が少なくなることも脱硫率低下の
一因と考えられる。
The reason why the tuyere inner diameter and water number affect the desulfurization rate as described above is considered to be as follows. In other words, if the number of tuyeres is small, the inert gas and desulfurization agent will be unevenly distributed in the riser pipe and rise, resulting in less contact and mixing between the molten steel and the desulfurization agent.
If the inside diameter of the slats is large, the air bubbles become large and the ladle-shaped desulfurizing agent also rises in the rising pipe in a two-odor state, resulting in sufficient diffusion and mixing of the desulfurizing agent into the molten steel. It is thought that this decreases the desulfurization rate. In addition, if the number of tuyeres is small and the tuyere inner diameter is large, the bubbles will rise in a crowded manner as described above, creating a relative air bubble, but in this case, the time the bubbles stay in the rising tube will also be shortened. If the gas injection rate is constant, i? in the riser pipe at a certain mouth opening. l! Desulfurization is also caused by the fact that the air bubbles present in the molten steel become smaller and the action of the air lift pump becomes smaller, reducing the molten steel circulation TM flow rate and reducing the contact and mixing of molten steel with the desulfurization agent. This is thought to be one reason for the rate decline.

なお大径の羽目を用い7j男合、脱硫処理を必要とせず
に単なる脱ガス処理を行なう場合において羽口の溶損防
止のために1本の羽口当りの不活性ガス流量を大きくす
る必要があるが、極;力にガス流帛を大きくすれば、不
活性ガス使用量の増大によってコストが上昇する間類ヤ
大量ガスにより溶鋼のスプラッシュが桁壁にイv1着す
る等の問題が生じる。したがって大径の羽目の場合には
実際には羽口本数が制限され、羽口本数を余り多くする
ことはできないから、羽口径が大きいことおよび羽口本
数が少ないことが相俟って、前述のように脱硫率が劣る
こととなる。
In addition, when using a large-diameter tuyere for simple degassing without desulfurization, it is necessary to increase the inert gas flow rate per tuyere to prevent tuyere erosion. However, if the gas flow is made extremely large, the cost increases due to the increase in the amount of inert gas used, and problems arise such as splashes of molten steel landing on the girder walls due to the large amount of gas. Therefore, in the case of large-diameter tuyere, the number of tuyere is actually limited, and the number of tuyere cannot be increased too much. As a result, the desulfurization rate is inferior.

なおまた、上界管中間部における多数本の羽目の配列は
任意であるが、例えば2本以上の適当数の羽口を同一水
平面内において上昇管の周方向に一定間隔を置いて配列
し、かつ上下方向にも一定門口を費いてjj当な段数で
配列すれば良い。
Furthermore, although the arrangement of the large number of tuyere in the middle part of the upper tube is arbitrary, for example, an appropriate number of tuyeres, two or more, are arranged at regular intervals in the circumferential direction of the riser tube in the same horizontal plane, Moreover, it is sufficient to arrange them in an appropriate number of stages by using a certain number of gates in the vertical direction as well.

次にこの発明の実燕例を記す。Next, a practical example of this invention will be described.

実施例 取■内の100トンの溶knに対し、還流管(上昇管、
下降費)の内径が450L1!l!の真空脱ガス装置を
用い、上昇管中間部に内径4m11のステンレスξZ筈
裂の羽口を14本設置して、脱ガス・脱硫処理を行なっ
た。処理開始時の溶用温度は1670℃で、?86’A
組成はC; 0.15 wt%、SI 0.23wt%
、M* 1.23wt 9/l、P 0.01hyt%
、30.0032wt%、△Q O,058!Yt%、
残部実質的にFeであった。処理開始萌には前記羽目か
らへrガスのみを1.8〜2.3Nm’ / m1i1
の速度で吠込み、処理開始5分後に、9096cao−
io%ca F 2の組成を有しかツ44JJNX下(
7)直径の粒子が96%以上を占める微粉状脱硫剤を1
10〜150kg/m+nの速度で25分間にわたって
合計3200kq吹込lυだ。その後脱硫剤の吹込みを
停止し、△rガスのみで5分間の吹込みを行ない、処理
を終了した。処理終了後の溶円中S溌度は7ppmであ
り、310 ppm以下の極低硫鋼が確実に得られるこ
とが判明した。
For 100 tons of melt kn in Example
The inner diameter of the lowering cost is 450L1! l! Using a vacuum degassing device, 14 stainless steel ξZ tuyeres with an inner diameter of 4 m11 were installed in the middle of the riser pipe to carry out degassing and desulfurization. The melting temperature at the start of treatment is 1670℃, ? 86'A
Composition is C; 0.15 wt%, SI 0.23 wt%
, M* 1.23wt 9/l, P 0.01hyt%
, 30.0032wt%, △Q O,058! Yt%,
The remainder was essentially Fe. At the start of the treatment, only r gas was applied from the above-mentioned surface to 1.8 to 2.3 Nm'/ml.
9096cao-
It has a composition of io%ca F2 and under 44JJNX (
7) Finely powdered desulfurization agent with diameter particles of 96% or more
A total of 3200 kq blown lυ over 25 minutes at a speed of 10-150 kg/m+n. Thereafter, the blowing of the desulfurizing agent was stopped, and only Δr gas was blown for 5 minutes to complete the treatment. The S permeability in the molten circle after completion of the treatment was 7 ppm, indicating that extremely low sulfur steel of 310 ppm or less could be reliably obtained.

以上の説明で明らかなようにこの発明の方法によれば、
溶脅の真空脱カス処理時において溶鋼j7流を生起させ
るために上昇管内へ不活性ガスを吹込むとともに、その
不活性ガスに粉状脱硫剤を懸濁させて吹込むにあたり、
内径が6!lll11以下の柵い羽口を複数本用いて不
活性ガスおよび粉状脱硫剤を吹込むことにより、溶鋼中
SlilOppm以下という恒低硫滅まで確実かつ安定
して脱硫することかでき、したがってS含有但がiop
pm以下でしかも低窒素、低水素の抄低硫絹を工業的に
安定して製造し得る顕苔な効果が得られる。
As is clear from the above explanation, according to the method of this invention,
In order to generate a flow of molten steel during the vacuum descaling process of melting, an inert gas is blown into the riser pipe, and a powdered desulfurization agent is suspended in the inert gas and blown in.
The inner diameter is 6! By injecting inert gas and powdered desulfurization agent using multiple fence tuyeres of 11 or less, it is possible to reliably and stably desulfurize the molten steel to a constant low sulfurization of less than SlilOppm. However, IOP
A significant effect can be obtained that allows industrially stable production of low-sulfurized silk with low nitrogen and low hydrogen as well as below pm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実煎している状況の一例を示
す8N略図て゛ある。 1・・・真孕柵、 2・・・上昇管、 3・・・下降管
、 5・・・溶鋼、 7・・・羽目。 出願人  川萌製鉄株式会社 代理人  弁理士 豊田武久 (ほか1名)
FIG. 1 is a 8N schematic diagram showing an example of a situation in which the method of the present invention is put into practice. 1... Real fence, 2... Ascending pipe, 3... Descending pipe, 5... Molten steel, 7... Wind. Applicant Kawamoe Steel Co., Ltd. Agent Patent attorney Takehisa Toyoda (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 真空槽の下面から下方に延びる2本の管を取鍋内溶鋼中
に浸漬させ、一方の管中に不活性ガスを吹込んで溶鋼を
取践−真空槽内において循環させつつ溶鋼を真空処理す
るにあたり、前記不活性ガス中に粉状脱硫剤を懸濁させ
て吹込むことにより溶鋼の脱硫処理を併せて行なう方法
において、前記不活性ガスおよび粉状脱硫剤を、前記一
方の管に設けられた内径6mm+以下の複数本の羽口か
ら吹込むことを特徴とする溶鋼の脱硫方法。
Two tubes extending downward from the bottom of the vacuum chamber are immersed in the molten steel in a ladle, and an inert gas is blown into one of the tubes to treat the molten steel.The molten steel is vacuum treated while being circulated within the vacuum chamber. In this method, the inert gas and the powder desulfurization agent are provided in one of the pipes, in the method of simultaneously performing the desulfurization treatment of molten steel by suspending and blowing a powder desulfurization agent into the inert gas. A method for desulfurizing molten steel characterized by injecting it from multiple tuyeres with an inner diameter of 6 mm or less.
JP8363983A 1983-05-13 1983-05-13 Method for desulfurizing molten steel Pending JPS59208011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8363983A JPS59208011A (en) 1983-05-13 1983-05-13 Method for desulfurizing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8363983A JPS59208011A (en) 1983-05-13 1983-05-13 Method for desulfurizing molten steel

Publications (1)

Publication Number Publication Date
JPS59208011A true JPS59208011A (en) 1984-11-26

Family

ID=13808019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8363983A Pending JPS59208011A (en) 1983-05-13 1983-05-13 Method for desulfurizing molten steel

Country Status (1)

Country Link
JP (1) JPS59208011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223120A (en) * 1985-03-29 1986-10-03 Nippon Steel Corp Method for decreasing inclusion in molten steel
US5011531A (en) * 1987-06-29 1991-04-30 Kawasaki Steel Corporation Method and apparatus for degassing molten metal utilizing RH method
CN103966402A (en) * 2014-05-14 2014-08-06 东北大学 RH (Relative Humidity) vacuum refining system and desulfuration method for molten steel desulfuration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223120A (en) * 1985-03-29 1986-10-03 Nippon Steel Corp Method for decreasing inclusion in molten steel
JPH0312126B2 (en) * 1985-03-29 1991-02-19 Nippon Steel Corp
US5011531A (en) * 1987-06-29 1991-04-30 Kawasaki Steel Corporation Method and apparatus for degassing molten metal utilizing RH method
CN103966402A (en) * 2014-05-14 2014-08-06 东北大学 RH (Relative Humidity) vacuum refining system and desulfuration method for molten steel desulfuration
CN103966402B (en) * 2014-05-14 2016-07-13 东北大学 RH vacuum refining system and sulfur method for molten steel desulfurizing

Similar Documents

Publication Publication Date Title
KR100214927B1 (en) Vacuum refining method of molten metal
JPS59208011A (en) Method for desulfurizing molten steel
KR940006490B1 (en) Method of producing ultra-low-carbon steel
JPH01188619A (en) Method for rh vacuum degasification
JP2767674B2 (en) Refining method of high purity stainless steel
JP2617948B2 (en) Ladle refining method for molten steel
JPS6159375B2 (en)
JPH05171253A (en) Method for desulfurizing molten steel
JPH05214430A (en) Method for vacuum-refining molten steel
JP3842857B2 (en) RH degassing method for molten steel
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
JPH03226516A (en) Vacuum degassing device for production extra-low carbon steel and operating method thereof
JPS59197532A (en) Dry refining of blister copper
JPH06116624A (en) Method for vacuum-refining molten steel
JPS62205220A (en) Degassing and desulfurizing method for molten steel
JPS6059011A (en) Desulfurizing method of molten metal
JPH04143211A (en) Method and apparatus for vacuum-degassing molten steel
JPH1161237A (en) Production of extra-low carbon steel by vacuum refining
JPH08120324A (en) Apparatus and method for vacuum-refining molten steel
JPH0499119A (en) Method and apparatus for producing dead soft steel
JPH01275715A (en) Vacuum degassing treatment of molten steel by rh type degassing device
JPH04141512A (en) Method for refining ultra low carbon steel by rh process
JPH03134115A (en) Method and apparatus for producing highly clean and extremely low carbon steel
JPH0456716A (en) Method for smelting dead soft steel
JPH06212242A (en) Method for vacuum-refining molten steel in ladle