JPS59207664A - Method of producing semiconductor device - Google Patents

Method of producing semiconductor device

Info

Publication number
JPS59207664A
JPS59207664A JP8606784A JP8606784A JPS59207664A JP S59207664 A JPS59207664 A JP S59207664A JP 8606784 A JP8606784 A JP 8606784A JP 8606784 A JP8606784 A JP 8606784A JP S59207664 A JPS59207664 A JP S59207664A
Authority
JP
Japan
Prior art keywords
polysilicon
metal
manufacturing
polysilicon element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8606784A
Other languages
Japanese (ja)
Inventor
ピ−タ−・デニス・スコベル
ポ−ル・ジヨン・ロツサ−
ゲリ−・ジヨン・トムキンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STC PLC
Original Assignee
Standard Telephone and Cables PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Telephone and Cables PLC filed Critical Standard Telephone and Cables PLC
Publication of JPS59207664A publication Critical patent/JPS59207664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28105Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor next to the insulator having a lateral composition or doping variation, or being formed laterally by more than one deposition step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は半導体装置及びその製造に関し、特にケイ化物
を用いた半導体加工に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices and their manufacture, and more particularly to semiconductor processing using silicides.

集積回路におけるゲート及び相N接続には従来ポリシリ
コン(多結晶シリコン)が用いられていた。しかし小形
高速集積回路ではケイ化物の如ぎ抵抗の低い他の材料を
用いるのが望ましい。ポリシリコンの抵抗率は高<(1
000μΩcm)、20μΩcmの抵抗率を有するニケ
イ化チタン等の幾つかのケイ化物のおよそ50倍となる
ためボリシリコンの相互接続は微細回路では抵抗が非常
に大きい。
Polysilicon (polycrystalline silicon) has traditionally been used for gate and phase N connections in integrated circuits. However, in small high speed integrated circuits it is desirable to use other materials with low resistance, such as silicides. The resistivity of polysilicon is high <(1
Polysilicon interconnects are very resistive in microcircuits, as the resistivity is approximately 50 times that of some silicides, such as titanium disilicide, which has a resistivity of 20 μΩcm) and 20 μΩcm.

かかる相互接続におりる電気信号の伝播遅延は、集中容
量と相互接続線の抵抗の積の関数である。
The propagation delay of an electrical signal through such an interconnect is a function of the lumped capacitance multiplied by the resistance of the interconnect line.

記憶密度及び速度を増加させるよう装置用法を小ざくす
ると、この遅延は抵抗性部月のため顕著になるので新た
な材料を使用する必要がある。ケイ化物は、製造工程の
他の要素と完全に代替しうる材料よりなる。材料の導入
により既存の工程が大きく乱されないならば、新たな材
11の利点は現在の技術で利用できる。
As device usage is scaled down to increase storage density and speed, this delay becomes more pronounced due to resistive components and new materials must be used. Silicides consist of materials that can completely replace other elements of the manufacturing process. The advantages of the new material 11 can be exploited with current technology, provided that the introduction of the material does not significantly disrupt existing processes.

金属層(タングステン、モリブデン、チタン。Metal layers (tungsten, molybdenum, titanium.

タンタル等)を、従来のゲート及び相互接続の形成に用
いられるドーピングされたポリシリコンのシートで相互
拡散することでケイ化物を形成する方法は、従来からあ
る。この不均質な層は、装置のグー1−及び相互接続を
形成するJ、うエツチングされる。しかしドーピングさ
れたポリシリコンに重なるケイ化物は、ポリシリコンと
は異なる速さでエツチングされるので、ゲートでは望ま
しくないアンダカッティングが生じる。
Methods of forming silicides by interdiffusing tantalum (such as tantalum) with sheets of doped polysilicon used in conventional gate and interconnect formation are conventional. This inhomogeneous layer is etched to form the grooves and interconnections of the device. However, the silicide overlying the doped polysilicon etches at a different rate than the polysilicon, resulting in undesirable undercutting at the gate.

グー1〜及び拡散部分をケイ化する方法もあるが、これ
は工程が複雑である。
There is also a method of silicifying Goo 1 and the diffusion portion, but this method requires a complicated process.

1番目の方法のアンダカッティングの問題及び2番目の
方法の複層1牲とににり既存の方法にケイ化物を適用す
ることは非常に困ガであった。
Due to the undercutting problems of the first method and the multi-layered silicides of the second method, the application of silicides to existing methods has been very difficult.

本発明は、シリコン基板の酸化面にに少なくとも1つの
ポリシリコン素子を画成する段階と、少なくとも1つの
画成ポリシリコン素子に側壁を含めて金属被覆を設りる
段階と、金属ポリシリコンとを相方拡散させて少なくと
も1つの画成ポリシリコン素子に少なくとも1つの画成
ポリシリコン素子が配設されている上記酸化面に〒るま
で延在する金属ケイ化物層を形成する段階とからなる半
導体装置の製造方法を提供する。
The present invention includes the steps of: defining at least one polysilicon element on an oxidized surface of a silicon substrate; providing a metallization on the at least one defined polysilicon element, including sidewalls; forming a metal silicide layer extending into the at least one defined polysilicon element to the oxidized surface on which the at least one defined polysilicon element is disposed. A method for manufacturing a device is provided.

第1a〜IC図に示した公知の方法は次の段階からなる
。シリコン基板1−トに、装置のソース。
The known method shown in FIGS. 1a-IC consists of the following steps. The source of the device is placed on the silicon substrate.

ドレイン及びゲート部分が形成されるところで薄くなっ
ている酸化物層2が従来方法で設けられる。
An oxide layer 2 is provided in a conventional manner, which is thinned where the drain and gate parts are to be formed.

ドーピングされた多結晶シリコン(ポリシリコン)3の
層が酸化物2上に設(プられる(第1a図)。
A layer of doped polycrystalline silicon (polysilicon) 3 is provided on the oxide 2 (FIG. 1a).

例えばタングステン、モリブデン、チタン又はタンタル
の金属層4(第1b図)がポリシリコン肋3上に成長さ
せられる。金属ケイ化物層(第1C図)が層3と4とを
相互拡散させることで形成される。次いで構成は装置の
ゲート6及び相互接続(図示せず)が形成されるようエ
ツチングされるが、ケイ化物5はドーピングされたポリ
シリコン3とは異なる速さでエツチングされるので7に
おける如きアンダカッティングが起こる。次いでソース
8及びトレイン9部分が画成され注入又は拡散される。
A metal layer 4 (FIG. 1b), for example tungsten, molybdenum, titanium or tantalum, is grown on the polysilicon ribs 3. A metal silicide layer (FIG. 1C) is formed by interdiffusion of layers 3 and 4. The structure is then etched to form the device gate 6 and interconnects (not shown), but since the silicide 5 is etched at a different rate than the doped polysilicon 3, undercutting as at 7 is required. happens. Source 8 and train 9 portions are then defined and implanted or diffused.

続いて従来の酸化段階(中間酸化物)(図示せず)が行
なわれるが、ゲート6のケイ化物層での酸化は酸化■稈
へ送られる下層ポリシリコンからのシリコンの拡散によ
る。この方法を用いる商業用の加工法はポリサイド法と
よばれる。
A conventional oxidation step (intermediate oxide) (not shown) follows, but the oxidation in the silicide layer of gate 6 is due to the diffusion of silicon from the underlying polysilicon which is fed into the oxidation culm. A commercial processing method using this method is called the polycide method.

ポリサイド法を採用すると、不均質な構成のエツチング
が困封になることを除けば従来のポリシリコン加工に比
べて変更する点は僅かである。
When the polycide method is employed, there are few changes compared to conventional polysilicon processing, except that etching of non-uniform structures becomes difficult.

第2a〜20図に示した伯の公知方法は1J−リサイド
法とJ:ばれ、ゲート相互接続及び拡散部9双5一 方がケイ化される。この方法では、ポリシリコングー1
〜10が基板1十の酸化物層2に従来方法により設りら
れる。CVD(化学気相堆積法)により二酸化ケイ素の
層がグー1〜10及び相互接続(図示せず)上に成長ざ
1!られる。この酸化物はゲート10に隣接する酸化物
の側壁スペーサ11を残すようにして異方的にエツチン
グされる。このエツチングにより、ソース及びドレイン
部分8゜9が従来方法にJこり形成するのに用いられる
窓12が開設され、接触部分及びポリシリコン10」−
の酸化物は除去される。次いでチタン、タンタル等の金
属層が基板面−Fに設cJられ、層の金属とシリコンと
が炉中で相互拡散して金属ケイ化物が形成される。シリ
コンが露出した領域でのみケイ化物が形成され金属が酸
化物上に成長した領域では変化はない。残った(反応し
なかった)金属は、特に拡散部のケイ化物13.第2C
図[こ示す如きグー1〜相互接続部分及び図示しなかっ
た他の相互接続部分を残すようにエツチングされる。こ
の方法はり!J−IJイド(self−aligned
 5ilicide自己整6− 合ケイ化物)どよばれ、ケイ化物が露出したシリコンに
自己整合η−る。続いて従来の酸化段階等が行なわれる
。酸化物側壁スペーサ11のため処理が複雑となるが、
グー1〜からソース/ドレインへの短絡を防止Jるため
には不可欠である。
The known method shown in FIGS. 2a-20 is known as the 1J-reciding method, in which the gate interconnects and the diffusions 9 and 5 are silicided. In this method, polysilicon glue 1
10 are applied to the oxide layer 2 of the substrate 10 in a conventional manner. A layer of silicon dioxide is grown by CVD (chemical vapor deposition) over the gooses 1-10 and interconnects (not shown). It will be done. The oxide is etched anisotropically leaving oxide sidewall spacers 11 adjacent gate 10. This etching opens windows 12 that are used to form the source and drain portions 8.9 in a conventional manner, contact areas and polysilicon 10''.
oxides are removed. A layer of metal, such as titanium or tantalum, is then applied to the substrate surface -F, and the metal of the layer and silicon interdiffuse in a furnace to form a metal silicide. Silicide forms only in areas where silicon is exposed; areas where metal is grown on the oxide remain unchanged. The remaining (unreacted) metal is especially the silicide 13. in the diffusion zone. 2nd C
Figure 1 is etched to leave interconnections as shown and other interconnections not shown. This method works! J-IJ ID (self-aligned)
The silicide is self-aligned to the exposed silicon. This is followed by conventional oxidation steps and the like. Although the processing is complicated due to the oxide sidewall spacer 11,
This is essential to prevent short circuits from the source/drain to the source/drain.

第3a〜3C図は本発明の〜実施例を示したものである
。第3a図はソース及びドレイン部分21.22が、選
択的拡散又は注入等の適当な方法で設()られたシリコ
ン基板20を示づ。酸化物層23は基板20の全表面上
に延在し、図示の如くソース、トレイン、ゲート部分で
は適当イi方法にJ:り幼くされている。ドーピングさ
れた多結晶シリコン(ポリシリコン)を酸化物231−
に設け、エツチング1ノで、ソース及びドレイン部分2
1゜22及び相n接続(図示けず)と整合するポリシリ
コングー]〜24を画成Jる。チタン、タングスデン、
タンタル、モリブデン等の金属層(第3b図)をポリシ
リコングー1−24.相互接続及び露出酸化物231−
に形成Jる。次のアニーリング工程中に、ポリシリコン
グー1へ24及びポリシリコン相互接続上の金属はそれ
らと金属ケイ化物を形成づるよう相互拡散するが、金属
と直下の酸化物とは反応を起こさ!fい。残った(反応
しなかった)金属は、グー1〜2/I上及びその側壁近
くと相互接続1−及び近くの金属ケイ化物26(第3C
図)が残るようにしてユーツチングされる。続いて、下
にあるポリシリコンをゲートにお4jる酸化のシリコン
源として用いる従来の中間酸化が行なわれる。
Figures 3a-3c show embodiments of the invention. Figure 3a shows a silicon substrate 20 in which source and drain portions 21, 22 have been provided by any suitable method, such as selective diffusion or implantation. The oxide layer 23 extends over the entire surface of the substrate 20 and is thinned in a suitable manner at the source, train, and gate portions as shown. Doped polycrystalline silicon (polysilicon) with oxide 231-
The source and drain portions are etched 1 and the source and drain portions 2 are etched.
1° 22 and a polysilicon layer matching the phase n connections (not shown). titanium, tungsden,
A metal layer such as tantalum or molybdenum (Figure 3b) is coated with polysilicon glue 1-24. Interconnects and exposed oxide 231-
Formed in During the next annealing step, the metal on the polysilicon goo 1 and the polysilicon interconnect interdiffuses to form a metal silicide with them, but the metal and the underlying oxide do not react! F. The remaining (unreacted) metal is deposited on the goo 1-2/I and near its sidewalls and on the interconnect 1- and near the metal silicide 26 (3rd C).
(Fig.) remains. This is followed by a conventional intermediate oxidation using the underlying polysilicon as the silicon source for the gate 4j oxidation.

ポリシリコングー1へ24及び相互接続を画成するのに
用いられるエツチング液は、拡散部分21及び22上の
酸化物23を残すのに充分選択的でな(プればならず、
さもないとケイ化物はこれらの部分でグー1−がソース
/ドレインと短絡を起こすように形成されてしまう。
The etchant used to define the etch 24 and interconnections to the polysilicon goo 1 must be sufficiently selective to leave the oxide 23 on the diffusion areas 21 and 22.
Otherwise, silicide will form in these areas such that the goo will short to the source/drain.

アニーリング方法と1)では、加工済シリコン基板の温
度を10秒以内800°Cまで上背させた後自然冷却さ
せる過渡(パルス)法が適当である。このアニーリング
は、窒素でパージされて酸素及び水分の濃度が2 rp
m以下である室の中で行なわれる。かかるアニーリング
は、例えばアメリカ会衆(ηカリフォルニア州パロ ア
ルドのA、G、アソシエーツの「ビー1−パルス」の如
き商用ハロゲランプアニーリング装置を用いて行なえる
For the annealing method 1), a transient (pulse) method is suitable in which the temperature of the processed silicon substrate is raised to 800° C. within 10 seconds and then allowed to cool naturally. This annealing is performed by purging with nitrogen to reduce the oxygen and moisture concentration to 2 rp.
It is carried out in a room with a size of less than m. Such annealing can be carried out using a commercial halogen lamp annealing device, such as the "Be 1-Pulse" manufactured by A.G. Associates of Palo Aldo, Calif., for example.

チタンの場合には、チタンは酸素と親和性が強いため通
常の炉によるアニーリングではクイ化物が形成される以
前に金属の酸化が起こってしまうから、チタンどポリシ
リコンの相U拡散にはかかるパルスアニーリング法が必
要とされる。通常の炉では不活性ガス(窒素)を使用し
ても、炉に装架する間にウェーハ間にどじこめられた空
気及び不活性ガスへの少量の酸素及び水分の混入により
顕著な酸化が起こる。
In the case of titanium, since titanium has a strong affinity for oxygen, oxidation of the metal occurs before sulfide is formed during annealing in a normal furnace. An annealing method is required. Even if an inert gas (nitrogen) is used in a normal furnace, significant oxidation occurs due to the air trapped between the wafers while they are placed in the furnace and small amounts of oxygen and moisture mixed into the inert gas. .

本願ど同一の出願人にJ:る英国特許出願第82032
42号(公開番号第2114809号)は、複数の交番
式″る層として成長させられ又は]スパッタリングされ
、パルスアニーリングされたチタン及びシリコンからケ
イ化物を形成することに関する。しかし本願は、画成ポ
リシリコン素子上の単一で分離した好ましくはチタンに
よる金属層を相互拡散することでケイ化物層を形成する
ことに関し、これ−〇− は容易に既存の製造工程に絹み込むことができる。
UK Patent Application No. 82032 filed by the same applicant as the present application
No. 42 (Publication No. 2,114,809) relates to forming silicides from titanium and silicon grown as multiple alternating layers or sputtered and pulse annealed. Regarding the formation of a silicide layer by interdiffusion of a single, separate metal layer, preferably titanium, on a silicon element, this can be easily integrated into existing manufacturing processes.

本発明の方法は、ポリサイド法に類似するが、グー[へ
及び相互接続が金属成長段階以前に画成されるためアン
ダカッティングが起こらないという点で異なる。本発明
の方法は従来のハn工法とともに実施することができ、
従来のポリシリコン加工の全体を顕著に乱さないまま低
い抵抗値の相互接続が得られ出来あがったケイ化物成分
の酸化可能性が保持される。
The method of the present invention is similar to the polycide method, but differs in that undercutting does not occur because the goo and interconnects are defined before the metal growth step. The method of the present invention can be carried out together with the conventional Han construction method,
Low resistance interconnects are obtained without significantly disturbing the overall conventional polysilicon process, and the oxidizability of the resulting silicide components is preserved.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図乃至第1C図は公知の半導体製造方法による連
続する段階の概略断面図、第2a図乃至第2C図は公知
の別の半導体製造方法による連続する段階の概略断面図
、第3a図乃至第3C図は本発明による半導体製造方法
の連続する段階の概略断面図である。 1.20・・・シリコン基板、2.23・・・酸化物層
、3・・・ポリシリコン層、4,25・・・金属層、5
゜13.26・・・ケイ化物、6,10.24・・・ゲ
ート、7・・・アンダカッティング、8・・・ソース、
9・・・トレー1〇− イン、11・・・スペーサ、12・・・窓、21.22
・・・ソース、ドレイン。 特許出願人 スタンダード デレフオンズアンド ケー
ブルス パブリック 11−
1a to 1C are schematic sectional views of successive steps according to a known semiconductor manufacturing method, FIGS. 2a to 2C are schematic sectional views of successive steps according to another known semiconductor manufacturing method, and FIGS. 3a to 3C are schematic sectional views of successive steps according to a known semiconductor manufacturing method. FIG. 3C is a schematic cross-sectional view of successive stages of a semiconductor manufacturing method according to the invention. 1.20... Silicon substrate, 2.23... Oxide layer, 3... Polysilicon layer, 4, 25... Metal layer, 5
゜13.26...silicide, 6,10.24...gate, 7...undercutting, 8...source,
9...Tray 1〇-in, 11...Spacer, 12...Window, 21.22
...source, drain. Patent Applicant Standard DereFons & Cables Public 11-

Claims (1)

【特許請求の範囲】 (1)  シリコン基板の酸化面上に少なくとも1つの
ポリシリコン素子を画成する段階と、少なくとも1つの
画成ポリシリコン素子に側壁を含めて金属被覆を設ける
段階と、金属ポリシリコンとを相互拡散させて少なくと
も1つの画成ポリシリコン素子上に少なくとも1つの画
成ポリシリコン素子が配設されている該酸化面に至るま
で延在する金属ケイ化物層を形成する段階とからなる半
導体装置の製造方法。 [F] 少なくとも1つのポリシリコン素子はポリシリ
コンゲートからなることを特徴とする特許請求の範囲第
1項記載の製造方法。 (3)少なくとも1つのポリシリコン素子周囲のシリコ
ン基板の酸化面部分は金属被覆段階中に金属被覆を設け
られ、金属は相互拡散段階後に該部分から除去されるこ
とを特徴とする特許請求の範囲第1項記載の製造方法。 (71)  基板にソース及びドレイン部を画成づる段
階は少なくとも1つのポリシリコン素子の画成に先行す
ることを特徴とする特許請求の範囲第1項記載の製造方
法。 6)金属はヂタンであることを特徴とする特許請求の範
囲第1項記載の製造方法。 6)相n拡散は、不活11雰囲気内でのパルスアニーリ
ングにより行なわれることを特徴とする特許請求の範囲
第5項記載の製造方法。
Claims: (1) defining at least one polysilicon element on an oxidized surface of a silicon substrate; providing a metallization on the at least one defined polysilicon element, including sidewalls; interdiffusing with polysilicon to form a metal silicide layer extending over the at least one defined polysilicon element to the oxidized surface on which the at least one defined polysilicon element is disposed; A method for manufacturing a semiconductor device comprising: [F] The manufacturing method according to claim 1, wherein at least one polysilicon element is made of a polysilicon gate. (3) The oxidized surface portion of the silicon substrate surrounding the at least one polysilicon element is provided with a metallization during the metallization step, and the metal is removed from the portion after the interdiffusion step. The manufacturing method according to item 1. 71. The method of claim 1, wherein the step of defining source and drain regions in the substrate precedes defining at least one polysilicon element. 6) The manufacturing method according to claim 1, wherein the metal is dithane. 6) The manufacturing method according to claim 5, wherein the n-phase diffusion is performed by pulse annealing in an inert 11 atmosphere.
JP8606784A 1983-05-05 1984-04-27 Method of producing semiconductor device Pending JPS59207664A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB8312280 1983-05-05
GB08312280A GB2139418A (en) 1983-05-05 1983-05-05 Semiconductor devices and conductors therefor
GB8328552 1983-10-26

Publications (1)

Publication Number Publication Date
JPS59207664A true JPS59207664A (en) 1984-11-24

Family

ID=10542195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8606784A Pending JPS59207664A (en) 1983-05-05 1984-04-27 Method of producing semiconductor device

Country Status (2)

Country Link
JP (1) JPS59207664A (en)
GB (1) GB2139418A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242938A (en) * 1991-01-08 1992-08-31 Mitsubishi Electric Corp Electrode wiring layer of semiconductor device and its manufacture
GB2320134A (en) * 1996-12-04 1998-06-10 United Microelectronics Corp Salicide electrodes for semiconductor devices
CN1067804C (en) * 1997-04-10 2001-06-27 联华电子股份有限公司 Method for making self-aligning silicide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2815605C3 (en) * 1978-04-11 1981-04-16 Siemens AG, 1000 Berlin und 8000 München Semiconductor memory with control lines of high conductivity
NL8002609A (en) * 1979-06-11 1980-12-15 Gen Electric COMPOSITE CONDUCTIVE STRUCTURE AND METHOD FOR MANUFACTURING THAT.
US4305200A (en) * 1979-11-06 1981-12-15 Hewlett-Packard Company Method of forming self-registering source, drain, and gate contacts for FET transistor structures
JPS56134757A (en) * 1980-03-26 1981-10-21 Nec Corp Complementary type mos semiconductor device and its manufacture
NL186352C (en) * 1980-08-27 1990-11-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
US4378628A (en) * 1981-08-27 1983-04-05 Bell Telephone Laboratories, Incorporated Cobalt silicide metallization for semiconductor integrated circuits

Also Published As

Publication number Publication date
GB8312280D0 (en) 1983-06-08
GB2139418A (en) 1984-11-07

Similar Documents

Publication Publication Date Title
US6522001B2 (en) Local interconnect structures and methods for making the same
US6096640A (en) Method of making a gate electrode stack with a diffusion barrier
US5318924A (en) Nitridation of titanium-tungsten interconnects
US5821623A (en) Multi-layer gate structure
US5403759A (en) Method of making thin film transistor and a silicide local interconnect
JPH08191054A (en) Semiconductor device and manufacture thereof
EP0463373A2 (en) Local interconnect using a material comprising tungsten
US5911114A (en) Method of simultaneous formation of salicide and local interconnects in an integrated circuit structure
JP3224787B2 (en) Contact with flat interface for metal-silicon contact barrier coating and method of making same
US6200910B1 (en) Selective titanium nitride strip
US4563805A (en) Manufacture of MOSFET with metal silicide contact
JP3629326B2 (en) Manufacturing method of semiconductor device
US5852319A (en) Gate electrode for semiconductor device
JP2001156022A (en) Method of manufacturing semiconductor device
JPH0778814A (en) Local interconnection by silica material
EP0124960A2 (en) Semiconductor devices comprising silicides
JPS59207623A (en) Method of producing semiconductor device
JPS59207664A (en) Method of producing semiconductor device
JP3992439B2 (en) Manufacturing method of semiconductor device
US5877085A (en) Method of manufacturing semiconductor device
JP3028519B2 (en) Manufacturing method of semiconductor integrated circuit
JPH09283464A (en) Manufacture of semiconductor device
JPH0756866B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2000133705A (en) Manufacture of semiconductor device
JP3451634B2 (en) Metal material deposition method