JPS59206786A - Radio direction finder - Google Patents

Radio direction finder

Info

Publication number
JPS59206786A
JPS59206786A JP8099183A JP8099183A JPS59206786A JP S59206786 A JPS59206786 A JP S59206786A JP 8099183 A JP8099183 A JP 8099183A JP 8099183 A JP8099183 A JP 8099183A JP S59206786 A JPS59206786 A JP S59206786A
Authority
JP
Japan
Prior art keywords
memory
circuit
signal
memory group
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8099183A
Other languages
Japanese (ja)
Other versions
JPH0156388B2 (en
Inventor
Toshio Kurimura
栗村 俊男
Hiroshi Kagaya
加賀谷 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP8099183A priority Critical patent/JPS59206786A/en
Publication of JPS59206786A publication Critical patent/JPS59206786A/en
Publication of JPH0156388B2 publication Critical patent/JPH0156388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/52Systems for determining direction or deviation from predetermined direction using a receiving antenna moving, or appearing to move, in a cyclic path to produce a Doppler variation of frequency of the received signal
    • G01S3/54Systems for determining direction or deviation from predetermined direction using a receiving antenna moving, or appearing to move, in a cyclic path to produce a Doppler variation of frequency of the received signal the apparent movement of the antenna being produced by coupling the receiver cyclically and sequentially to each of several fixed spaced antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To improve S/N and to obtain a stable azimuth by processing an azimuth signal component digitally, overlapping the signal component in a memory and reading out past data stored in the memory instead of input data at the time of instantaneous interruption or the like. CONSTITUTION:Non-directional antennas A1-An are arranged on a circumference at an equal interval and successively switched and scanned and a product of a radio wave arriving direction, i.e. a bearing signal, detected by the phase change of a receiving signal and an internal signal obtained by an internal signal generating circuit is outputted and stored successively in memory groups 410, 411 consisted of a memory corresponding to individual antenna. The stored values are multiplied by an adder 412 during a period of the integer times of a scanning period to control the phase of the internal signal. The product outputs are accumulated in the memory group 410 by a prescribed period and then transferred to the memory group 411 to control the phase of the internal signal, and when input of the memory group 410 is incorrect because of the instantaneous interruption of received radio wave or the like, the values of the memory group 411 are processed and inputted to the memory group 410.

Description

【発明の詳細な説明】 無指向性アンテナを円周上に等間隔に配置してこれを順
次切替え、受信して得られる受信信号の位相変化より、
受信電波の到来方位を知るいわゆる静止形ドプラ方向探
知機においては、検波器例えばテイスクリ又はPLL 
(位相同期回路)などにより上記位相袈化成分を抽出し
てアンテナ走五基準信号との位相差を測定して到来電波
の方位とするのであるが、抽出された方位成分は一般K
M:音を含んでおり、極めてS/N比が悪いので直接前
述の位相差測定を行うことは出来ない。
[Detailed description of the invention] From the phase change of the received signal obtained by arranging omnidirectional antennas at equal intervals on the circumference and switching them sequentially,
In a so-called stationary Doppler direction finder that determines the direction of arrival of received radio waves, a wave detector such as a TASCRE or PLL is used.
The phase shift component is extracted using a phase synchronization circuit (phase synchronization circuit), and the phase difference with the antenna travel reference signal is measured to determine the direction of the incoming radio wave.
M: Contains sound and has an extremely poor S/N ratio, so the above-mentioned phase difference measurement cannot be directly performed.

このためP波器又は別に設けた位相安定化回路により方
位成分中の有効成分の抽出を行うのであるが、何分にも
この方位信号成分は周波数が低いので応答速度がはなは
だおそくなる。又方位信号成分に瞬断や混信等があると
その過渡現象が長く続き方位が定まらなくなる等の欠点
があった。
For this reason, the effective component in the azimuth component is extracted using a P-wave device or a separately provided phase stabilization circuit, but since this azimuth signal component has a low frequency, the response speed becomes extremely slow. Furthermore, if there is a momentary interruption or interference in the azimuth signal component, the transient phenomenon continues for a long time and the azimuth cannot be determined.

父方位信号成分は受信機通過中にある一定の遅延をうけ
るので前記の抽出された方位信号成分とアンテナ走査基
準信号との位相差測定径遅延に相当する値の補正を行う
必要もありこの補正値を安定に保つのも困難の一つであ
った。
Since the direction signal component undergoes a certain delay while passing through the receiver, it is also necessary to correct the value corresponding to the phase difference measurement diameter delay between the extracted direction signal component and the antenna scanning reference signal. Keeping the value stable was also one of the difficulties.

本発明は方位信号成分をデジタル的に処理してメモリー
上で重ね合せ法によl)S/N比の改善をはかると共に
、瞬断等に対してはメモリーに記憶しである過去のチー
ターを読出してこれを人カテータとして代用することに
より安定した方位を与え、前述の黄11点を解消したす
ぐれた無線方位測定(幾を提供するものである。
The present invention digitally processes the azimuth signal component and superimposes it on the memory to improve the S/N ratio, and also to store past cheaters in the memory in case of instantaneous interruptions, etc. By reading this out and using it as a human catheter, a stable direction is given, and the above-mentioned yellow 11 points are eliminated, providing an excellent wireless direction measurement.

第1図は本発明の一実施例を示す系統図、第2図は信号
処理回路の詳細を示す系統図、第3図。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a system diagram showing details of a signal processing circuit, and FIG. 3 is a system diagram showing details of a signal processing circuit.

第4図、第5図は各ブロックの詳細説明図、第6図は谷
部の動作を示す波形図、第7図は遅延分周lDJ路の動
作を示す波形図である。
4 and 5 are detailed explanatory diagrams of each block, FIG. 6 is a waveform diagram showing the operation of the valley, and FIG. 7 is a waveform diagram showing the operation of the delay frequency division lDJ path.

1はアンテナ群で第3図に示すように円周上に等間隔に
配置された同一特性の無指向性アンテナA1〜Anの中
心に同様特性のアンテナA。を設けその出力を受信機3
10RF入力端子に接続する。2はアンテナ切替器でア
ンテナA1〜Anの出力を順次切替走査してその出力を
受信機32のRF入力端子に接続する。3は局部発振器
の共通な主受信機31及び従受信機32で構成された2
チヤンネル受信機で主受信機31の周波数を調整するこ
とによシ従受信機320周波数も同時に調整することが
出来、同一の電波を同時に受信出来るようになっている
。なおA+〜Anアンテナを順次切替走査して電波を受
信すると受信信号は第6図(a) (8本アンテナの例
を示す)のようなアンテナ配置に関係すけられた位相変
調を受けることは%56−35828でも既に公知であ
る。
1 is an antenna group, and as shown in FIG. 3, an antenna A having the same characteristics is located at the center of omnidirectional antennas A1 to An having the same characteristics arranged at equal intervals on the circumference. and send its output to receiver 3
Connect to the 10RF input terminal. 2 is an antenna switcher which sequentially switches and scans the outputs of the antennas A1 to An and connects the output to the RF input terminal of the receiver 32. 3 is composed of a main receiver 31 and a slave receiver 32 with a common local oscillator.
By adjusting the frequency of the main receiver 31 with the channel receiver, the frequency of the slave receiver 320 can also be adjusted at the same time, so that the same radio waves can be received at the same time. Note that when receiving radio waves by sequentially switching and scanning A+ to An antennas, the received signal will not undergo phase modulation due to the antenna arrangement as shown in Figure 6(a) (example of 8 antennas). 56-35828 is also already known.

2チャンネル受信機3でそれぞれ増幅されたIF高出力
信号処理回路4へ加えられ増幅検波されて所定の方位信
置が得られる。信号処理回路4では別に基準信号を発生
しこれをアンテナ切替信号発生回路6に加え各アンテナ
の切替走査信号を発生ずる。前述の方位信号は信号処理
回路内の加算回あで平均処理される。この出力は指示器
5に加えられ3桁又は4桁のデジタル方位測定値を数字
表示器に表示すると同時に、ブラウン管上に当該方位を
指示する単ベラ像又は単向外線像として表示される。
The signals are amplified by the two-channel receiver 3 and then applied to the IF high-output signal processing circuit 4 where they are amplified and detected to obtain a predetermined azimuth signal. The signal processing circuit 4 separately generates a reference signal and applies this to the antenna switching signal generating circuit 6 to generate switching scanning signals for each antenna. The above-mentioned azimuth signal is subjected to average processing in an addition circuit within the signal processing circuit. This output is applied to the indicator 5 to display a 3-digit or 4-digit digital azimuth measurement value on the numerical display, and at the same time, it is displayed on the cathode ray tube as a single image or a single external line image indicating the azimuth.

第2図は信号処理回路4の詳細を示したものである。4
]Jll:第4図に示すような構成よシなるFM成分除
去回路で、2チャンネル受信機3で増幅されたIF高出
力二つの入力端子に加わり二つの周波数の異なる局部発
振器41c 、 41dによシそれぞれ周波数変換器4
1a 、 41bで周波数変換された後、更に別に設け
た周波数変換器41eによシ混合され1つのビート信号
に変換される。このようにFM成分除去回路を通すこと
により受信電波に附与されている周波数変調成分を除去
することが出来る。
FIG. 2 shows details of the signal processing circuit 4. 4
] Jll: An FM component removal circuit having a configuration as shown in FIG. Frequency converter 4
After being frequency-converted by 1a and 41b, the signals are further mixed by a separately provided frequency converter 41e and converted into one beat signal. By passing the received radio wave through the FM component removal circuit in this manner, it is possible to remove the frequency modulation component imparted to the received radio wave.

従ってFM(FS) 、 SSB等のような電波でも方
位信号へのしよう乱を除去することが出来、安定な方位
測定が可能になる。
Therefore, even with radio waves such as FM (FS) and SSB, disturbances to the direction signal can be removed, making stable direction measurement possible.

又通常受信信号に周波数変化を伴う変調が附与されてい
ない場合でも、上述の回路を通してアンテナ切替えによ
シ伯られる位相変化成分を抽出出来ることは言う迄もな
いことである。FM成分除去回路の出力はPLL又はテ
イスクリ及び積分器等で構成された検波回路43で検波
され位相の変換点で急激に電圧の変化する第6図(b)
のような信号が得られるので、これを積分するとアンテ
ナの切替走督によって生じた位相良化、第6図(a)と
も・価な信号第6図(c)が得られる。この方位信号は
第6図(d)のような両波整流波形とし、た俵れt回路
44に加える。
It goes without saying that even if the received signal is not normally modulated with frequency changes, the phase change component caused by antenna switching can be extracted through the circuit described above. The output of the FM component removal circuit is detected by a detection circuit 43 composed of a PLL, a repeater, an integrator, etc., and the voltage changes rapidly at the phase change point as shown in FIG. 6(b).
A signal such as shown in FIG. 6(a) is obtained, and by integrating this signal, a signal shown in FIG. 6(c), which is similar to that in FIG. 6(a) due to the phase improvement caused by the switching of the antenna, is obtained. This azimuth signal has a double-wave rectified waveform as shown in FIG.

乞 42は信号検出回路でAoアンテナ出出力増増幅て得ら
れたIF高出力FM成分除去回路を通して入力に加えら
れる。このIF大入力振幅及び中心周波数を検出し、そ
のAND (論理積)を取って検波回路43とメモリ制
御回路413に加えられ検波回路に於ては電波の瞬断時
にPLLの無用の混乱をさけるためPLLの動作を一時
的に停止させ、又メモリ制御回路に於ては第1メモリー
回路への人力をADC45の出力から第2メモリー回路
の出力に切替える為に用いる。積回路44は第5図に示
すように引算器4.4aとSlNROM 44bによシ
構成されている。
The signal 42 is added to the input through the IF high output FM component removal circuit obtained by amplifying the Ao antenna output output using the signal detection circuit. This IF large input amplitude and center frequency are detected, ANDed and applied to the detection circuit 43 and memory control circuit 413, and the detection circuit avoids unnecessary confusion in the PLL at the moment of momentary interruption of radio waves. Therefore, the operation of the PLL is temporarily stopped, and the memory control circuit uses the human power applied to the first memory circuit to switch from the output of the ADC 45 to the output of the second memory circuit. As shown in FIG. 5, the product circuit 44 is composed of a subtracter 4.4a and an SlNROM 44b.

す々わちSlNROM44b id:複数ビットの入出
力を持ちSIN波の1周期又1は半周期分メモリーされ
ており、内部信号発生用分周回路47の出力が入力され
ると第6121 (e)のような変化をする複数ビット
のデジタル値が荀られる。この信号の波形図はSlNR
OMの入出力ビット数によって定寸る階段的SIN状の
変化をするのであるが、簡単のためその平均位相で描い
である。−81算器44aは2つの入力の積を与えるも
のであって、前記検波出力両鼓整流波形第6図(d)の
アナログ信号と上記S IN ROMの出力第4図(e
)のデジタル信号との掛算を行い両信号の位相が丁度9
0°差、つ丑り(d)図の波形と(e)図Xとの積出力
、第6図(f)のような出力が得られるO3lNROM
の出力が(e)図Y 、 (e)図Zの各場合の積回路
出力は波形図(g) 、 (h)に示すように変化する
SINROM44b ID: It has input/output of multiple bits and one period or half period of SIN wave is stored in memory, and when the output of the internal signal generation frequency dividing circuit 47 is input, the 6121 (e) A multi-bit digital value that changes as follows is recorded. The waveform diagram of this signal is SlNR
Although it changes in a stepwise SIN shape whose size is determined by the number of input/output bits of the OM, the average phase is depicted for simplicity. The -81 calculator 44a gives the product of two inputs, the analog signal of the detected output rectified waveform in FIG. 6(d) and the output of the S IN ROM in FIG. 4(e).
) with the digital signal and the phase of both signals is exactly 9.
O3lNROM with 0° difference, product output of the waveform in figure (d) and figure X in figure (e), output as shown in figure 6 (f).
The product circuit output changes as shown in the waveform diagrams (g) and (h) when the output is as shown in (e) Figure Y and (e) Figure Z.

前述の−III 算器は本発明の実施例では1つの入力
がアナログ他の入力かデジタル形式のものであるか、両
人力がアナログ形式のものでもデジタル形式のものでも
結果は全く同一である。引算回路44の出力は次段のA
DC(アナログテジタル変挾器)に加えられ第6図(f
)に示す信号の並列複数ビットのデジタル値として次の
第1メモリ回路410に入力される。
In the embodiment of the present invention, the above-mentioned -III calculator gives exactly the same result regardless of whether one input is an analog input or a digital input, and whether both inputs are analog or digital. The output of the subtraction circuit 44 is A of the next stage.
Figure 6 (f) is added to the DC (analog digital converter).
) is input to the next first memory circuit 410 as a parallel multi-bit digital value.

前述した内部信号発生用分周回路47はカウンター及び
複数ビットの入出力を持つプリセソタブルカウ/りで構
成されてお9、基準信号発振器48よ逆入力された信号
はカラ/りで分周されて、ブリセツタブルカウ/りの入
力となり最大ビットが検波出力第6図(C)の1f¥期
と周波数が完全に一致するように所定の分周を行うと同
時にプリセット入力に必要な数イーをプリセントするこ
とにより各出カビソトの位相を進めたシ遅らせたりする
ことが出来、その結果として前述のSIN ROM 4
4bの両波整流出力第6図(e)の位相を進め又は遅ら
せて積回路出力が(f)図の波形によるように?tii
l (allfするのである。
The frequency dividing circuit 47 for internal signal generation mentioned above is composed of a counter and a presettable counter having input/output of multiple bits 9, and the signal inputted inversely from the reference signal oscillator 48 is frequency-divided by color/2. Then, it becomes the input of the presettable counter, and the maximum bit is divided by a predetermined frequency so that the frequency completely matches the 1f period of the detection output in Figure 6 (C).At the same time, the number required for the preset input is By precenting E, it is possible to advance or delay the phase of each output, and as a result, the above-mentioned SIN ROM 4
Is the double-wave rectified output of 4b advanced or delayed in phase in Fig. 6(e) so that the product circuit output has the waveform in Fig. 6(f)? tii
l (I'm going to allf.

基準信号発振器は水晶又は自励式クロック及び基糸信号
発生用発振器でその出力は内部信号発生用分周回路47
及び遅延分周回路46の入力となる。
The reference signal oscillator is a crystal or self-excited clock and base signal generation oscillator, and its output is an internal signal generation frequency divider circuit 47.
and becomes an input to the delay frequency divider circuit 46.

遅延分周回路46はアップダウンカウンタで構成された
アンテナ走査基準信号を発生する分周回路で受信信号が
受信機通過中に生じた遅延時間を補正した出力をアンテ
ナ切替信号発生回路6に加えて正しい方位指示を与える
ためのものである。49は遅延時間設定器でデジタルス
イッチ蝙で構成され、テジタル出力を遅延分周回路4−
6のアップダウンカウンタのプリセット人力に加えプリ
セットL7、アンプカウントせしめればプリセット値た
り遅延分周回路出力は位相が進むことになる。すなわち
複数ビット出力のアップダウンカウンタはクロック人力
によ、!111 m 71klのようにカラ/りの内容
が0からフルカウント迄変化しこれを順次くり返す。
The delay frequency divider circuit 46 is a frequency divider circuit that generates an antenna scanning reference signal composed of an up-down counter.The delay frequency divider circuit 46 is a frequency divider circuit that generates an antenna scanning reference signal, and is configured by adding an output corrected for the delay time that occurs while the received signal passes through the receiver to the antenna switching signal generation circuit 6. This is to give correct directions. 49 is a delay time setting device, which is composed of a digital switch, and the digital output is connected to the delay frequency divider circuit 4-
If the preset L7 and amplifier count are applied in addition to the manual preset of the up/down counter 6, the phase of the preset value and the output of the delay frequency divider circuit will advance. In other words, the up/down counter with multi-bit output is powered by the clock! As shown in 111 m 71 kl, the content of the color/re changes from 0 to full count, and this is repeated sequentially.

従ってAi+述のようにRの時点に於てPなる数値をカ
ウンタにプリーヒツトすオしば、第7図の点線のように
出力はり〜化するので、プリセットする前の実線の波形
に対してqだけ位相が進むことになる。
Therefore, if the value P is preheated to the counter at the time point R as described in Ai+, the output level will change to ~ as shown by the dotted line in Figure 7, so the waveform of the solid line before presetting is The phase will advance by

このようにすると受信機中で生じた遅延が自動的に補正
され恨彼器出力Qユ正し5く基準信号に対する電波の方
位を指示することが出来る。
In this way, the delay occurring in the receiver is automatically corrected, and the receiver output Q can correctly indicate the direction of the radio wave relative to the reference signal.

410は第1メモリ回跳、411は第2メモリ回路でA
l)C(アナログ・テジタル変換器)45の出力は第1
メモリ回路に蓄積される。
410 is the first memory circuit, 411 is the second memory circuit, and A
l) The output of C (analog-digital converter) 45 is the first
stored in the memory circuit.

第1メモリ回路への入力に際して各アンテナの出力こと
にメモリエリアを設けてIiU次入力しこれを所定回数
mだけ蓄積する。、、第1メモリ回路の出力はm回の蓄
積が終了すると第2メモリ回路へ転送され同時に第1メ
モリ回路の内容はクリアされ、Si」述のような蓄積を
くシ返す。
When inputting to the first memory circuit, a memory area is provided for the output of each antenna, and IiU is inputted and stored a predetermined number of times m. . . . When the m-times of accumulation is completed, the output of the first memory circuit is transferred to the second memory circuit, and at the same time, the contents of the first memory circuit are cleared, and the accumulation as described in "Si" is repeated.

413は制御回路で信号検出回路の出力によシ受伯信号
がpt−1’ した時には第1メモリ回路への入力をA
DC(アナログ・テジタル変換回路)出力から第2メそ
り出力に切替えたシ、メモリ間のテータ転送、加算命令
等の各種制御を杓う。
Reference numeral 413 is a control circuit which changes the input to the first memory circuit to A when the input signal reaches pt-1' according to the output of the signal detection circuit.
It handles various controls such as switching from DC (analog-to-digital converter circuit) output to second memory output, data transfer between memories, addition commands, etc.

全検波回路43の出力第6図(d)とSlNROM出力
第6図(e)とか図の曲線Xのように90°位相差の関
係にあるとすれは積回路の出力は第6図(f)のように
なる。説明の為第2メモリ回路を省略して考えると第1
メモリ回路の1周期(又はm周期)の総和は第6図(f
)から明らかなように、(利、(→相殺して0となるの
で加算回路412の出力は0となる。第6図(d)と(
e)か90°位相差からずれると(例えば(e)図Y又
はZの場合)411算器の出力は第6図(g)又は(1
1)となり、従って加算回路49の出力は0からずれ(
+)又は(−)と々る。
If there is a 90° phase difference between the output of the total detection circuit 43 in Fig. 6(d) and the SlNROM output in Fig. 6(e), or the curve X in the figure, the output of the product circuit will be as shown in Fig. 6(f). )become that way. For the sake of explanation, the second memory circuit is omitted and the first
The total sum of one cycle (or m cycles) of the memory circuit is shown in Figure 6 (f
), the output of the adder circuit 412 becomes 0 because (=) cancels out and becomes 0. FIG. 6(d) and (
e) or deviates from the 90° phase difference (for example, in the case of (e) figure Y or Z), the output of the 411 calculator will be as shown in figure 6 (g) or (1).
1), so the output of the adder circuit 49 deviates from 0 (
+) or (-).

このようK +!回路の出力の平均レベルは二つの入力
第6図1(d)と(e)の位相関係により0を中心とし
て(利又は(−)に変化する。従って加算回路412の
内容で内部信号発生用分周回路47のプリセッタブルカ
ウンタのプリセットを行えは内部イa号発生用分周回路
47の出力の位相は加算回路出力の内容と同じになり、
積回路の2つの入力信号の位相差が900&こなる迄加
力−1町路の内容が増減してSlNROM出力信号の位
相を制御して平衡点に達するのである。
Like this K+! The average level of the output of the circuit changes from 0 to 0 or 0 depending on the phase relationship between the two inputs (Fig. 6 (d) and (e)). If the presettable counter of the frequency divider circuit 47 is preset, the phase of the output of the frequency divider circuit 47 for internal i-signal generation will be the same as the content of the adder circuit output.
Until the phase difference between the two input signals of the product circuit becomes 900±, the content of the applied force -1 street increases or decreases to control the phase of the SlNROM output signal, and an equilibrium point is reached.

従って加貌−回路412の出力(検波出力と90°位相
差かあるが内部的に補正する)を基準点より測定ずれは
電波の到来方位を知ることが出来るのでこれを指示器5
に加えて測定した方位を表示することが出来る。
Therefore, the measurement deviation of the output of the addition circuit 412 (there is a 90° phase difference with the detection output, but it is corrected internally) from the reference point allows us to know the arrival direction of the radio wave, so this can be detected by the indicator 5.
In addition, the measured direction can be displayed.

実際の%、彼を受信する豚には雑音や電波の瞬断等に検
波器のPLLのロックはずれ等が生じ正常な検波出力が
得られないことがある1、このため加算回路412の内
容は無用の変動を生じ制御系、指示系に混乱を生じ徂」
定方位が変動することがしばしば起る。
In actuality, the PLL of the detector may become unlocked due to noise or momentary interruption of radio waves in the pig receiving the signal, and a normal detection output may not be obtained1.For this reason, the contents of the adder circuit 412 are This causes unnecessary fluctuations and confusion in the control and instruction systems.
Fluctuations in orientation often occur.

このだめ第2メモリ回路を設けて所定周期mだけ第2メ
モリ回路に方位テークを蓄積した後、これを゛それぞれ
対応する第2メモリ回路に転送し、これの総和を前述の
ように加算回路412に積算して内部信号発生用分周回
路47の制御を行うのであるが、検波出力が断になった
時は直ちに第1メモリ回路の入力をADC出力の代9に
対応する第2メモリ回路出力に切替えるのである。たた
し第2メモリ回路出力の値はD「定周期分だけ稙算され
たものとなっているのでD「定周期mで除算処理した後
第1メモリ回路に入力する必要がある。
In this case, a second memory circuit is provided, and after accumulating the azimuth takes in the second memory circuit for a predetermined period m, these are transferred to the corresponding second memory circuits, and the sum is added to the adder circuit 412 as described above. When the detection output is cut off, the input of the first memory circuit is immediately changed to the second memory circuit output corresponding to the ADC output. It is switched to . However, since the value of the output of the second memory circuit is calculated by the fixed period D, it is necessary to divide it by the fixed period m before inputting it to the first memory circuit.

これらの操作によシ平均化が行なわれ雑音混信などによ
り@波出力か毎回相当変動する場合でもその平均値が第
1メモリ回路に入力されるため第2メモリ回路の総和も
安定化される。
Averaging is performed by these operations, and even if the @ wave output fluctuates considerably each time due to noise interference, etc., the average value is input to the first memory circuit, so that the sum of the second memory circuit is also stabilized.

なお内部信号発生用回路出力、つまシ加算回路出力は匍
]種1が完了した時点では検波出力第6し1(d)を常
に90°位相差なので、加算回路で内部的に90°袖正
した出力、例えは3桁の数値を指示器5に加えれば安定
な′小波到来方位を札示することか出来る。
Note that the output of the internal signal generation circuit and the output of the adder circuit are 90° since the detection output No. 6 and 1(d) is always 90° phase difference when type 1 is completed. By adding the output, for example a 3-digit numerical value, to the indicator 5, it is possible to indicate the stable direction of arrival of small waves.

又遅延時間の補正は普通ワンショットマルチやシフトレ
ジスタ等を用いるのであるが、ワンショットマルチを用
いた場合は時定数の温度特性の影吻゛で遅延時間が変動
するし、シフトレジスタを用いる場合は遅延り間を微細
に調整するためには極めて多数必要とする等の欠点があ
った。本発明による遅延1時間補止回路は完全デジタル
方式であるので遅延時間は安定に保たれる。受信機のI
F’バンド幅切替に連動して遅延時間設定器の出力を切
替えることにより、受信機端の遅延による方位修正の要
がなくなり、辿]定操作が非常に簡単化され又侠波回路
内のタイミング1SI−1整も不要とすることが出来る
Also, delay time correction is normally done using a one-shot multi, shift register, etc. However, when using a one-shot multi, the delay time varies due to the influence of the temperature characteristics of the time constant, and when using a shift register, However, in order to finely adjust the delay interval, a very large number of them are required. Since the one-hour delay correction circuit according to the present invention is of a completely digital type, the delay time can be kept stable. Receiver I
By switching the output of the delay time setter in conjunction with switching the F'bandwidth, there is no need to correct the direction due to delay at the receiver end, and the tracking operation is greatly simplified. 1SI-1 adjustment can also be made unnecessary.

又、前述のメモリ制御、平均化処理祈の制御を行う為の
第2図点線内の各回路はマイクロコンビエータを用いて
簡単に実現出来るので、力位信号検出以後はすべてテジ
タル的に処理され、動作が安定確実で製作ル♂、整も非
常に容易な無線方向探知機を実現出来るのである。
In addition, each circuit within the dotted line in Figure 2 for controlling the memory control and averaging processing described above can be easily realized using a micro combinator, so everything after the detection of the force potential signal is processed digitally. Therefore, it is possible to realize a wireless direction finder that operates stably and reliably and is very easy to manufacture and set up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は第1
図信号処理回路4の詳細系統図、第3図はアンテナ群の
配置例、挑4図はFM成分除去回路41の詳細系統図、
第5図は積回路44の詳細系統図、第6図は各部の動作
を示す鼓形図、第7図は遅延分周回路46の動作を示す
波形図である。 1 ・アンテナ群、2・・・アンテナ切替器、3・・受
イら機、4・・信号処理回路、5・・・方位指示器、6
・アンテナ切替信号発生回路、41・・FM成分除去回
路、42・・信号検出回路、43・・・検波回路、44
−・M回路、44a −= J!f HE器、44b 
−= SIN ROM(SIN READ ON’LY
 MEMORY)、45・・ADC(アナログ・テジタ
ル変換回E)、46・・遅延分周回路、47・・内部信
号発生用分周回路、48・基準信号発振器、49・遅延
時間設定器、410・第1メモリ回路、411・第2メ
モリ回路、412・・・加算回路、413・・fIil
l伺]回路 出願人 ′p?J7図 手続補 重書(自発) 昭和58年7月タ日 特許庁長官 殿 ■、事件の表示 特願昭58− gO’?9/ 2 発明の名称 無線方向探知機 3 補正をする者 事件との関係 特許出願人 〒141 東京部品用区上大崎2−10−45明細書・
図面 5 補正の内容 明細書・図面の浄書 (内容に変更なし) 6、添付書類の目録 (1)補正用明細書       1通(2)  補正
用図 面        1通手続補正書(自発) 昭和5!〕年 5月21日 特許庁長官 殿 ]、事件の表示 特願昭58−8 f) 99 ] 2、発明の名称 無線方向探知機 :(、補正をする者 事件との関係 特3′「出願人 〒141   東京部品用区」二犬崎2−1 +、)〜
45明細1書 5、補正の内容 別紙補正内容書のとおり 6、添(」書類の目録 (1)補正内容書           1通補  正
  内  容  書 1、 明細書中、次の個所を補正する。
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing an embodiment of the present invention.
Figure 3 is a detailed system diagram of the signal processing circuit 4, Figure 3 is an example of the arrangement of antenna groups, Figure 4 is a detailed system diagram of the FM component removal circuit 41,
FIG. 5 is a detailed system diagram of the product circuit 44, FIG. 6 is an hourglass diagram showing the operation of each part, and FIG. 7 is a waveform diagram showing the operation of the delay frequency divider circuit 46. 1. Antenna group, 2. Antenna switch, 3. Receiver, 4. Signal processing circuit, 5. Direction indicator, 6.
- Antenna switching signal generation circuit, 41... FM component removal circuit, 42... Signal detection circuit, 43... Detection circuit, 44
-・M circuit, 44a -= J! f HE device, 44b
-= SIN ROM (SIN READ ON'LY
MEMORY), 45...ADC (analog-digital conversion circuit E), 46...delay frequency divider circuit, 47...frequency divider circuit for internal signal generation, 48-reference signal oscillator, 49-delay time setter, 410- First memory circuit, 411, second memory circuit, 412... addition circuit, 413... fIil
] Circuit applicant'p? Figure J7 Procedure Supplementary Letter (Spontaneous) July 1981 Commissioner of the Japan Patent Office Mr.■, Patent Application for Indication of Case 1982-gO'? 9/2 Name of the invention Radio direction finder 3 Relationship with the amended person's case Patent applicant 2-10-45 Kamiosaki, Tokyo Parts Industry Ward 141 Specification/
Drawings 5 Description of the contents of the amendment / engraving of the drawings (no changes to the contents) 6. List of attached documents (1) 1 copy of the specification for the amendment (2) 1 copy of the drawings for the amendment Procedural amendment (voluntary) 1932! [May 21, 2009], Patent Application for Indication of the Case, Patent Application No. 1988-8 f) 99] 2. Name of the invention: Radio direction finder: (Relationship with the person making the amendment Patent Application 3' Person〒141 Tokyo Parts District" Niinuzaki 2-1 +,) ~
45 Specification 1 Document 5. Contents of amendments As shown in the attached amended statement 6. List of attached documents (1) 1 copy of the amended statement Contents 1. The following points in the description are amended.

Claims (1)

【特許請求の範囲】[Claims] (1)無指向性アンテナを円周上に等間隔に配置し、こ
れを順次切替走査して受信信号の位相変化によシミ波の
到来方向を検出する静止形ドツプラ式方向探知機におい
て、検出された方位信号と内部信号発生回路より得られ
た内部信号との積出力を各アンテナに対応するメモリー
でなるメモリ一群に順次記憶せしめ、走査周期の整数倍
の期間該メモリー値を加算回路により積算して前記内部
信号の位相を制御することを特徴とする無線方向探知機
。 (2、特許請求の範囲第1項記載の無線方向探知機にお
いて、前記メモリーを2群設け、第1メモリ群には前記
積出力を所定周期たけ槙算し、これを第2メモリ一群に
転送し、この第2メモリ一群のメモリー値を積算して内
部信号の位相を制御するとともに、AI電波などのよう
な受信電波の瞬断等によシ第1メモリ群の入力が不正の
場合には代りに第2メモリ群の値を処理してこれを第1
メモリ群に入力することを特徴とする無線方向探知機。
(1) In a stationary Doppler direction finder, omnidirectional antennas are arranged at equal intervals on the circumference, and the antennas are sequentially switched and scanned to detect the arrival direction of smudge waves based on the phase change of the received signal. The product output of the generated azimuth signal and the internal signal obtained from the internal signal generation circuit is sequentially stored in a memory group consisting of memories corresponding to each antenna, and the memory value is integrated by an adding circuit for a period of integer multiple of the scanning period. A wireless direction finder, characterized in that the phase of the internal signal is controlled by: (2. In the wireless direction finder according to claim 1, two groups of the memories are provided, and the first memory group multiplies the product output by a predetermined period, and transfers this to the second group of memories. The memory values of this second memory group are integrated to control the phase of the internal signal, and if the input to the first memory group is incorrect due to momentary interruption of received radio waves such as AI radio waves, etc. Instead, it processes the values in the second memory group and transfers them to the first memory group.
A radio direction finder characterized by inputting into a memory group.
JP8099183A 1983-05-11 1983-05-11 Radio direction finder Granted JPS59206786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8099183A JPS59206786A (en) 1983-05-11 1983-05-11 Radio direction finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8099183A JPS59206786A (en) 1983-05-11 1983-05-11 Radio direction finder

Publications (2)

Publication Number Publication Date
JPS59206786A true JPS59206786A (en) 1984-11-22
JPH0156388B2 JPH0156388B2 (en) 1989-11-29

Family

ID=13733964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8099183A Granted JPS59206786A (en) 1983-05-11 1983-05-11 Radio direction finder

Country Status (1)

Country Link
JP (1) JPS59206786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308984A (en) * 1989-04-08 1989-12-13 Koden Electron Co Ltd Wireless direction finder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124067A (en) * 1980-03-06 1981-09-29 Koden Electronics Co Ltd Direction finder
JPS56137169A (en) * 1980-03-28 1981-10-26 Nec Corp Direction measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124067A (en) * 1980-03-06 1981-09-29 Koden Electronics Co Ltd Direction finder
JPS56137169A (en) * 1980-03-28 1981-10-26 Nec Corp Direction measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308984A (en) * 1989-04-08 1989-12-13 Koden Electron Co Ltd Wireless direction finder
JPH0429029B2 (en) * 1989-04-08 1992-05-15 Koden Electronics Co Ltd

Also Published As

Publication number Publication date
JPH0156388B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
US4000466A (en) Apparatus for time-interval measurement
US6005398A (en) High speed phase and amplitude measurement system and method
JPS59206786A (en) Radio direction finder
EP0177069B1 (en) Arrangement for combining the output signals from a plurality of transmitters tuned to the same frequency
EP0687080B1 (en) Receive signal level detection system
JP2988396B2 (en) Secondary surveillance radar equipment
JPH1183974A (en) Radio direction finder
EP0367487B1 (en) RF signal direction finding apparatus
JPH0413671Y2 (en)
JPS5951373A (en) Monopulse radar receiver
JPS5958376A (en) Radar equipment
JPH06201742A (en) Correction method for frequency discrimination circuit of receiving signal
JP2651673B2 (en) Phase tracking receiver
JP3148320B2 (en) Array antenna
JP2767986B2 (en) Tracking receiver
KR0150729B1 (en) Space diversity circuit
JP2817720B2 (en) Tracking receiver for pulse radar
JPS6363069B2 (en)
JPH09288157A (en) Radio direction finder
JPH0638507Y2 (en) Receiver
JPH10246761A (en) Radio direction detector
JPS5923269A (en) Receiver for hyperbolic navigation
JPH07229957A (en) Wireless direction monitor
JPH0129428B2 (en)
JPS6331057B2 (en)