JPS5920610Y2 - Refrigeration equipment flow divider - Google Patents

Refrigeration equipment flow divider

Info

Publication number
JPS5920610Y2
JPS5920610Y2 JP1980134526U JP13452680U JPS5920610Y2 JP S5920610 Y2 JPS5920610 Y2 JP S5920610Y2 JP 1980134526 U JP1980134526 U JP 1980134526U JP 13452680 U JP13452680 U JP 13452680U JP S5920610 Y2 JPS5920610 Y2 JP S5920610Y2
Authority
JP
Japan
Prior art keywords
hot gas
flow divider
refrigerant
mixing chamber
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980134526U
Other languages
Japanese (ja)
Other versions
JPS5760074U (en
Inventor
雅行 青野
修 村木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP1980134526U priority Critical patent/JPS5920610Y2/en
Publication of JPS5760074U publication Critical patent/JPS5760074U/ja
Application granted granted Critical
Publication of JPS5920610Y2 publication Critical patent/JPS5920610Y2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は冷凍装置の分流器に関し、詳しくは凝縮器から
の冷媒を分流して蒸発器に供給する分流器に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a flow divider for a refrigeration system, and more particularly to a flow divider that divides refrigerant from a condenser and supplies it to an evaporator.

従来より、この種の冷凍装置の分流器として、例えば第
4図に示すように、分流器本体aの上流側開口部すにノ
ズルCを設け、該ノズルCにより凝縮器からの冷媒を絞
って、前記ノズルCのノズル孔dから放射状に延びる複
数個の分流通路e。
Conventionally, as a flow divider for this type of refrigeration equipment, for example, as shown in FIG. , a plurality of branch passages e extending radially from the nozzle hole d of the nozzle C.

e・・・に等しく分流して蒸発器に供給するようにした
ものがよく知られている。
It is well known that the amount of water is divided equally into e... and supplied to the evaporator.

ところで、このような分流器Aを用いた冷凍装置におい
て、従来、例えば第1図に示すように圧縮器fからの吐
出ガスの一部(ホットガス)をバイパス管路gにより凝
縮器りをバイパスして分流器A上流の冷媒配管iに供給
し、凝縮器りからの冷媒と合流せしめた後、分流器Aに
より分流して蒸発器jに供給することにより、蒸発温度
を高めるよう能力制御して能力制御運転を行うようにし
た、いわゆるホットガスバイパス方式の能力制御を行う
ことがなされている。
By the way, in a refrigeration system using such a flow divider A, conventionally, for example, as shown in FIG. The refrigerant is supplied to the refrigerant pipe i upstream of the flow divider A, where it is combined with the refrigerant from the condenser, and then divided by flow divider A and supplied to the evaporator j, thereby controlling the capacity to increase the evaporation temperature. A so-called hot gas bypass method of capacity control has been implemented in which capacity control operation is performed using a hot gas bypass method.

尚、kおよび1はバイパス管路gに介設されたホットガ
ス用制御弁およびホットガス用電磁弁であり、またmお
よびnは分流器A上流の冷媒配管iに介設された感温式
膨張弁および電磁弁である。
Note that k and 1 are a hot gas control valve and a hot gas solenoid valve installed in the bypass pipe g, and m and n are temperature-sensitive valves installed in the refrigerant pipe i upstream of the flow divider A. They are expansion valves and solenoid valves.

しかしながら、前記従来のものでは、圧縮機fからのホ
ットガスが分流器AのノズルCを介して蒸発器jに供給
されるため、該ノズルCにより圧力が降下しホットガス
のバイパス量が制限され、能力制御範囲が狭という欠点
を有していた。
However, in the conventional system, the hot gas from the compressor f is supplied to the evaporator j via the nozzle C of the flow divider A, so the pressure is lowered by the nozzle C and the bypass amount of the hot gas is limited. However, it had the disadvantage of a narrow capability control range.

さらに、バイパス管路gと分流器A上流の冷媒配管iと
の接続点でホットガスの合流による冷媒の偏流が生じた
りして、ホットガスと冷媒との混合が不十分で且つ不均
一であるため、能力が変動したり、蒸発器からの吹出空
気温度にむらが生ずるという問題があった。
Furthermore, at the connection point between the bypass pipe g and the refrigerant pipe i upstream of the flow divider A, the refrigerant flows unevenly due to the merging of the hot gas, resulting in insufficient and uneven mixing of the hot gas and the refrigerant. Therefore, there were problems in that the capacity fluctuated and the temperature of the air blown from the evaporator became uneven.

本考案は斯かる点に鑑みてなされたもので、前記の如き
ホットガスバイパス方式の能力制御を行う冷凍制御にお
いて、分流器のノズル下流に混合室を設け、該混合室に
凝縮器をバイパスした圧縮機からのホットガスを混合室
の軸心に対して偏心し、かつほぼ90’の角度を威する
うに供給して、冷媒とホツl〜ガスとを混合するように
することにより、従来の如き圧力降下に起因するホット
ガスのバイパス量の制限をなくし、しかも凝縮器からの
冷凍とホットガスとのミキシングを良好に行うようにし
、よってホラI・ガスによる能力制御を十分に行い得る
ようにした冷凍装置の分流器を提供せんとするものであ
る。
The present invention has been developed in view of this point, and in refrigeration control that performs capacity control using the hot gas bypass method as described above, a mixing chamber is provided downstream of the nozzle of the flow divider, and the condenser is bypassed in the mixing chamber. By supplying the hot gas from the compressor eccentrically to the axis of the mixing chamber and at an angle of approximately 90', the refrigerant and hot gas are mixed. In order to eliminate restrictions on the bypass amount of hot gas caused by such pressure drops, and to achieve good mixing of refrigeration from the condenser and hot gas, it is possible to sufficiently control the capacity of the hot gas. The purpose of this invention is to provide a flow divider for a refrigeration system.

この目的の達成のため、本考案の構成は、凝縮器からの
冷凍と圧縮機からのホットガスとを混合して蒸発器に供
給するホットガスバイパス方式の能力制御を行う冷凍装
置において、各々蒸発器に連通ずる複数個の分流通路を
有する分流器本体の上流側開口部に凝縮器と連通ずるノ
ズルを有するノズル本体を嵌合して、上流側が前記ノズ
゛ル孔と連通し下流側が前記各分流器と連通ずる混合室
を形成し、該混合室に前記圧縮機からのホットガスを供
給するホラ1〜ガス供給口を該混合室の軸心に対して偏
心し、かつほぼ90°の角度を或すように開口し、前記
混合室内でノズル孔からの冷媒とホットガス供給口から
のホットガスとを混合させるようにしたものである。
In order to achieve this objective, the configuration of the present invention is such that a refrigeration system that performs capacity control of a hot gas bypass method that mixes refrigeration from a condenser and hot gas from a compressor and supplies the mixture to an evaporator is provided with a configuration for each evaporator. A nozzle body having a nozzle communicating with the condenser is fitted into an upstream opening of a diverter body having a plurality of dividing passages communicating with the condenser, so that the upstream side communicates with the nozzle hole and the downstream side communicates with the nozzle hole. A mixing chamber is formed that communicates with each flow divider, and the gas supply port from the hole 1 for supplying the hot gas from the compressor to the mixing chamber is eccentric to the axis of the mixing chamber and at an angle of approximately 90°. The opening is at a certain angle, and the refrigerant from the nozzle hole and the hot gas from the hot gas supply port are mixed in the mixing chamber.

以下、本考案の実施例を図面に基づいて詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第2図および第3図は本考案の実施例に係る冷凍装置の
分流器D1を示し、1は分流器本体であって、該分流器
本体1には、上流側に開口部2が形成されているととも
に、該上流側開口部2に各々連通ずる分流通路3,3・
・・が軸心Oに対して下流側に向って放射状に分岐する
ように複数個形成されており、該容置流通路3,3・・
・には蒸発器(図示せず)が連通される。
2 and 3 show a flow divider D1 of a refrigeration system according to an embodiment of the present invention, 1 is a flow divider body, and an opening 2 is formed in the flow divider body 1 on the upstream side. At the same time, there are branch passages 3, 3 and 3, respectively communicating with the upstream opening 2.
... are formed so as to branch radially toward the downstream side with respect to the axis O, and the storage flow passages 3, 3...
* is connected to an evaporator (not shown).

前記分流器本体1の上流側開口部2には、凝縮器(図示
せず)に冷媒配管4を介して連通ずるノズル孔5を軸心
O上に有するノズル体6が嵌合されて、上流側かノズル
孔5と連通し下流側が分流通路3,3・・・と連通する
混合室7が形成されている。
A nozzle body 6 having a nozzle hole 5 on the axis O that communicates with a condenser (not shown) via a refrigerant pipe 4 is fitted into the upstream opening 2 of the flow divider main body 1. A mixing chamber 7 is formed, which communicates with the nozzle hole 5 on the side and communicates with the branch passages 3, 3, . . . on the downstream side.

さらに、前記混合室7にはホラ1ヘガス供給口8がノズ
ル孔5からの冷媒の流通方向Wにほぼ直交し、かつ軸心
Oから距離rだけ偏心して開口され、該ホットガス供給
口8には圧縮機(図示せず)からのホットガスを供給す
るバイパス管路9が接続されており、ホラl−ガスを混
合室7に軸心Oに対して偏心しかつほは90’の角度を
威して供給するようにしている。
Further, in the mixing chamber 7, a gas supply port 8 to the hot gas supply port 8 is opened substantially perpendicular to the flow direction W of the refrigerant from the nozzle hole 5 and eccentrically by a distance r from the axis O. is connected to a bypass line 9 for supplying hot gas from a compressor (not shown), which supplies hot gas to the mixing chamber 7 eccentrically with respect to the axis O and at an angle of 90'. I'm trying to force them to supply it.

尚、10は混合室7下流側の軸心0上に設けられた突起
であって、混合室7内の冷媒とホツI−ガスとの混合冷
媒を分流通路3,3・・・にスムーズに分流する作用を
行うものである。
In addition, 10 is a protrusion provided on the axis 0 on the downstream side of the mixing chamber 7, and smoothly flows the mixed refrigerant of the refrigerant in the mixing chamber 7 and the hot I-gas to the branch passages 3, 3... It has the effect of dividing the flow into

したがって、前記実施例においては、圧縮機(図示せず
)からのホットガスがホラI・ガス供給口8を介してノ
ズル孔5下流の混合室7に供給されることにより、圧力
降下に起因するホラ1〜ガスのバイパス量の制限を生し
ることがなく、前記混合室7で凝縮器(図示せず)から
の冷媒とホッI−ガスとを良好に混合させることができ
る。
Therefore, in the embodiment, hot gas from a compressor (not shown) is supplied to the mixing chamber 7 downstream of the nozzle hole 5 through the gas supply port 8, resulting in a pressure drop. The refrigerant from the condenser (not shown) and the hot gas can be mixed well in the mixing chamber 7 without restricting the bypass amount of the hot gas.

さらに、前記ホットガス供給口8は冷媒の流通方向Wに
対してほぼ直交するように、かつ軸心Oから距離rだけ
偏心して設けられていることにより、ホットガス供給口
8からのホラ1〜ガスは冷媒の周囲を渦巻く如く流入し
、この冷媒の直進流とそれを取巻くホラI・ガスの渦流
によって、冷媒流の偏流を生しることがないとともに、
冷媒とホラI・ガスとの混合は著しく促進されることに
なり、よってホラ1ヘガスによる能力制御を十分に行う
ことができる。
Furthermore, since the hot gas supply port 8 is provided so as to be substantially orthogonal to the refrigerant flow direction W and eccentrically by a distance r from the axis O, the hot gas supply port 8 is The gas flows in a swirling manner around the refrigerant, and due to the straight flow of the refrigerant and the swirling flow of the gas surrounding it, there is no uneven flow of the refrigerant, and
The mixing of the refrigerant and the Hora I gas is significantly promoted, so that the capacity can be sufficiently controlled by the Hora I gas.

また、従来の分流器(第4図参照)の一部を改良するこ
とによって本考案の分流器D1を簡単に構成することが
でき、安価に提供することができる。
Further, by partially improving the conventional flow divider (see FIG. 4), the flow divider D1 of the present invention can be easily constructed and provided at low cost.

以」―説明したように、本考案によれば、凝縮器からの
冷媒と圧縮機からのホットガスとを混合して蒸発器に供
給するホットガスバイパス方式の能力制御を行う冷凍装
置において、各々蒸発器に連通ずる複数個の分流通路3
を有する分流器本体1の上流側開口部2bに凝縮器と連
通ずるノズル孔5を有するノズル体6を嵌合して、上流
側が前記ノズル孔5と連通し下流側が前記各分流通路3
と連通ずる混合室7を形成し、該混合室7に前記圧縮機
からのホットガスを供給するホットガス供給口8を該混
合室7の軸心Oに対して偏心し、かつほぼ90°の角度
を或すように開口し、前記混合室7内でノズル孔5から
の冷媒とホラ1〜ガス供給口8からのホラI・ガスとを
混合させるようにしたことにより、圧力降下に起因する
ホットガスのバイパス量の制限を生じることなく、また
冷媒流の偏流を生じることなくホットガスを冷媒と良好
に且つ均一に混合せしめて蒸発器に供給することができ
るので、蒸発器の蒸発温度を高めるべく能力制御を4一
分に且つ変動なく正確に行うことができる。
- As explained above, according to the present invention, in a refrigeration system that performs capacity control of the hot gas bypass method in which refrigerant from the condenser and hot gas from the compressor are mixed and supplied to the evaporator, each A plurality of branch passages 3 communicating with the evaporator
A nozzle body 6 having a nozzle hole 5 that communicates with the condenser is fitted into the upstream opening 2b of the flow divider main body 1 having
A hot gas supply port 8 for supplying hot gas from the compressor to the mixing chamber 7 is eccentric with respect to the axis O of the mixing chamber 7 and at an angle of approximately 90°. By opening at a certain angle and mixing the refrigerant from the nozzle hole 5 and the gas from the gas supply port 1 to the gas supply port 8 in the mixing chamber 7, the pressure drop is caused. Since the hot gas can be mixed well and uniformly with the refrigerant and supplied to the evaporator without restricting the bypass amount of the hot gas or causing uneven flow of the refrigerant, the evaporation temperature of the evaporator can be lowered. In order to increase the capacity, it is possible to accurately control the capacity within 4-1 minutes without fluctuation.

また、既存の分流器の一部を改良すれば簡単に得られる
ので、安価に提供することができる利点も併せ有するも
のである。
Further, since it can be easily obtained by improving a part of an existing flow divider, it also has the advantage of being able to be provided at a low cost.

特に、前記ホラ1〜ガス供給口を混合室の軸心に対して
偏心しかつほぼ90°の角度を或すように設けたことに
より、ホットガス流を冷媒流に対してそれを取巻く渦流
とすることができるので、冷媒とホットガスとの混合を
より一層良好に且つ均一に行うことができる利点を有す
る。
In particular, by arranging the conduit 1 to the gas supply port eccentrically with respect to the axis of the mixing chamber and at an angle of approximately 90°, the hot gas flow is separated from the refrigerant flow by the surrounding vortex flow. This has the advantage that the refrigerant and hot gas can be mixed more effectively and uniformly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はホラl−ガスバイパス方式の能力制御を行う冷
凍回路を示す系統図、第2図および第3図は本考案の実
施例を示し、第2図は縦断側面図、第3図は第2図の■
■■−III線断面図、第4図は従来例を示す縦断側面
図である。 Dl・・・分流器、1・・・分流器本体、2・・・上流
側開口部、3・・・分流通路、5・・・ノズル孔、6・
・・ノズル体、7・・・混合室、8・・・ホットガス供
給口、0・・・軸心。
Fig. 1 is a system diagram showing a refrigeration circuit that performs capacity control of the Hora l-gas bypass system, Figs. 2 and 3 show embodiments of the present invention, Fig. 2 is a vertical side view, and Fig. 3 is ■ in Figure 2
A cross-sectional view taken along the line ■■-III, and FIG. 4 is a vertical side view showing a conventional example. Dl... Divider, 1... Divider body, 2... Upstream opening, 3... Diversion passage, 5... Nozzle hole, 6...
... Nozzle body, 7... Mixing chamber, 8... Hot gas supply port, 0... Axis center.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 凝縮器からの冷媒と圧縮機からのホットガスとを混合し
て蒸発器に供給するホットガスバイパス方式の能力制御
を行う冷凍装置において、各々蒸発器に連通ずる複数個
の分流通路3を有する分流器本体1の上流側開口部2b
に凝縮器と連通ずるノズル孔5を有するノズル本体6を
嵌合して、上流側が前記ノズル孔5と連通し下流側が前
記各分流通路3と連通ずる混合室7を形威し、該混合室
7に前記圧縮機からのホットガスを供給するホットガス
供給口8を該混合室7の軸心Oに対して偏心し、かつほ
ぼ90°の角度を威すように開口し、前記混合室7内で
ノズル孔5からの冷媒とホットガス供給口8からのホッ
トガスとを混合させるようにしたことを特徴とする冷凍
装置の分流器。
A refrigeration system that performs capacity control of a hot gas bypass system in which refrigerant from a condenser and hot gas from a compressor are mixed and supplied to an evaporator, each having a plurality of branch passages 3 communicating with the evaporator. Upstream opening 2b of flow divider main body 1
A nozzle body 6 having a nozzle hole 5 that communicates with the condenser is fitted to form a mixing chamber 7 whose upstream side communicates with the nozzle hole 5 and whose downstream side communicates with each of the branch passages 3. A hot gas supply port 8 for supplying hot gas from the compressor to the chamber 7 is opened eccentrically with respect to the axis O of the mixing chamber 7 and at an angle of approximately 90°. 7. A flow divider for a refrigeration system, characterized in that the refrigerant from the nozzle hole 5 and the hot gas from the hot gas supply port 8 are mixed in the flow divider.
JP1980134526U 1980-09-20 1980-09-20 Refrigeration equipment flow divider Expired JPS5920610Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980134526U JPS5920610Y2 (en) 1980-09-20 1980-09-20 Refrigeration equipment flow divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980134526U JPS5920610Y2 (en) 1980-09-20 1980-09-20 Refrigeration equipment flow divider

Publications (2)

Publication Number Publication Date
JPS5760074U JPS5760074U (en) 1982-04-09
JPS5920610Y2 true JPS5920610Y2 (en) 1984-06-15

Family

ID=29494716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980134526U Expired JPS5920610Y2 (en) 1980-09-20 1980-09-20 Refrigeration equipment flow divider

Country Status (1)

Country Link
JP (1) JPS5920610Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547353B1 (en) * 2008-11-10 2015-08-25 엘지전자 주식회사 Distributor and refrigerant circulation system comprising the same
JP5100818B2 (en) * 2010-11-05 2012-12-19 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus
JP6132674B2 (en) * 2013-06-14 2017-05-24 三菱電機株式会社 Refrigerant shunt and refrigeration cycle apparatus
JP7444641B2 (en) * 2020-03-03 2024-03-06 株式会社日本クライメイトシステムズ refrigerant flow divider
JP7444656B2 (en) * 2020-03-17 2024-03-06 株式会社日本クライメイトシステムズ refrigerant flow divider

Also Published As

Publication number Publication date
JPS5760074U (en) 1982-04-09

Similar Documents

Publication Publication Date Title
CN104204691B (en) Air-conditioning device
CN101776341B (en) Evaporator unit
CN106196721A (en) A kind of spray enthalpy compressor air-conditioning system and control method thereof
US7921671B2 (en) Refrigerant flow divider
CN110180220B (en) Gas-liquid two-phase flow distribution control device and method
CN105928266A (en) Multi-online system and control method for heating and throttling element of multi-online system
JPS5920610Y2 (en) Refrigeration equipment flow divider
CN108061409B (en) Variable orifice for a chiller unit
CN106705508A (en) Flash tank and refrigerating system
CN208936597U (en) Current divider and refrigeration system with the current divider
CN208952477U (en) A kind of current divider and refrigeration system
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JPH08159615A (en) Refrigerant distribution structure of refrigeration cycle
CN210399595U (en) Air conditioner of shunt and applied this shunt
JP2006349238A (en) Refrigerant flow divider
CN105444478A (en) Throttling device for air conditioner
JPH0338598Y2 (en)
JPH07294061A (en) Refrigerant distributor
CN104061722B (en) Dispenser and the air-conditioning equipped with the dispenser
CN208887180U (en) Current divider and refrigeration system
JPH08219587A (en) Evaporator for air conditioning equipment
JPS5918277Y2 (en) Refrigeration equipment
JPH0536267U (en) Refrigerator shunt
US20200232691A1 (en) Throttling distribution assembly and refrigeration system