JPS59205531A - Radiating device of long-wave infrared rays - Google Patents

Radiating device of long-wave infrared rays

Info

Publication number
JPS59205531A
JPS59205531A JP8056283A JP8056283A JPS59205531A JP S59205531 A JPS59205531 A JP S59205531A JP 8056283 A JP8056283 A JP 8056283A JP 8056283 A JP8056283 A JP 8056283A JP S59205531 A JPS59205531 A JP S59205531A
Authority
JP
Japan
Prior art keywords
plate
heating
infrared
long
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8056283A
Other languages
Japanese (ja)
Inventor
Tetsuo Hayakawa
早川 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8056283A priority Critical patent/JPS59205531A/en
Publication of JPS59205531A publication Critical patent/JPS59205531A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C1/00Stoves or ranges in which the fuel or energy supply is not restricted to solid fuel or to a type covered by a single one of the following groups F24C3/00 - F24C9/00; Stoves or ranges in which the type of fuel or energy supply is not specified
    • F24C1/08Stoves or ranges in which the fuel or energy supply is not restricted to solid fuel or to a type covered by a single one of the following groups F24C3/00 - F24C9/00; Stoves or ranges in which the type of fuel or energy supply is not specified solely adapted for radiation heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To make temperature fixed all over an infrared-rays radiating surface and thereby to radiate infrared rays of the same wavelength, by sending hot air directly into a heating chamber. CONSTITUTION:A combustion gas generated from a combustion chamber 16 by a liquid-fuel or gaseous-fuel device 13 is sent into a heating chamber 11 through a bored diffusion plate 18 to heat a concentric-circle-shaped wave-form bored plate 12, and thereby long-wave infrared waves are emitted from the surface of this plate coated with ceramic by flame spray. The gas having finished heating is let out from the holes of the plate and heats a substance to be heated by its residual calories, while removing the partial saturation of the heated substance and thus improving a heating efficiency. The holes 26 of the metal plate 12 are made in the bottom parts of wave forms at intervals and diameters determined by calculations. A gap (e) between the hole 26 and a baffle plate 14 is set to be fixed, together with four corners by adjusting (f) beforehand by means of an adjusting rod 23, and thus the surface temperature- the wavelength of infrared rays- of an infrared ray radiating plate can be selected to be in the most preferable conditions for the purpose of heating.

Description

【発明の詳細な説明】 本発明は液体燃料又は気体燃料の燃焼による長波長赤外
線放射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a long-wavelength infrared radiation device using combustion of liquid or gaseous fuel.

波長が3μ〜150μ程度の長波長赤外線は、大部分の
プラスチック材料、塗料2食品。
Long-wavelength infrared rays with a wavelength of about 3μ to 150μ are used in most plastic materials, paints, and foods.

水、油脂等に対して共振的に吸収され、加熱及び乾燥に
驚異的効果を上げうろことは周知のことであり2種々の
放射装置が開発されている。
It is well known that scales are resonantly absorbed by water, fats and oils, and have amazing effects on heating and drying, and two types of radiating devices have been developed.

現在発表されている長波長赤外線放射装置は、第1図、
第2図に示すごとく電気加熱によるものと、第3図、第
4図に示すごとく液体燃料又は気体燃料を燃焼せしめる
ものとがある。いづれもセラミック管又はセラミックを
溶射した鋼管を加熱して、長波長赤外線を放射するもの
である。
The currently announced long-wavelength infrared radiation devices are shown in Figure 1.
There are two types: one that uses electric heating as shown in FIG. 2, and one that burns liquid fuel or gaseous fuel as shown in FIGS. 3 and 4. In either case, a ceramic tube or a steel tube coated with ceramic is heated to emit long-wavelength infrared rays.

併し、電気加熱によるものは熱源として電気を使用して
いるためにその燃費は、液体燃料、ガス燃料を使用して
いるものに比べて2〜3倍と高い。
However, since electric heating uses electricity as a heat source, its fuel consumption is two to three times higher than those using liquid fuel or gas fuel.

又、現在発表されている液体燃料、気体燃料を使用して
いるものは、−万よりJR管に燃焼ガスを送入して加熱
を終ったガスを他端より放出している。第3図における
赤外線放射管のガス入口点Aよりガス放出点り及び、放
射管の各部B、O点についてのガス温度の一例を次の第
5図にグラフにて示している。此にて明なごとく、ガス
入口より放出口までの放射管の温度は各部において大き
く異っている。
In addition, currently announced models that use liquid fuel or gaseous fuel feed combustion gas into the JR pipe from one end and release the heated gas from the other end. An example of the gas temperature from the gas inlet point A of the infrared ray tube in FIG. 3 to the gas discharge point, and at points B and O of each part of the radiator tube is shown in a graph in the following FIG. 5. As is clear from this, the temperature of the radiant tube from the gas inlet to the outlet varies greatly in each part.

叉図において、入口と出口のガス温度差250Cは赤外
線放射に使用された奮効承であるが、外部にそのま〜放
出される200Cに相当する熱量は全くの損失となり此
の場合の熱効率は約55%程度である。
In the diagram, the gas temperature difference of 250C between the inlet and outlet is used for infrared radiation, but the amount of heat equivalent to 200C emitted to the outside is a total loss, and the thermal efficiency in this case is It is about 55%.

一方、熱効率を上げるために入口、出口の温度差を大に
採れば放射管各部の温度差は大となる。
On the other hand, if the temperature difference between the inlet and the outlet is large in order to increase thermal efficiency, the temperature difference between each part of the radiation tube will be large.

次に第6図に示すごとく、放射管より放射される赤外線
は温度によりその波長、放射エネルギーが異なる。
Next, as shown in FIG. 6, the wavelength and radiation energy of the infrared rays emitted from the radiation tube differ depending on the temperature.

このために、現在発表されている液体燃料又は気体燃料
燃焼式の長波長赤外線放射装置は。
For this purpose, currently announced liquid fuel or gas fuel combustion type long wavelength infrared radiating devices.

装置全体として各部に温度差、乾燥効率の差が生ずる。Differences in temperature and drying efficiency occur in each part of the entire device.

又、熱効率は極めて低い。Also, thermal efficiency is extremely low.

本発明は2以上に示された現在発表されている放射装置
の欠陥を除去した長波長赤外線放射装置を提供するもの
である。
The present invention provides a long-wavelength infrared radiating device that eliminates the deficiencies of currently published radiating devices mentioned above.

次に2本発明の実施例を図面を谷照として説明する。Next, two embodiments of the present invention will be described with reference to the drawings.

第7図、第8図、第9図に加熱室が1個の場合の実施例
を示す。第7図は上部より見た平面図、第8図はf部よ
りみた平面図、第9図は第7図におけるE−Eの方向に
切断した場合の断面を示す。
FIG. 7, FIG. 8, and FIG. 9 show an embodiment in which the number of heating chambers is one. 7 is a plan view seen from above, FIG. 8 is a plan view seen from section f, and FIG. 9 is a cross section taken along the line EE in FIG. 7.

本発明は2図に示すごとく加熱室(11)、長波長赤外
線放射用同心円波型穿孔金属板(12)。
As shown in Figure 2, the present invention includes a heating chamber (11) and a concentric corrugated perforated metal plate (12) for long wavelength infrared radiation.

液体燃料又は気体燃料の燃焼室(16)、邪魔板(14
)、拡散板(18)、金属板穿孔と邪魔板との間隔調整
装置Fとより構成されている。
Combustion chamber (16) for liquid fuel or gaseous fuel, baffle plate (14)
), a diffusion plate (18), and a distance adjustment device F between the metal plate perforation and the baffle plate.

液体燃料又は気体燃料燃焼式@(13)、燃焼室(16
)より発生した燃焼ガスは(17)より外式を採り入れ
て700C程度のガスとなり、/JO熱室(11)に吹
込まれて波型穿孔板(12)を450 ′C程度に加熱
してその表面より長波長赤外線を放出する。(12)の
表面にはセラjツクが溶射されている。(18)は多孔
板である。加熱の終ったガスは穿孔より放出されてその
有する残存熱酸により被加熱物を加熱すると共に、被加
熱物の部分的飽和を除去して加熱効率を目土する。
Liquid fuel or gaseous fuel combustion type @ (13), combustion chamber (16)
) The combustion gas generated from (17) becomes a gas of about 700C by adopting the external formula, and is blown into the /JO heat chamber (11), which heats the corrugated perforated plate (12) to about 450'C. Emit long wavelength infrared rays from the surface. Ceramic resin is thermally sprayed on the surface of (12). (18) is a perforated plate. The heated gas is released from the perforations and uses its residual thermal acid to heat the object to be heated, while also removing partial saturation of the object to improve heating efficiency.

第(10)図は、穿孔金属板と邪魔板との間隔調整装置
Fの詳細を示す。(14)は邪魔板、  (20)はそ
の支持板である。(21)は支持板を保持するロッドで
あり、バネ(22)によりたえず上方に押し上げられる
状態である。(23)は調整ロッドでありネジにより間
隔fを調整しうる構造である。(15)は小型のチェン
鎮車であり。
FIG. (10) shows details of the distance adjusting device F between the perforated metal plate and the baffle plate. (14) is a baffle plate, and (20) is its support plate. (21) is a rod that holds the support plate, and is constantly pushed upward by a spring (22). Reference numeral (23) is an adjustment rod, which has a structure in which the distance f can be adjusted with a screw. (15) is a small Chen Chinsha.

第7図に示すごと(加熱室の4角に配置されておりチェ
ノ(19)により[11される。
As shown in FIG. 7, they are placed at the four corners of the heating chamber and are heated by Cheno (19).

次に第11図に、金属板の穿孔と邪魔板との関係の詳細
を示す。穿孔(26)は波型のFに凸の部分に計算され
た間隔と直径にてあけられている。予め、調整ロッド(
23)によりfを調整することにより穿孔と邪魔板との
間隔eは4角共に一定に設定される。一方、鎖車(15
)は≠ラケット(24)により定位置に保持され。
Next, FIG. 11 shows details of the relationship between the perforations in the metal plate and the baffle plate. The perforations (26) are made at calculated intervals and diameters in the F-shaped convex portion of the wave. In advance, adjust the adjustment rod (
By adjusting f according to 23), the distance e between the perforation and the baffle plate can be set constant at all four corners. On the other hand, the chain wheel (15
) is held in place by the racket (24).

ロッド(25)とねじにより接合されている。It is connected to the rod (25) by a screw.

故に鎖車(15)を回転すると、ロッド(25)はねじ
により上下に移動する。このとき、チェノ(19)によ
り加熱室の4角の#車は同じ動をするから4角に配置さ
れた4個のロッド(25)も又、同一の動をする。かく
して、穿孔と邪魔板との4角の間隔eは常に指定された
値に保持される。
Therefore, when the chain wheel (15) is rotated, the rod (25) is moved up and down by the screw. At this time, the # wheels at the four corners of the heating chamber move in the same way due to the Cheno (19), so the four rods (25) arranged at the four corners also move in the same way. Thus, the square spacing e between the borehole and the baffle is always kept at the specified value.

かくして、赤外線放射板の表面温度−赤外線波長を加熱
目的のために最も好ましい条件に撰択することができる
。何故なれば、斌棟の燃焼量又は採入れ外気の量を変動
して穿孔より放出されるガス量が増減しても、邪魔板と
穿孔との間隔eを調整することにより放出カス抵抗を調
整して燃焼室(16)内の圧力を最も好ましい状態に保
持することができるからである。燃焼室(16)内の圧
力が高すぎると燃焼が不完全となり、又低すぎると燃焼
量が加熱室に吹き出して好ましくない。
In this way, the surface temperature of the infrared radiation plate-infrared wavelength can be selected to be the most favorable condition for heating purposes. This is because even if the amount of gas released from the perforation increases or decreases by changing the amount of combustion in the dome or the amount of outside air taken in, the emitted scum resistance can be adjusted by adjusting the distance e between the baffle plate and the perforation. This is because the pressure inside the combustion chamber (16) can be maintained in the most preferable state. If the pressure in the combustion chamber (16) is too high, combustion will be incomplete, and if it is too low, the amount of combustion will blow out into the heating chamber, which is undesirable.

第7図、第8図に示したものはJJII熱室が1個の場
合の実施例であったが2次に第12図に71’Mすもの
は、前に示したものと同一の加熱室を4側梁合せしめて
1@とじ、さらに此を多数組に組合せて大型装置とした
場合の実施例を示す。
The one shown in Figures 7 and 8 is an example in which there is one JJII heat chamber, but the second one shown in Figure 12 is the same heating chamber as the one shown previously. An example will be shown in which the four side beams of the chambers are joined together to form a single closure, and the chambers are further combined into multiple sets to form a large-sized device.

(27)は燃焼装置、  (28)は外気採入れ装置を
示す。
(27) shows the combustion device, and (28) shows the outside air intake device.

いずれも4室共通である。(28)より採り入れられた
外気はダクト(29)により各室に分配される。一方、
燃焼ガスはダクト(30)により各室に分配される。か
くして、単位加熱装置を多数組み合せることにより大容
量の放射装置を構成することができる。
All four rooms are common. The outside air taken in through (28) is distributed to each room through ducts (29). on the other hand,
The combustion gases are distributed to each chamber by ducts (30). In this way, a large capacity radiation device can be constructed by combining a large number of unit heating devices.

かくして本発明は、現在発表されている放射装置の欠陥
を除去すると共に2次に示すように大1(る特徴と利点
を有する。
Thus, the present invention eliminates the deficiencies of currently published radiating devices and has the following major features and advantages:

1、竜気叩熱による長波長赤外線放射装置と比較すると
、液体燃料又は気体燃料を使用しているために燃費は1
/〜1/3である。
1. Compared to long-wavelength infrared radiating equipment using Ryuki Takinen, the fuel consumption is 1 because it uses liquid fuel or gaseous fuel.
/~1/3.

2、現在@表されている液体燃料又は気体燃料を使用し
ている長波長赤外線放射装置と比較すると次のごとき特
徴と利点を有する。
2. Compared with the current long wavelength infrared radiating device using liquid fuel or gaseous fuel, it has the following features and advantages.

(1)  加熱室に直接熱風を吹込んでいるために、赤
外線放射面の全面にわたって温度は一定であり同一波長
の赤外線を放射する。
(1) Since hot air is blown directly into the heating chamber, the temperature is constant over the entire infrared radiation surface and infrared radiation of the same wavelength is emitted.

(2)赤外線放射板を加熱した後の排ガスを穿孔より放
出することにより、その排カスが加熱に寄与し又、被刀
口熱物の部分的飽和をなくする。
(2) By discharging the exhaust gas after heating the infrared radiation plate through the perforation, the exhaust gas contributes to heating and also eliminates partial saturation of the heated object.

故に、熱効率は100%に近く又乾燥条件を改善するこ
とができる。
Therefore, the thermal efficiency is close to 100% and the drying conditions can be improved.

(3)赤外線放射板が波型にプレスされている。このた
めに放射の実効面積が平板に比較して40%程度大とな
り多量の熱量を吸収できるだけでなく、波型により赤外
線が乱反射され輻射密度を大幅に増大する。又、放射板
の機械的強度が大となる。
(3) The infrared radiation plate is pressed into a wave shape. For this reason, the effective area of radiation is about 40% larger than that of a flat plate, and not only can a large amount of heat be absorbed, but also the wave shape diffusely reflects infrared rays, greatly increasing the radiation density. Furthermore, the mechanical strength of the radiation plate is increased.

(4)邪魔板と穿孔の間隔を任意に調整することにより
、燃焼室の圧力を常に最適の状態に保持することができ
る。このために、燃料の燃焼砥、採入る外気城をある範
囲にわたって自由に調整しうる。かくして、加熱条件に
最適の放射板の温度−長波長赤外線の波長を撰択するこ
とができる。
(4) By arbitrarily adjusting the distance between the baffle plate and the perforations, the pressure in the combustion chamber can be maintained at an optimum level at all times. For this purpose, the combustion level of the fuel and the intake of outside air can be freely adjusted over a certain range. In this way, it is possible to select the optimum radiation plate temperature-long wavelength infrared wavelength for the heating conditions.

(5)  単位の加熱量(加熱装置1ll)を4個にて
1組とし、さらに任意の組数を組合せることができる。
(5) The heating amount per unit (1 liter of heating devices) is set to 1 set of 4 units, and any number of sets can be combined.

かくして、小容量から大容量まで必要とする加熱量の放
射装置会構成することができる。
In this way, it is possible to configure a radiant device with the required heating amount from small to large capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1)は、ニクロム線加熱による長波長赤外線放射装置
を示す。 ■、・・・・・・・・・ニクロム線     2・・・
・・・・・・絶縁物3・・・・・・・・セラミンク管 
   4・・・・・・・・・電気取入れ端子 第2図は、第1図記載の装置の側面図を示す。 5・−・・・・・・・赤外線反射板 第3図は、現在発表されている液体燃#4又は気体燃料
燃焼による長波長赤外線放射装置を示す。 6・・・・・・・・・放射−It7・・・・−・・・・
燃焼室10・・・・・・液体又は気体燃料燃焼装置A・
・・・・・・・・燃焼ガス出口点 B、  C・・・・・−放射管の中途の点D・・・・・
・・・・燃焼ガス排出点 第4図は、第3図記載の装置のn面図を示す。 第5図は、第3図、第4図記載の装置における各部の温
度の一例を示すグラフである。 第6図は、長波長赤外線放射管の表向温度と放射される
赤外線の波長との関係を示すグラフである。 第7図は2本発明の実施例のうち加熱室が1個の場合に
ついて、上から見た平面図をボす。 第8図は、第7図記載の装置を丁から見た平面図である
。 第9図は、第7因記載の装置におけるE −E断面を示
す。 第10図は、第7〜第9図記載の装置について、穿孔と
邪魔板との間隔eを調整する装置の詳細を示す。 第11図は、穿孔と邪魔板との関係の詳細を示す。 d・・・・・・・・・穿孔の直径     e・・・・
・・・・・穿孔と邪魔板との間隔 第12図は9本発明の実施例のうち、単位加熱室4個を
もって1組とし、さらに此を2組以上組合せて大型の放
射装置を構成した場合を示す。 G・・・・・・・−・単位加組室4個を集合させて1組
としたものを示す。 i +1EI      第2 図 」1主」L −組一未一刀=
The first example shows a long-wavelength infrared radiation device using nichrome wire heating. ■、・・・・・・Nichrome wire 2...
...Insulator 3 ...Ceramink tube
4. Electrical Inlet Terminal FIG. 2 shows a side view of the device shown in FIG. 5. Infrared reflector Figure 3 shows a currently announced long-wavelength infrared radiation device using liquid fuel #4 or gaseous fuel combustion. 6・・・・・・・・・Radiation-It7・・・・・・・・・・・・
Combustion chamber 10...Liquid or gaseous fuel combustion device A.
...... Combustion gas outlet points B, C... - Point D midway in the radiation tube...
. . . Combustion gas discharge point FIG. 4 shows an n-side view of the apparatus shown in FIG. 3. FIG. 5 is a graph showing an example of the temperature of each part in the apparatus shown in FIGS. 3 and 4. FIG. FIG. 6 is a graph showing the relationship between the surface temperature of the long-wavelength infrared radiation tube and the wavelength of the infrared radiation emitted. FIG. 7 shows a top plan view of the case where there is only one heating chamber among the two embodiments of the present invention. FIG. 8 is a plan view of the device shown in FIG. 7, viewed from above. FIG. 9 shows the E-E cross section of the device described in factor 7. FIG. 10 shows details of the device for adjusting the distance e between the perforation and the baffle plate in the devices shown in FIGS. 7 to 9. FIG. 11 shows details of the relationship between the perforations and the baffle plates. d・・・・・・Diameter of hole e・・・・・・
...The distance between the perforation and the baffle plate in Fig. 12 shows that among the nine embodiments of the present invention, one set includes four unit heating chambers, and two or more sets of these are combined to form a large radiating device. Indicate the case. G...----- Indicates a set of four unit joining chambers. i +1EI Figure 2 "1 Lord" L - Group Ichimi Ittou =

Claims (1)

【特許請求の範囲】 円錐台又は角錐台型をした断熱材よりなる加熱室におい
て、上部狭小部分に球型をした穿孔金属板を下に凸に配
置し上部よりi体燃料又は気体燃料燃焼による熱風を吹
き込む。 又、下部広大部分に波型の穿孔金属板を配置する。該波
型穿孔金属板の外面には長波長赤外線を放射するセラミ
ックを溶射せしめる。 又、該穿孔に近接して邪魔板を配置し、穿孔と邪魔板と
の間隔を任意に調整し、うる構造とする。 以上を特徴とする長波長赤外線放射装置。
[Claims] In a heating chamber made of a truncated cone or truncated pyramid shaped heat insulating material, a spherical perforated metal plate is arranged in a convex downward manner in the upper narrow part, and the i-type fuel or gaseous fuel is burned from the upper part. Blow in hot air. In addition, a corrugated perforated metal plate is placed in the vast lower part. The outer surface of the corrugated perforated metal plate is thermally sprayed with a ceramic that emits long wavelength infrared radiation. Further, a baffle plate is arranged close to the perforation, and the distance between the perforation and the baffle plate is arbitrarily adjusted to obtain a transparent structure. A long wavelength infrared radiation device characterized by the above features.
JP8056283A 1983-05-09 1983-05-09 Radiating device of long-wave infrared rays Pending JPS59205531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8056283A JPS59205531A (en) 1983-05-09 1983-05-09 Radiating device of long-wave infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8056283A JPS59205531A (en) 1983-05-09 1983-05-09 Radiating device of long-wave infrared rays

Publications (1)

Publication Number Publication Date
JPS59205531A true JPS59205531A (en) 1984-11-21

Family

ID=13721775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056283A Pending JPS59205531A (en) 1983-05-09 1983-05-09 Radiating device of long-wave infrared rays

Country Status (1)

Country Link
JP (1) JPS59205531A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242545A (en) * 1985-04-19 1986-10-28 Tamiile:Kk Production unit for rice cake using far infrared rays
JPS62228821A (en) * 1986-03-31 1987-10-07 Furonteia Eng:Kk Far infrared ray generating apparatus
US4987290A (en) * 1988-03-11 1991-01-22 Senju Metal Industry Co., Ltd. Electric panel heater with uniform emissions of infrared rays and warm air
US5028760A (en) * 1988-03-15 1991-07-02 Senju Metal Industry, Co., Ltd. Infrared heater
US5058196A (en) * 1987-02-17 1991-10-15 Senju Metal Industry Co., Ltd. Electric infrared heater having a gas permeable electroformed porous metallic panel coated with a porous ceramic far-infrared radiating layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242545A (en) * 1985-04-19 1986-10-28 Tamiile:Kk Production unit for rice cake using far infrared rays
JPS62228821A (en) * 1986-03-31 1987-10-07 Furonteia Eng:Kk Far infrared ray generating apparatus
US5058196A (en) * 1987-02-17 1991-10-15 Senju Metal Industry Co., Ltd. Electric infrared heater having a gas permeable electroformed porous metallic panel coated with a porous ceramic far-infrared radiating layer
US4987290A (en) * 1988-03-11 1991-01-22 Senju Metal Industry Co., Ltd. Electric panel heater with uniform emissions of infrared rays and warm air
US5028760A (en) * 1988-03-15 1991-07-02 Senju Metal Industry, Co., Ltd. Infrared heater

Similar Documents

Publication Publication Date Title
US6159001A (en) Advanced emissive matrix combustion
US3204683A (en) Gas-fueled catalytic infra-red heat producing element
US5551992A (en) Thermophotovoltaic generator with low bandgap cells and hydrocarbon burner
US7631640B2 (en) Radiant burner
JPS6380112A (en) Far infrared ray radiation device
US20040152028A1 (en) Flame-less infrared heater
US3217701A (en) Radiant heater
US6371104B1 (en) Convection oven with gas burner
US6768049B2 (en) Thermophotovoltaic electric power generating apparatus and power generating method thereof
JPS59205531A (en) Radiating device of long-wave infrared rays
US3359965A (en) Radiant heaters
US3233653A (en) Radiating burner apparatus
US6368102B1 (en) High-temperature, non-catalytic, infrared heater
RU2411699C1 (en) Method of heating surface of circular flat bottom of fixed thin-wall vertical cylindrical vessel from outside
KR101339089B1 (en) Far infrared heater on both sides
WO2009034191A2 (en) Heat recovery apparatus
CN2324477Y (en) Efficient gas combustion boiler
CN109945151B (en) Design method for combustion atomization hole pipe diameter change
CN207886107U (en) A kind of liner of gas-burning type steam generator
JPS60114615A (en) Infrared ray radiating gas burner
EP3081863B1 (en) Portable infrared rays header for environmental heating
JPH08219553A (en) Radiation conversion and radiative device
KR890006067Y1 (en) Boiler
RU2107867C1 (en) Fuel burning device
US3866593A (en) Floor model space heater