JPS6380112A - Far infrared ray radiation device - Google Patents

Far infrared ray radiation device

Info

Publication number
JPS6380112A
JPS6380112A JP61223844A JP22384486A JPS6380112A JP S6380112 A JPS6380112 A JP S6380112A JP 61223844 A JP61223844 A JP 61223844A JP 22384486 A JP22384486 A JP 22384486A JP S6380112 A JPS6380112 A JP S6380112A
Authority
JP
Japan
Prior art keywords
far
radiator
infrared
combustion gas
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61223844A
Other languages
Japanese (ja)
Other versions
JPH0663625B2 (en
Inventor
Saburo Maruko
三郎 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Plant Consultant Co Ltd
Original Assignee
Nippon Chemical Plant Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Plant Consultant Co Ltd filed Critical Nippon Chemical Plant Consultant Co Ltd
Priority to JP61223844A priority Critical patent/JPH0663625B2/en
Priority to DE8787113829T priority patent/DE3778622D1/en
Priority to EP87113829A priority patent/EP0261639B1/en
Priority to US07/100,057 priority patent/US4798192A/en
Publication of JPS6380112A publication Critical patent/JPS6380112A/en
Publication of JPH0663625B2 publication Critical patent/JPH0663625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C1/00Stoves or ranges in which the fuel or energy supply is not restricted to solid fuel or to a type covered by a single one of the following groups F24C3/00 - F24C9/00; Stoves or ranges in which the type of fuel or energy supply is not specified
    • F24C1/08Stoves or ranges in which the fuel or energy supply is not restricted to solid fuel or to a type covered by a single one of the following groups F24C3/00 - F24C9/00; Stoves or ranges in which the type of fuel or energy supply is not specified solely adapted for radiation heating
    • F24C1/10Stoves or ranges in which the fuel or energy supply is not restricted to solid fuel or to a type covered by a single one of the following groups F24C3/00 - F24C9/00; Stoves or ranges in which the type of fuel or energy supply is not specified solely adapted for radiation heating with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/04Stoves or ranges for gaseous fuels with heat produced wholly or partly by a radiant body, e.g. by a perforated plate
    • F24C3/042Stoves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/08Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Burners (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To enable efficient radiation of far infrared rays from a large area by the use of a low power, by a method wherein a primary radiation body made of a metal, being permeable to combustion gas, is positioned facing and away from a secondary radiation body formed by adhering a far infrared radiation material, e.g. ceramics, to the surface of a metallic plate. CONSTITUTION:A far infrared radiation material 2, e.g. ceramics, is adhered to the outer surface of one side wall of a box 1 formed by a metallic plate to form a secondary radiation body 3. The meandering part of a combustion gas flow pipe 5 is positioned facing the secondary radiation body 3 of the box 1 with a given distance therebetween, and the combustion gas flow pipe 5 forms a primary radiation body for heating the secondary radiation body 3 from the inside. Combustion gas flows through the combustion gas flow pipe 5, infrared rays are radiated from its surface, and infrared rays, with which the inner surface of a wall except the secondary radiation body 3 is radiated, are reflected to collect heat to the secondary radiation body 3 side, and the whole of the secondary radiation body 3 is heated. Energy density is changed by a difference in a surface between a primary radiation material and the secondary radiation body 3 by means of the combustion gas flow pipe 5 to convert a wavelength, and far infrared rays, having a wavelength longer than that of infrared rays radiated from the primary radiation material, are radiated from the whole of the far infrared radiation material 2 of the secondary radiation body 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、加熱することにより遠赤外線を放射するよう
にした遠赤外線放射体を用いた遠赤外線放射装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a far-infrared radiating device using a far-infrared radiator that emits far-infrared rays when heated.

従来の技術 従来のこの種の遠赤外線放射装置は、その熱源に電気ヒ
ータあるいはバーナや触媒により燃焼した燃焼ガスを利
用していた。
BACKGROUND OF THE INVENTION Conventional far-infrared ray radiating devices of this type have utilized combustion gas combusted by an electric heater, burner, or catalyst as a heat source.

発明が解決しようとする問題点 上記熱源に電気ヒータを利用するものは運転コスト面で
不利であシ、″1念燃焼ガスを直接流して利用するもの
は一般的に温度が高く、従って遠赤外線放射体の温度も
高くなシ、放射するエネルギ密度も高く、遠赤外線の波
長も短いものが多くなる欠点がちる。
Problems to be Solved by the Invention Those that use electric heaters as the heat source are disadvantageous in terms of operating costs, and those that use direct combustion gas have generally high temperatures, and therefore far-infrared rays. The disadvantages are that the temperature of the radiator is high, the radiated energy density is high, and the wavelength of the far infrared rays is often short.

有機物の乾燥をする場合のように、有機物の上限温度に
限シがあシ、短波長の遠赤外線が多いもの、すなわち、
エネルギ密度を高くして照射すると、被照射面の表面だ
けの温度が高くなり、内部との温度に差が生じて不具合
となる。
When drying organic materials, there is a limit to the maximum temperature of the organic material, and there are many short wavelength far infrared rays, i.e.
When irradiating with a high energy density, the temperature of only the surface of the irradiated surface increases, causing a temperature difference between the surface and the inside, resulting in a problem.

かかる場合には、エネルギ密度を低く押え、すなわち、
遠赤外線放射体の表面温度を低くして長波長の遠赤外線
である程度時間をかけてゆつくシ加熱することが必要と
なシ、必然的に遠赤外線放射面積を広くしなければなら
ない。
In such cases, the energy density is kept low, i.e.
It is necessary to lower the surface temperature of the far-infrared radiator and slowly heat it with long-wavelength far-infrared rays over a certain amount of time, and the far-infrared radiating area must necessarily be widened.

このように広い面積を燃焼ガスで加熱するには燃焼ガス
に大量の空気を混合して加熱側の燃焼ガスの温度を低く
するので、大量゛のガスを送るため動力が増大するとい
う欠点がある。
In order to heat a large area with combustion gas in this way, a large amount of air is mixed with the combustion gas to lower the temperature of the combustion gas on the heating side, which has the disadvantage of increasing the power required to send a large amount of gas. .

また、特に、多段の触媒燃焼を利用して熱効率を上昇し
ようとすると、低温燃焼のために燃焼触媒の充fR量が
増加し、この充填触媒層を全量のガスが通過するために
圧力損失も増加し、送風に要する動力が極端に増大する
という欠点がある。
In addition, especially when trying to increase thermal efficiency by using multi-stage catalytic combustion, the amount of charged fR of the combustion catalyst increases due to low-temperature combustion, and pressure loss also occurs because the entire amount of gas passes through this packed catalyst bed. This has the disadvantage that the power required for blowing air increases dramatically.

問題点を解決するための手段及び作用 本発明は上記のことにかんがみなされたもので、燃焼ガ
ス量を少なくして高温の広い温度領域で燃焼ガスの顕熱
を利用して小さな高温の一次放射体の異面積から多量の
放射エネルギを出し、これを受熱した大きな面積の金属
壁と、この金属壁に密着した遠赤外線放射体とからなる
二次放射体を加熱し、上記一次放射体からの放射エネル
ギと同量のエネルギを長波長の遠赤外線として放射させ
るようにして、少ない動力でもって大面積から遠赤外線
を効率よく放射することができるようにした遠赤外線放
射装置を提供しようとするもので、その構成は、金属に
密着し九セラミック等の遠赤外線放射体を加熱すること
によp、遠赤外線放射体より遠赤外線を放射させる遠赤
外線放射装置において、燃焼ガスを通す金属製の一次放
射体と、金属板の表面にセラミック等の遠赤外線放射体
を密着し九二次放射体とからなシ、一次放射体を二次放
射体に離間対向して配置し九構成となっておシ、〒次放
射体を通る燃焼ガスの顕熱により放射される一次放射体
からの赤外線によりニ次放射体が加熱てれ、この加熱に
よりニ次放射体より遠赤外線が放射される。
Means and Effects for Solving the Problems The present invention was conceived in view of the above-mentioned problems, and the present invention reduces the amount of combustion gas and utilizes the sensible heat of the combustion gas in a wide temperature range to generate small, high-temperature primary radiation. A large amount of radiant energy is emitted from different areas of the body, and a secondary radiator consisting of a metal wall with a large area that receives the heat and a far-infrared radiator in close contact with the metal wall is heated, and the radiation from the primary radiator is heated. To provide a far-infrared radiation device that can efficiently radiate far-infrared rays from a large area with little power by radiating the same amount of energy as radiant energy as long-wavelength far-infrared rays. The configuration is that the far-infrared radiator emits far-infrared rays from the far-infrared radiator by heating a far-infrared radiator made of ceramic or the like that is in close contact with metal. A radiator, a far-infrared radiator made of ceramic or the like is closely attached to the surface of a metal plate, and a secondary radiator is arranged, and a primary radiator is spaced apart from and faces the secondary radiator. The secondary radiator is heated by the infrared rays emitted from the primary radiator due to the sensible heat of the combustion gas passing through the secondary radiator, and this heating causes the secondary radiator to radiate far-infrared rays.

高温の一次放射体の放射面から放射される赤外線はエネ
ルギ密度が高く、短い波長の放射エネルギが多く、これ
により加熱される二次放射体の面積を大きくすれば、こ
の二次放射体が加熱される温度は低くなり、この二次放
射体の放射面からはエネルギ密度の低い長波長の放射エ
ネルギが得られる。
The infrared rays emitted from the radiation surface of a high-temperature primary radiator have a high energy density and contain a lot of radiant energy at short wavelengths.If the area of the secondary radiator that is heated by this is increased, this secondary radiator will be heated. The temperature at which the secondary radiator is exposed becomes lower, and long-wavelength radiant energy with low energy density is obtained from the radiation surface of this secondary radiator.

実施例 本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described based on the drawings.

第1図、WJ2図において、図中1は金属板にて構成さ
れた偏平の断面矩形に形成された箱であり、この箱1の
広い万の一側壁の外面にセラミックス等の遠赤外線放射
体2が塗布により密着されており、この−側壁が二次放
射体3となっている。箱1の他の側壁の外側は断熱材4
にてカバーされている。またこの二次放射体3となる側
壁以外の側壁内面はできるだけ熱反射率がよいように、
例えばアルミニウムをメッキし九シ、磨い九ステンレス
板等を使用する。
In Fig. 1 and WJ2, numeral 1 in the figure is a box formed of a metal plate with a flat rectangular cross section, and a far-infrared radiator made of ceramic or the like is attached to the outer surface of the wide side wall of box 1. 2 are closely attached by coating, and this negative side wall serves as a secondary radiator 3. The outside of the other side wall of box 1 is insulation material 4
is covered by. In addition, the inner surface of the side wall other than the side wall that will become the secondary radiator 3 is designed to have as good a heat reflectance as possible.
For example, use plated aluminum or polished stainless steel plate.

5は上記箱1内に蛇行収納される燃焼ガス流通管で、こ
れの蛇行部は上記箱1の二次放射体3の内側面の全体に
わたって所定の間隔をとって対向されている。この燃焼
ガス流通管5は上記二次放射体3を内側から加熱する一
次放射体となるもの、で、この燃焼ガス流通管5には、
その入口部と途中に触媒燃焼器6,6が介装してあシ、
この各触媒燃焼器6.もの上流側にはそれぞれ空気と燃
料を混合する混合器7.7が設けである。そしてこの各
混合器7.7には惚科管8が接続されている。
Reference numeral 5 denotes a combustion gas distribution pipe which is housed in the box 1 in a meandering manner, and the meandering portion of this pipe faces the entire inner surface of the secondary radiator 3 of the box 1 at a predetermined interval. This combustion gas distribution pipe 5 serves as a primary radiator that heats the secondary radiator 3 from the inside, and this combustion gas distribution pipe 5 includes:
Catalytic combustors 6, 6 are interposed between the inlet and the middle,
Each of these catalytic combustors6. A mixer 7.7 for mixing air and fuel is provided on the upstream side of each tank. A tube 8 is connected to each mixer 7.7.

上記燃焼ガス流通管5の入口側は予熱空気供給ライン’
lc’ll続されている。この子熱望気供給ライン9に
は予熱用混合器7αと予熱用触媒燃焼器6αが介装して
あり、ぢらにその上流側にはブロア等の空気供給装置が
接続されている。
The inlet side of the combustion gas distribution pipe 5 is a preheated air supply line'
lc'll is connected. A preheating mixer 7α and a preheating catalytic combustor 6α are interposed in this secondary hot air supply line 9, and an air supply device such as a blower is connected to the upstream side thereof.

また燃焼ガス流通管5の出口側は熱交換器を介して大気
に開放、あるいは他の遠赤外線放射装置の入口側に接続
されている。なお上記熱交換器は予熱空気供給ラインに
介装しである。箱1には箱1内と外気を連通ずる通気口
10が設けである。
Further, the outlet side of the combustion gas distribution pipe 5 is open to the atmosphere via a heat exchanger, or is connected to the inlet side of another far-infrared radiation device. Note that the heat exchanger is interposed in the preheated air supply line. The box 1 is provided with a vent 10 that communicates the inside of the box 1 with outside air.

上記構成における燃焼ガス流通管5による一次放射面積
A1と箱1の一側壁による二次放射体3の放射面積A、
とはAI<A、となっている。
In the above configuration, the primary radiation area A1 due to the combustion gas distribution pipe 5 and the radiation area A of the secondary radiator 3 due to one side wall of the box 1,
This means that AI<A.

上記構成において、予熱空気供給ライン9から予熱空気
が供給され、箱1内に蛇行収納された燃焼ガス流通管5
内の触媒燃焼器6.6が燃焼作用することによりこの燃
焼ガス流通管5内を+ ooo ’c未溝の燃焼ガスが
流れ、゛これの表面から赤外線が放射される。この赤外
線は箱1の全内面に照射されるが、二次放射体3となる
壁以外の壁内面に照射された赤外線は反射されて二次放
射体3側に集熱されてこの二次放射体3全体が加熱され
る。このとき、燃焼ガス流通f#5による一次放射体と
二次放射体3との面積差だけエネルギ密度が変化して波
長が変換され、二次放射体3の遠赤外線放射体2の全体
より一次放射体より放射された赤外線より波長が長い遠
赤外線が放射される。
In the above configuration, preheated air is supplied from the preheated air supply line 9, and the combustion gas distribution pipe 5 is meanderingly housed in the box 1.
Due to the combustion action of the catalytic combustor 6.6 within the combustion gas distribution pipe 5, ungrooved combustion gas flows through the combustion gas distribution pipe 5, and infrared rays are emitted from its surface. This infrared rays are irradiated to the entire inner surface of the box 1, but the infrared rays irradiated to the inner surfaces of the walls other than the wall that becomes the secondary radiator 3 are reflected and concentrated on the side of the secondary radiator 3, resulting in this secondary radiation. The entire body 3 is heated. At this time, the energy density changes by the area difference between the primary radiator and the secondary radiator 3 due to the combustion gas flow f#5, and the wavelength is converted, so that the entire far-infrared radiator 2 of the secondary radiator 3 is Far-infrared rays, which have a longer wavelength than the infrared rays emitted by the radiator, are emitted.

上記実施例において、燃焼ガス流通管5の表面には赤外
線の放射量を増加させる目的でセラミックスを溶射等に
より密着することが望ましい。また二次放射体側の遠赤
外線放射体はできる限り黒体に近いものが望ましい。現
在一般に遠赤外線放射体としてセラミックスが主として
使用されているが、このセラミックスの放射率は最高で
も0.92であるのに対して黒鉛の放射率はα97〜0
.98でセラミックスより高い。黒鉛は空気中で450
°以上になると酸化消耗が発生するが、本発明に係る二
次放射面の温度は最高でもこの温度(450°C)を越
えないので、黒鉛を二次放射体の遠赤外線放射体として
用いることは非常に有利となる。
In the embodiment described above, it is desirable that ceramics be adhered to the surface of the combustion gas distribution pipe 5 by thermal spraying or the like for the purpose of increasing the amount of infrared radiation. Further, it is desirable that the far-infrared radiator on the secondary radiator side be as close to a black body as possible. Currently, ceramics are mainly used as far-infrared emitters, but the emissivity of these ceramics is at most 0.92, whereas the emissivity of graphite is α97~0.
.. 98, higher than ceramics. Graphite is 450% in air.
If the temperature exceeds °C, oxidative consumption will occur, but since the temperature of the secondary radiation surface according to the present invention does not exceed this temperature (450°C) at the maximum, graphite can be used as the far-infrared radiation emitter of the secondary radiation body. is very advantageous.

箱1内での燃焼ガス流通管5は、内部を流れる燃焼ガス
の顕熱により金属壁を通して加熱されるのであるから、
放熱によって燃焼ガスの温度が低下し、下流側になる程
放射面の温度が低下する。
The combustion gas distribution pipe 5 in the box 1 is heated through the metal wall by the sensible heat of the combustion gas flowing inside.
The temperature of the combustion gas decreases due to heat radiation, and the temperature of the radiation surface decreases as it moves downstream.

このため適当間隔をとった位置に触媒燃焼器4が介装さ
れるが、その外に、下流側での蛇行ピッチを小さくして
二次放射体側での受熱エネルギを均一化することが望ま
しい。
For this reason, catalytic combustors 4 are interposed at positions with appropriate intervals, and in addition, it is desirable to reduce the meandering pitch on the downstream side to equalize the heat received energy on the secondary radiator side.

第3図から第5図は本発明の他の実施例の開放型の例を
示す。
3 to 5 show open examples of other embodiments of the invention.

第3図、第4図において、IIは一次放射体となる燃焼
ガス流通管、12はこの燃焼ガス流通管IIの上側に、
開放側を下側に向けて設けた樋状の湾曲面部材であり、
この湾曲面部材12の下面には遠赤外線放射体13が密
着されており、また上面には断熱材14が貼付けである
。15は上記燃焼ガス流通管11の下側に位置して、燃
焼ガス流通管11が放射する赤外線が直接下方へ放射さ
れるのを防ぐために設けられた金属壁で、この金属壁1
5の下面に遠赤外線放射体13が密着されている。
In FIGS. 3 and 4, reference numeral II indicates a combustion gas distribution pipe serving as a primary radiator, and reference numeral 12 indicates an upper side of this combustion gas distribution pipe II.
It is a gutter-like curved surface member with the open side facing downward,
A far-infrared radiator 13 is closely attached to the lower surface of this curved surface member 12, and a heat insulating material 14 is attached to the upper surface. A metal wall 15 is located below the combustion gas distribution pipe 11 and is provided to prevent infrared rays emitted by the combustion gas distribution pipe 11 from being directly radiated downward.
A far-infrared ray emitter 13 is closely attached to the lower surface of the infrared ray 5.

この実施例における構成において、燃焼ガス流通管11
は赤外線を放射する一次放射体となり、また、湾曲面部
材12と遠赤外線放射体13及び金属壁15と遠赤外線
放射体13とは二次放射面となり、一次放射体から放射
された赤外線により、両二次放射体は加熱され、それぞ
れの遠赤外線放射体13から下方へ向けて遠赤外線が放
射される。
In the configuration in this embodiment, the combustion gas distribution pipe 11
serves as a primary radiator that emits infrared rays, and the curved surface member 12, far-infrared radiator 13, and metal wall 15 and far-infrared radiator 13 serve as secondary radiators, and the infrared rays emitted from the primary radiator cause Both secondary radiators are heated, and far-infrared rays are emitted downward from each far-infrared radiator 13.

第5図は開放型の他側を示すもので、図中16は燃焼ガ
ス流通管で、この燃焼ガス流通管16は開放側を斜め上
方に向けた樋状の反射部材17内に位置し、この反射部
材17の斜め上方に金属板18が設けである。そして上
記反射部材17の内面は反射率がよいように鏡面となっ
ており、また金属板18の下面には遠赤外線放射体19
が密着されて二次放射体となっている。
FIG. 5 shows the other side of the open type. In the figure, 16 is a combustion gas distribution pipe, and this combustion gas distribution pipe 16 is located in a gutter-shaped reflection member 17 with the open side facing diagonally upward. A metal plate 18 is provided diagonally above the reflecting member 17. The inner surface of the reflecting member 17 has a mirror surface for good reflectance, and the lower surface of the metal plate 18 is provided with a far-infrared radiator 19.
are in close contact with each other to form a secondary radiator.

この実施例における構成において、一次放射体となる燃
焼ガス流通管16より放射された赤外線は直接及び反射
部材17に反射して二次放封体に照射され、これにより
、二次放射体は加熱され、遠赤外線放射体19より下刃
へ向けて遠赤外線が放射される。
In the configuration of this embodiment, the infrared rays emitted from the combustion gas distribution pipe 16 serving as the primary radiator are irradiated directly and reflected by the reflecting member 17 to the secondary radiator, thereby heating the secondary radiator. The far-infrared rays are emitted from the far-infrared radiator 19 toward the lower blade.

なおこの実施例において、反射部材17の裏側に遠赤外
線放射体を密着し、反射部材17の加熱によりこの遠赤
外線放射体より遠赤外線を放射するようにしてもよい。
In this embodiment, a far-infrared ray emitter may be closely attached to the back side of the reflecting member 17, and the far-infrared rays may be emitted from the far-infrared rays by heating the reflecting member 17.

発明の効果 本発明によれば、小さな動力でもって大面積から遠赤外
線を効率よく放射することができる。
Effects of the Invention According to the present invention, far infrared rays can be efficiently radiated from a large area with a small amount of power.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は予熱空気
供給ラインを含む要部の横断平面図、WJ2図は第1図
の■−■線に沿う断面図、第3図、第4図は本発明の他
の実施例を示すもので、第3図は正面図、第4図は第3
図の■−■線に沿う断面矢視図、第5図は本発明のさら
に他の実施例を示す正面図である。 1は箱、2.13.19は遠赤外線放射体、3は二次放
射体、5,11.16は燃暁ガス流通管、6,6αは触
媒燃焼器、7.7αは燃料混合器。 出願人 株式会社日本ケミカル・プラント、コンサルタ
ント代理人 弁 理 士  米   原   正   
牽伸 理  士  浜   本       忠勇1図 第2図 第3図 第4図 第5図 +4
The drawings show an embodiment of the present invention, and FIG. 1 is a cross-sectional plan view of the main part including the preheated air supply line, WJ2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 4 shows another embodiment of the present invention, FIG. 3 is a front view, and FIG. 4 is a front view of the third embodiment.
FIG. 5 is a cross-sectional view taken along the line ■-■ in the figure, and a front view showing still another embodiment of the present invention. 1 is a box, 2.13.19 is a far-infrared radiator, 3 is a secondary radiator, 5, 11.16 is a combustion gas distribution pipe, 6, 6α is a catalytic combustor, and 7.7α is a fuel mixer. Applicant Nippon Chemical Plant Co., Ltd., Consultant Agent Patent Attorney Tadashi Yonehara
Director: Tadayu Hamamoto Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 +4

Claims (4)

【特許請求の範囲】[Claims] (1)金属に密着した遠赤外線放射体を加熱することに
より遠赤外線放射体より遠赤外線を放射するよりにした
遠赤外線放射装置において、燃焼ガスを通すことにより
赤外線を放射するようにした金属製の燃焼ガス流通管に
て構成した一次放射体と、金属板の表面に、加熱するこ
とにより遠赤外線を放射する遠赤外線放射体を密着した
二次放射体からなり、一次放射体を二次放射体に離間対
向して配置したことを特徴とする遠赤外線放射装置。
(1) In a far-infrared radiator that emits far-infrared rays by heating the far-infrared radiator that is in close contact with the metal, the far-infrared radiator emits infrared rays by passing combustion gas through it. The primary radiator consists of a combustion gas distribution pipe, and the secondary radiator has a far-infrared radiator that emits far-infrared rays when heated, which is closely attached to the surface of a metal plate. A far-infrared radiation device characterized by being placed facing away from the body.
(2)二次放射体の遠赤外線放射体を黒鉛にしたことを
特徴とする特許請求の範囲第1項記載の遠赤外線放射装
置。
(2) The far-infrared ray radiating device according to claim 1, wherein the far-infrared ray radiator of the secondary radiator is made of graphite.
(3)一次放射体を外面に遠赤外線放射体を密着した箱
の内側に一次放射体を内装したことを特徴とする特許請
求の範囲第1項記載の遠赤外線放射装置。
(3) The far-infrared ray emitting device according to claim 1, characterized in that the primary radiator is housed inside a box with the far-infrared ray radiator in close contact with the outer surface of the box.
(4)二次放射体の遠赤外線放射体側に一次放射体を対
向させると共に、一次放射体と二次放射体との対向部以
外をカバーしたことを特徴とする特許請求の範囲第1項
記載の遠赤外線放射装置。
(4) Claim 1, characterized in that the primary radiator is opposed to the far-infrared radiator side of the secondary radiator, and the area other than the facing portion of the primary radiator and the secondary radiator is covered. far infrared radiation device.
JP61223844A 1986-09-24 1986-09-24 Far infrared radiation device Expired - Fee Related JPH0663625B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61223844A JPH0663625B2 (en) 1986-09-24 1986-09-24 Far infrared radiation device
DE8787113829T DE3778622D1 (en) 1986-09-24 1987-09-22 RADIANT SYSTEM IN THE REMOTE INFRARED AREA.
EP87113829A EP0261639B1 (en) 1986-09-24 1987-09-22 Far-infrared radiating system
US07/100,057 US4798192A (en) 1986-09-24 1987-09-23 Far-infrared radiating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223844A JPH0663625B2 (en) 1986-09-24 1986-09-24 Far infrared radiation device

Publications (2)

Publication Number Publication Date
JPS6380112A true JPS6380112A (en) 1988-04-11
JPH0663625B2 JPH0663625B2 (en) 1994-08-22

Family

ID=16804606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223844A Expired - Fee Related JPH0663625B2 (en) 1986-09-24 1986-09-24 Far infrared radiation device

Country Status (4)

Country Link
US (1) US4798192A (en)
EP (1) EP0261639B1 (en)
JP (1) JPH0663625B2 (en)
DE (1) DE3778622D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571629U (en) * 1992-01-10 1993-09-28 株式会社桂精機製作所 Far infrared burner

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3804704A1 (en) * 1987-02-17 1988-08-25 Senju Metal Industry Co INFRARED HEATING DEVICE
JPH0625919Y2 (en) * 1988-03-15 1994-07-06 千住金属工業株式会社 Infrared heater
US4878480A (en) * 1988-07-26 1989-11-07 Gas Research Institute Radiant tube fired with two bidirectional burners
DE3917000C2 (en) * 1989-05-24 2000-10-26 Bsh Bosch Siemens Hausgeraete Radiant heating device for cooking appliances
US5000158A (en) * 1989-08-14 1991-03-19 North American Manufacturing Company Staged burning radiant tube
US5154160A (en) * 1991-05-12 1992-10-13 Q Industries Food Equipment Co. Automated oven with gas-fired radiant heater assembly
JP3196044B2 (en) * 1992-09-30 2001-08-06 株式会社日本ケミカル・プラント・コンサルタント Gas heating device
GB2292214B (en) * 1994-08-10 1998-08-05 Ambi Rad Ltd Space heating appliances
US5628303A (en) * 1996-02-20 1997-05-13 Solaronics, Inc. Radiant space heater for residential use
USD378402S (en) * 1996-03-04 1997-03-11 Solaronics, Inc. Radiant space heater for residential use
US5851498A (en) * 1996-12-02 1998-12-22 Catalytic Systems Technologies, Ltd. Boiler heated by catalytic combustion
WO2000001286A1 (en) * 1998-07-02 2000-01-13 Best Willie H Heating assembly and cooking apparatus
JP2002112713A (en) * 2000-10-03 2002-04-16 Nippon Chem Plant Consultant:Kk Feed additive, and apparatus and method for producing the same
WO2006080949A2 (en) * 2004-06-23 2006-08-03 Best Willie H Radiant burner
CN102670083B (en) * 2006-09-26 2015-01-14 烧烤用具有限责任公司 Cooking apparatus with concave emitter
CN101611265B (en) 2006-11-10 2012-10-10 烧烤用具有限责任公司 Radiant tube broiler
CN102300492B (en) * 2008-12-01 2015-06-17 烧烤用具有限责任公司 Methods And Apparatus For Generating Infrared Radiation From Convective Products Of Combustion
CN102498349B (en) * 2009-06-29 2014-11-05 W·C·布拉德利公司 Single cavity radiant cooking apparatus
US8656904B2 (en) 2009-09-25 2014-02-25 Detroit Radiant Products Co. Radiant heater
US8840942B2 (en) * 2010-09-24 2014-09-23 Emisshield, Inc. Food product and method and apparatus for baking
US8637792B2 (en) 2011-05-18 2014-01-28 Prince Castle, LLC Conveyor oven with adjustable air vents
CA2883537A1 (en) 2012-11-15 2014-05-22 W.C. Bradley Co. Electric roaster and smoker
CN105451564B (en) 2013-06-17 2018-01-12 W.C.布拉德利公司 For the high-efficiency appliance and method cooked, heated and dry
CN105451567B (en) 2013-06-17 2021-08-03 W.C.布拉德利公司 Outdoor cooker and smoker and fuel burner therefor
US9546793B2 (en) * 2013-07-10 2017-01-17 Finn Green Technology LLC Radiant heater and combustion chamber
US9709281B2 (en) 2014-03-31 2017-07-18 W.C. Bradley Co. High efficiency side burner and outdoor cooker
US20150345828A1 (en) * 2014-05-29 2015-12-03 David P. Clark Patio heater with reflective shield
CA2977120C (en) 2015-03-25 2023-02-21 William A. Dixon Vertical electric cooker and smoker and smoke box
EP3236162A1 (en) * 2016-04-22 2017-10-25 Caloray Pty Ltd An electric suspended radiant disk heater apparatus
US10697640B2 (en) * 2016-11-17 2020-06-30 Rachael Kearse Best Device and method for decreasing radiative heat flux of infrared energy
WO2020081595A1 (en) 2018-10-16 2020-04-23 Best Willie H Incinerating container for broiling
USD987047S1 (en) * 2021-03-03 2023-05-23 Jahn Jeffery Stopperan Foil heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449649U (en) * 1977-09-13 1979-04-06
JPS6154110U (en) * 1984-09-13 1986-04-11
JPS6157485U (en) * 1984-09-20 1986-04-17

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR536774A (en) * 1920-11-22 1922-05-09 Gas heating radiator, with reflective mirror
FR572907A (en) * 1923-01-23 1924-06-16 Gas heating radiator
FR1096413A (en) * 1953-08-27 1955-06-21 infrared radiation emitter for heating or drying
US2946510A (en) * 1954-08-04 1960-07-26 Hi Ro Heating Corp High temperature conduit radiant overhead heating
US2897337A (en) * 1957-08-12 1959-07-28 Robert D Schiff Radiant ceiling heater
US4044751A (en) * 1975-05-19 1977-08-30 Combustion Research Corporation Radiant energy heating system with power exhaust and excess air inlet
GB1539892A (en) * 1976-02-27 1979-02-07 Andrews Weatherfoil Ltd Heating of buildings
JPS5952723A (en) * 1982-09-20 1984-03-27 Seiichi Konaka Infrared radiation device
US4529123A (en) * 1983-09-02 1985-07-16 Combustion Research Corporation Radiant heater system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449649U (en) * 1977-09-13 1979-04-06
JPS6154110U (en) * 1984-09-13 1986-04-11
JPS6157485U (en) * 1984-09-20 1986-04-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571629U (en) * 1992-01-10 1993-09-28 株式会社桂精機製作所 Far infrared burner

Also Published As

Publication number Publication date
US4798192A (en) 1989-01-17
EP0261639B1 (en) 1992-04-29
EP0261639A3 (en) 1989-09-06
EP0261639A2 (en) 1988-03-30
DE3778622D1 (en) 1992-06-04
JPH0663625B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPS6380112A (en) Far infrared ray radiation device
JP3568964B2 (en) Catalytic combustion device
KR0150053B1 (en) Radient wall oven and process for generating infrared radiation having a nonunification emission distribution
US20070269758A1 (en) Radiant Burner
JPH05187618A (en) Heating apparatus with catalyst burner
US6286500B1 (en) Heaters
US4563572A (en) High-efficiency task heater
US3029866A (en) Radiating burner
JP4710161B2 (en) Thermolight generator
US6612835B2 (en) High-temperature, non-catalytic, infrared heater
JPH0220902B2 (en)
CN210486097U (en) Combustion heat exchange assembly and gas combustion equipment with same
JPH06134040A (en) Infrared radiation electric heater
US3351048A (en) Infra-red gas burner structure
JP3196044B2 (en) Gas heating device
JPS591918A (en) Heating device for promoting radiation
JPS58127010A (en) Burner utilizing catalyst
JPH08219553A (en) Radiation conversion and radiative device
KR200197967Y1 (en) Far infrared ray radiating hearter
JPH1151333A (en) Catalytic combustion equipment
JPH01142341A (en) Radiation panel for heater device
JPH09310921A (en) Heat storage type hot-water device
JPH0740894Y2 (en) heater
CN112254342A (en) Combustion heat exchange assembly and gas combustion equipment with same
JPH08100908A (en) Catalyst burner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees