JPS59204763A - Measurement of sulphur trioxide in exhaust gas - Google Patents

Measurement of sulphur trioxide in exhaust gas

Info

Publication number
JPS59204763A
JPS59204763A JP58079391A JP7939183A JPS59204763A JP S59204763 A JPS59204763 A JP S59204763A JP 58079391 A JP58079391 A JP 58079391A JP 7939183 A JP7939183 A JP 7939183A JP S59204763 A JPS59204763 A JP S59204763A
Authority
JP
Japan
Prior art keywords
hydrogen iodide
gas
exhaust gas
convertor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58079391A
Other languages
Japanese (ja)
Inventor
Yoshiaki Obayashi
良昭 尾林
Shigeaki Mitsuoka
光岡 薫明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58079391A priority Critical patent/JPS59204763A/en
Publication of JPS59204763A publication Critical patent/JPS59204763A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0042Specially adapted to detect a particular component for SO2, SO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To enable continued measurement by allowing exhaust gas to pass through a hydrogen iodide filled convertor and detecting a concentration sulphur trioxide in exhaust gas by decrement of measurement hydrogen iodide in entrance and exit of the convertor. CONSTITUTION:Exhaust gas 1 containing SO3 and moisture is introduced to a sampling pipe as sampling gas 2 and then, a portion of the gas is introduced to a convertor 3 containing sodium iodide and other portion to an analyzer 10 of hydrogen iodide via the sampling tube 9. In the analyzer 10 a concentration of hydrogen iodide of gas 1 is measured. The gas introduced in the convertor 3 generates hydrogen iodide of doubled equivalent weight to SO3 according to the chemical terminal here. Temperature of the convertor is kept in a range 300- 400 deg.C suited to the reaction by a convertor heater 4. Gas from the convertor is introduced to a hydrogen iodide analyzer 6 through 4 a conduit pipe 5 and exhausted into air as hydrogen iodide analyzer discharge gas 7. 1/2 of the difference of analysis measurements of hydrogen iodide analyzer 10 and that of 6 is defined as the concentration of SO3.

Description

【発明の詳細な説明】 本発明はボイラ等の排ガス発生源から排出されるガスな
ど三酸化硫黄を含むガス中の三酸化硫黄(以下803と
いう)!1:度を連続的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the treatment of sulfur trioxide (hereinafter referred to as 803) in gas containing sulfur trioxide, such as gas discharged from exhaust gas generating sources such as boilers! 1: Concerning a method for continuously measuring degrees.

硫黄酸化物の総量規制に伴い、各種排ガス発生源から排
出される排ガス中の硫黄酸化物濃度は低硫黄燃料の使用
および排煙脱硫装置の設置等により減少しておυ、同時
にSO3濃度も微量となってきている。しかし、これら
の排ガス発生源に脱硝装置および空気予熱器等を設置す
る場合、SO2濃度の正確な把握は装置材料等の装置設
計上重要な項目の一つである。
In line with regulations on the total amount of sulfur oxides, the concentration of sulfur oxides in exhaust gas emitted from various exhaust gas sources has been reduced by using low-sulfur fuel and installing flue gas desulfurization equipment, and at the same time, the concentration of SO3 has also decreased to a trace level. It is becoming. However, when installing denitrification equipment, air preheaters, etc. at these exhaust gas generation sources, accurate understanding of SO2 concentration is one of the important items in equipment design such as equipment materials.

従来、排ガス中のSo3分析方法は日本工業規格(J工
S )に制定されておらず、第1図に示す803採取フ
ローによJso3を採取し、硫酸イオンとして所定の方
法で分析する方法が一般に知うしている。(特願昭53
−49722)この従来の方法は採取管から採取した試
料ガスを硫酸の露点以下、水の沸点以上の約110℃に
冷却し、ガス状のSO2をミストとし、第2図に示すス
パイラル管に慣性衝突、付着させて、あるいはダストフ
ィルター等に捕集する方法である。
Conventionally, the method for analyzing So3 in exhaust gas has not been established in the Japanese Industrial Standards (JS), and the method used is to collect Jso3 using the 803 collection flow shown in Figure 1 and analyze it as sulfate ions using a prescribed method. Generally known. (Special application 1973
-49722) In this conventional method, the sample gas collected from the sampling tube is cooled to about 110°C, which is below the dew point of sulfuric acid and above the boiling point of water, and gaseous SO2 is made into a mist. These methods include collision, adhesion, or collection in a dust filter.

第1図において排ガスは煙道1を図示した方向に流れる
。ダストフィルター4を連結し、ヒーター3により加熱
されている採取管2から試料排ガスを採取し、Bogは
110℃に保温されたグリセリン浴9に配設されたスパ
イラル管7でミストとしスパイラル管7に慣性衝突、付
着させて、あるいはメンブランフィルタ−8に捕集する
。この方法は排ガスの採取温度、冷却温度およびスパイ
ラル管内の通過速度等の微妙なノウハウがちシ、測定に
熟練を要すると共に連続的に濃度を測定することができ
ないという欠点がある。
In FIG. 1, the exhaust gas flows through the flue 1 in the direction shown. A dust filter 4 is connected to collect the sample exhaust gas from the collection tube 2 heated by the heater 3, and the bog is turned into a mist in the spiral tube 7 disposed in the glycerin bath 9 kept at 110°C. Inertial collision, adhesion, or collection on membrane filter 8. This method has disadvantages in that it requires delicate know-how regarding the exhaust gas sampling temperature, cooling temperature, and passage speed through the spiral tube, requires skill in measurement, and cannot continuously measure the concentration.

本発明はこれらの欠点を改良するためになしたもので、
排ガス中のSo3を採取し、硫酸イオンとして化学分析
し排ガス中のSo3濃度を測定するのではなく、排ガス
中に含有されているSOsと水分とをヨウ化ナトリウム
を充填した転化器内で(1)式の如く2反応せしめ硫酸
す) IJウムとヨウ化水素に分解する。
The present invention was made to improve these drawbacks.
Rather than collecting So3 in the exhaust gas and chemically analyzing it as sulfate ions to measure the So3 concentration in the exhaust gas, the SOs and water contained in the exhaust gas are converted into a converter filled with sodium iodide (1 ) It is reacted with sulfuric acid as shown in the formula (2) and decomposed into IJium and hydrogen iodide.

801(f)+H10(f)+2Na工(S)→Na2
804(S)+2E工(f)−m−(り この反応は300〜400℃の加熱によって。
801 (f) + H10 (f) + 2Na engineering (S) → Na2
804(S)+2E Engineering(f)-m-(Riko's reaction is performed by heating at 300-400°C.

適当量のヨウ化ナトリウムでほぼ100%So。Almost 100% So with an appropriate amount of sodium iodide.

をヨウ化水素に転化させる。生成したヨウ化水素濃度を
ヨウ化水素の連続分析計器によシ計測し、S03の連続
計測を可能にしたことを特徴とする。以下本発明を実施
例によって説明する。
is converted to hydrogen iodide. The hydrogen iodide concentration produced is measured by a continuous hydrogen iodide analysis instrument, making it possible to continuously measure S03. The present invention will be explained below with reference to Examples.

〔実施例1〕 第3図 本発明を重油専焼ボイラ節炭器出口ガスについ
て、SO3濃度を測定する場合に適用した1例である。
[Example 1] Fig. 3 This is an example in which the present invention is applied to the case of measuring the SO3 concentration of the outlet gas of the economizer of a heavy oil-fired boiler.

80.及び水分を含む排ガス1はサンプリングガス2と
して採取管に導かれ。
80. The exhaust gas 1 containing water and water is led to a sampling pipe as a sampling gas 2.

次にヨウ化ナトリウムを充填した転化器5に通されるも
のと、そのままサンプリング管9を通してヨウ化水素分
析計10に通されるものに分かれる。分析計10では排
ガス1のヨウ化水素濃度が計測される。ヨウ化ナトリウ
ムを充填した転化器3を通されたガスはここで(1)式
に従って80.の2倍当量のヨウ化水素が生成する。転
化器の温度は反応に適当な300〜400℃の範囲に転
化器加熱ヒーター4によって保持される。転化器からの
ガスは導管5を通してヨウ化水素分析計6に通され、ヨ
ウ化水素分析計排ガス7として大気に放出される。ヨウ
化水素分析計10とヨウ化水素分析計6の分析値の差分
のKをもって排ガス1のEIO3濃度とする。
Next, it is divided into two types: one is passed through a converter 5 filled with sodium iodide, and the other is passed directly through a sampling tube 9 to a hydrogen iodide analyzer 10. The analyzer 10 measures the hydrogen iodide concentration of the exhaust gas 1. Here, the gas passed through the converter 3 filled with sodium iodide is converted to 80% according to equation (1). twice the equivalent of hydrogen iodide is produced. The temperature of the converter is maintained by a converter heater 4 in a range of 300 to 400°C suitable for the reaction. Gas from the converter is passed through conduit 5 to a hydrogen iodide analyzer 6 and discharged to the atmosphere as hydrogen iodide analyzer exhaust gas 7. The difference K between the analysis values of the hydrogen iodide analyzer 10 and the hydrogen iodide analyzer 6 is taken as the EIO3 concentration of the exhaust gas 1.

この方法では排ガス中のヨウ化水素濃度がSo3濃度に
比較してほとんど無視できる程度でちれば、転化器側の
ヨウ化水素濃度の%をSo3濃度とすることができ一方
は省略できる。
In this method, if the hydrogen iodide concentration in the exhaust gas is almost negligible compared to the So3 concentration, the So3 concentration can be set as % of the hydrogen iodide concentration on the converter side, and one can be omitted.

またこの方法での注意点は転化器3での排ガス中のダス
トの蓄積及び経時的な反応効率の低下にあるが燃焼排ガ
ス中のダスト濃度が10〜20 q/ In3.803
1濃度が1〜10 ppmの条件で約1000時間は充
填物(ヨウ化ナトリウム)を交換することなく、連続計
測が可能である。
Also, the caution with this method is that dust accumulates in the exhaust gas in the converter 3 and the reaction efficiency decreases over time, but the dust concentration in the combustion exhaust gas is 10 to 20 q/In3.803.
Continuous measurement is possible for approximately 1000 hours at a concentration of 1 to 10 ppm without replacing the filling (sodium iodide).

〔実施例2〕 実施例1の適用において、転化器3温度(反応温度)を
見い出すため、転化器の温度を200℃〜400℃の範
囲で変化させ、サンプリングガス量及びヨウ化ナトリウ
ム充填量を一定のもとてそのSO3測定値を求めた。そ
の結果を表1に示す。
[Example 2] In applying Example 1, in order to find the converter 3 temperature (reaction temperature), the converter temperature was varied in the range of 200°C to 400°C, and the sampling gas amount and sodium iodide filling amount were changed. The SO3 measurement value was determined under constant conditions. The results are shown in Table 1.

この結果温度300℃〜400℃の範囲で手分析とほと
んど同じ結果が得られ、転化器の温度を300℃〜40
0℃に保持すればよいことが判明した。
As a result, almost the same results as manual analysis were obtained in the temperature range of 300°C to 400°C.
It was found that it was sufficient to maintain the temperature at 0°C.

表1 試験結果 なお、転化器3に充填するヨウ化ナトリウムが少量であ
ると、排ガス中のSo、との十分な反応が得られない場
合があるので、サンプリングガス量1. ONt/mi
nの時の転化器3に充填するヨウ化ナトリウムの必要量
を定めるために、念のため以下の実験を行った。
Table 1 Test results Note that if the amount of sodium iodide filled in the converter 3 is small, sufficient reaction with So in the exhaust gas may not be obtained. ONt/mi
In order to determine the necessary amount of sodium iodide to be filled into the converter 3 at the time of n, the following experiment was conducted just to be sure.

転化器温度及びサンプリングガス量を一定のもとにヨウ
化ナトリウム充填量を変化させて。
The amount of sodium iodide charged was varied while keeping the converter temperature and sampling gas amount constant.

そのSo、測定値を求めた。その結果を表2に示す。The measured value of So was determined. The results are shown in Table 2.

この結果、実験番号2〜5の条件にて採取管を計画すれ
ばよいことが判明した。
As a result, it was found that the collection tube should be planned under the conditions of experiment numbers 2 to 5.

表2 試験結果 本発明を重油燃焼排ガスにアンモニアを還元剤として注
入する乾式排煙脱硝装置の排ガス中の803を測定した
場合の1例でおる。乾式排煙脱硝装置は通常500℃〜
400℃程度のガス温度で運用する。この場合は転化器
加熱ヒータ4及び排ガス中のヨウ化水素濃度の計測は必
要なくなる。その態様を第4図に示す。
Table 2 Test Results This is an example of the measurement of 803 in the exhaust gas of a dry flue gas denitrification device that injects ammonia as a reducing agent into heavy oil combustion exhaust gas according to the present invention. Dry flue gas denitrification equipment usually operates at 500℃~
It operates at a gas temperature of about 400℃. In this case, there is no need to measure the converter heater 4 and the hydrogen iodide concentration in the exhaust gas. The mode is shown in FIG.

以上の如く本発明の燃焼排ガス中のEI03測定方法は
実用上非常に有用なものである。
As described above, the method for measuring EI03 in combustion exhaust gas of the present invention is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による排ガス試料採取装置の説明用概略
図で第2図は第1図におけるメングランフィルター付ス
パイラル管の説明用正面概略図である。まだ第6図、第
4図は2本発明の具体的な実施態様を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 is an explanatory schematic diagram of a conventional exhaust gas sampling device, and FIG. 2 is an explanatory front schematic diagram of the spiral tube with a menglan filter in FIG. 1. 6 and 4 are diagrams showing two specific embodiments of the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】 三酸化硫黄及び水分を含有す不排ガス中の三酸化硫黄濃
度を連続的に測定する方法に於いて。 排ガスをヨウ化ナトリウムを充填し、た転化器に導通し
、転化器入口と出口におけるヨウ化水素濃度の計測値の
差分よシ排ガス中の三酸化硫黄濃度を検知することを特
徴とする排ガス中の三酸化硫黄濃度の計測方法。
[Claims] A method for continuously measuring the concentration of sulfur trioxide in non-exhaust gas containing sulfur trioxide and water. The exhaust gas is filled with sodium iodide and passed through a converter, and the concentration of sulfur trioxide in the exhaust gas is detected based on the difference between the measured values of hydrogen iodide concentration at the inlet and outlet of the converter. Method for measuring sulfur trioxide concentration.
JP58079391A 1983-05-09 1983-05-09 Measurement of sulphur trioxide in exhaust gas Pending JPS59204763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079391A JPS59204763A (en) 1983-05-09 1983-05-09 Measurement of sulphur trioxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079391A JPS59204763A (en) 1983-05-09 1983-05-09 Measurement of sulphur trioxide in exhaust gas

Publications (1)

Publication Number Publication Date
JPS59204763A true JPS59204763A (en) 1984-11-20

Family

ID=13688559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079391A Pending JPS59204763A (en) 1983-05-09 1983-05-09 Measurement of sulphur trioxide in exhaust gas

Country Status (1)

Country Link
JP (1) JPS59204763A (en)

Similar Documents

Publication Publication Date Title
US2395489A (en) Photometric process for gas analysis
CN105975789A (en) Ammonia-escaping-rate online obtaining method for desulfurization and denitrification control
CN105223036B (en) MgO flue gas desulfurization performance on-site verification method and systems
JP3361994B2 (en) Ammonia analyzer
Maddalone et al. Laboratory and field evaluation of the controlled condensation system for S03 measurements in flue gas streams
JPH0444694B2 (en)
CN208206808U (en) A kind of measurement power plant's denitrating catalyst is to the device of oxidation rate of sulfur dioxide
JPS59204764A (en) Measurement of sulphur trioxide in exhaust gas
JPS59204763A (en) Measurement of sulphur trioxide in exhaust gas
US3367747A (en) Apparatus for continuously measuring the concentration of a gas-mixture component
Paulik et al. Simultaneous TG, DTG, DTA and EGA technique for the determination of carbonate, sulphate, pyrite and organic material in minerals, soil and rocks: II. Operation of the thermo-gas-titrimetric device and examination procedure
CA2433350A1 (en) Method and apparatus for measurement of the sulfate concentration in air samples
JPS6063466A (en) Method for continuously measuring concentration of sulfur trioxide in waste stack gas
JP2003014627A (en) Method of drawing up analytical curve for multicomponent analyzer
JP5466870B2 (en) Method and apparatus for measuring mercury concentration
JP3515671B2 (en) Gas sampling method
CN114636786B (en) Device and method for detecting sulfur trioxide or sulfuric acid mist in flue gas
Meischen et al. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler
JPH03113369A (en) Analysis of so2 in presence of ammonia
LUCAS et al. The Measurement of Ammonia in Lean Combustion Exhaust Gases
JPH053978Y2 (en)
JPH058377B2 (en)
Hjuler et al. Design of a flue gas probe for ammonia measurement
TAKAHASHI et al. Ammonia Concentration Measurement by Catalytic Oxidation
JPS6258163A (en) Apparatus for analyzing sulfur compound in process gas