JPH058377B2 - - Google Patents

Info

Publication number
JPH058377B2
JPH058377B2 JP12915983A JP12915983A JPH058377B2 JP H058377 B2 JPH058377 B2 JP H058377B2 JP 12915983 A JP12915983 A JP 12915983A JP 12915983 A JP12915983 A JP 12915983A JP H058377 B2 JPH058377 B2 JP H058377B2
Authority
JP
Japan
Prior art keywords
gas
flow path
analyzer
catalyst
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12915983A
Other languages
Japanese (ja)
Other versions
JPS6020146A (en
Inventor
Kenichi Watanabe
Hajime Asami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP12915983A priority Critical patent/JPS6020146A/en
Publication of JPS6020146A publication Critical patent/JPS6020146A/en
Publication of JPH058377B2 publication Critical patent/JPH058377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0022General constructional details of gas analysers, e.g. portable test equipment using a number of analysing channels
    • G01N33/0024General constructional details of gas analysers, e.g. portable test equipment using a number of analysing channels a chemical reaction taking place or a gas being eliminated in one or more channels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、先端吸気口にフイルターを設けたサ
ンプリング用プローブに、先端吸気口よりも下流
側において2つに分岐した第1ガス流路と第2ガ
ス流路とを形成し、第2ガス流路にのみ触媒(こ
の明細書では、酸化触媒、還元触媒、酸化や還元
以外の反応を促進する触媒のほか、ガスクロマト
グラフイーにおける吸着剤までも含めた意味で用
いる場合には、単に「触媒」と記載している。)
を設け、第1ガス流路を経て吸引されたサンプル
ガス中の或る成分の測定結果と、第2ガス流路を
経て吸引されたサンプルガス中の同一成分の測定
結果とに基づいて、前記触媒による酸化、還元等
の反応や吸着が生じた特定成分を測定するように
したガス分析装置における触媒の検査方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a sampling probe having a filter at the tip inlet, and a first gas flow path and a second gas flow path that are branched into two on the downstream side of the tip inlet. (In this specification, the term is used to include oxidation catalysts, reduction catalysts, catalysts that promote reactions other than oxidation and reduction, and even adsorbents in gas chromatography.) is simply written as ``catalyst.'')
and based on the measurement result of a certain component in the sample gas sucked through the first gas flow path and the measurement result of the same component in the sample gas sucked through the second gas flow path, The present invention relates to a method for testing a catalyst in a gas analyzer that measures specific components that have undergone reactions such as oxidation or reduction or adsorption by the catalyst.

例えば、脱硝装置(燃焼排ガスにNH3を添加
して大気汚染の要因となるNOを減少させる装
置)を設けたボイラーにおいて、煙道内排ガス中
の残留NH3を測定することは、脱硝装置機能の
監視、NH3の大気中への排出による2次公害発
生や硫安生成の防止といつた観点から非常に重要
である。
For example, in a boiler equipped with a denitrification device (a device that adds NH 3 to combustion exhaust gas to reduce NO, which causes air pollution), measuring the residual NH 3 in the flue gas is a function of the denitrification device. This is extremely important from the viewpoint of monitoring, preventing secondary pollution caused by NH 3 emissions into the atmosphere, and preventing the formation of ammonium sulfate.

このような残留NH3を測定する分析装置とし
ては、対象とする煙道内排ガス中には、NH3
りも高濃度のNOが必ず存在することに着目し、
NH3−NO還元脱硝用の還元触媒を用いて、サン
プルガスのNH3とNOを反応させ、 NH3+NO+1/4O2→N2+3/2N2O 上記式の通り、等モル反応により、NH3と等
濃度分反応して消失したNOを化学発光法によつ
て分析するという手段を用いたものが最も優れて
いると考えられている。
As an analyzer for measuring residual NH 3 , we focus on the fact that there is always a higher concentration of NO than NH 3 in the target flue gas.
Using a reduction catalyst for NH 3 −NO reduction denitrification, NH 3 in the sample gas and NO are reacted, and NH 3 +NO + 1/4O 2 →N 2 + 3/2N 2 O As shown in the above formula, NH The best method is considered to be one that uses a chemiluminescence method to analyze the NO that has disappeared by reacting with the same concentration of 3 .

ところで、上記のガス分析装置におけるNH3
の分析精度は、還元触媒の反応効率によつて大き
く左右されるため、計器メーカーのみならず、顧
客にとつても現在使用中の還元触媒の反応効率の
測定(検査)が重要な関心事となつている。即
ち、還元触媒は、初期状態ではほぼ100%の反応
効率を保つているが、使用条件、使用期間によつ
て、その触媒能が少しずつ劣化して行くのは免れ
得ず、分析精度を維持するためには、触媒の反応
効率を測定し、それに基づいて分析計の校正を行
なわねばならないのである。
By the way, NH 3 in the above gas analyzer
The accuracy of analysis is greatly influenced by the reaction efficiency of the reduction catalyst, so measuring (inspecting) the reaction efficiency of the reduction catalyst currently in use is an important concern not only for instrument manufacturers but also for customers. It's summery. In other words, although the reduction catalyst maintains almost 100% reaction efficiency in its initial state, it is inevitable that its catalytic performance will gradually deteriorate depending on the usage conditions and period of use, making it difficult to maintain analytical accuracy. In order to do this, it is necessary to measure the reaction efficiency of the catalyst and calibrate the analyzer based on that measurement.

しかし乍ら、従来では、使用中の還元触媒を検
査するためには、次のような方法をとらざるを得
ず、多くの問題が生じていた。即ち、煙道内に挿
入されているプローブを取り外し、これを分析計
メーターのところまで持ち帰つて、実験室内で所
定の手段により、還元触媒を煙道内と同じ温度
(約350℃)に加熱し、煙道内排ガスと同じ組成の
ガス(NO,O2,SO2,NH3,H2O,N2等々で
ある。)をボンベにより混合調整し、別途用意し
たNO分析計を使つて、還元触媒の反応効率を測
定するという方法をとつていた。そのため、相当
な時間、費用、労力を要するだけでなく、検査が
分析計メーカーサイドでのみしか行なえないとい
うことから、検査成績書に対する顧客側の信頼生
が低いといつた種々の欠点は避けられなかつたの
である。
However, in the past, in order to inspect the reduction catalyst in use, the following method had to be used, which caused many problems. That is, remove the probe inserted into the flue, bring it back to the analyzer meter, heat the reduction catalyst to the same temperature as inside the flue (approximately 350°C) using a predetermined method in the laboratory, and remove the smoke. Gases with the same composition as Hokkaido exhaust gas (NO, O 2 , SO 2 , NH 3 , H 2 O, N 2 , etc.) are mixed and adjusted in a cylinder, and a separately prepared NO analyzer is used to measure the reduction catalyst. The method used was to measure reaction efficiency. Therefore, not only does this require a considerable amount of time, money, and effort, but also the fact that testing can only be performed by the analyzer manufacturer makes it possible to avoid various drawbacks such as low customer confidence in the test report. It was empty.

かかる現状に鑑み、本発明は、サンプリング用
プローブを煙道等に取り付けたままでも、触媒の
検査を行なえ、もつて従来方法による諸欠点を一
掃できるようにした新規な方法を提案するもので
ある。
In view of the current situation, the present invention proposes a new method that allows catalyst inspection to be carried out even when the sampling probe remains attached to the flue, thereby eliminating the various drawbacks of conventional methods. .

而して、本発明は、冒頭に述べた如き構成のガ
ス分析装置において、既知濃度の特定成分が含ま
れた検査用ガスを、第1ガス流路に逆方向から、
分析計に吸引される量以上の量流して、前記検査
用ガスを第2ガス流路によつて吸引して分析計で
分析すると共に、前記検査用ガスのうち触媒を通
さない検査用ガスを前記分析計で分析することに
より、前記触媒の検査を行う点に特徴がある。
Accordingly, the present invention provides a gas analyzer configured as described at the beginning, in which a test gas containing a specific component at a known concentration is introduced into the first gas flow path from the opposite direction.
The test gas is sucked through the second gas flow path and analyzed by the analyzer by flowing an amount greater than the amount sucked into the analyzer, and the test gas that does not pass through the catalyst is removed from the test gas. The catalyst is characterized in that the catalyst is inspected by analyzing it with the analyzer.

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

図面は、脱硝装置を取り付けたボイラーにおけ
る煙道内排ガス内の残留NH3を測定するための
ガス分析装置に付加した還元触媒検査装置を示
す。1は煙道内2に挿入されたサンプリング用プ
ローブである。該プローブ1には、先端吸気口1
よりも下流側において2つに分岐した第1ガス
流路1bと該第2ガス流路1cとが形成され、第2
ガス流路1cにのみ還元触媒3が設けられている。
4は先端吸気口1aに設けたフイルター、5と6
は、正規のNH3測定時に第1ガス流路1bを経て
吸引されるサンプルガスの導入管と第2ガス流路
cを経て吸引されるサンプルガスの導入管、7
は吸引ポンプPを備えた化学発光方式の分析計で
ある。
The drawing shows a reduction catalyst inspection device attached to a gas analyzer for measuring residual NH 3 in flue gas in a boiler equipped with a denitrification device. 1 is a sampling probe inserted into the flue 2. The probe 1 has a tip inlet 1
A first gas flow path 1 b and a second gas flow path 1 c are formed which are branched into two on the downstream side of a .
A reduction catalyst 3 is provided only in the gas flow path 1c .
4 is a filter installed at the tip intake port 1a , 5 and 6
7 is an introduction pipe for the sample gas sucked through the first gas flow path 1 b and an introduction pipe for the sample gas sucked through the second gas flow path 1 c during regular NH 3 measurement.
is a chemiluminescent analyzer equipped with a suction pump P.

還元触媒検査装置は、煙道内排ガスの手分析を
行なうために設けられている小さなガス採取口等
に取り付けたガス採取管8,NH3除去用バプリ
ング槽9、ポンプ10、バツフアー兼除湿用トラ
ツプ11、ニードル弁12、フローメータ13等
を備えた検査用ガスのベースガスライン14aと、
これに接続されたNH3ボンベ15、調圧器16、
ニードル弁17、フローメータ18等を備えた
NH3ガスライン14bと、両ライン14a,14b
の合流点よりも下流側のライン14cを、前記導
入管5に接続するための開閉バルブVと、前記ラ
イン14c近辺を300〜400℃に加熱するヒータ1
9とによつて構成されている。
The reduction catalyst inspection device includes a gas sampling pipe 8 attached to a small gas sampling port provided for manual analysis of flue gas, a bubbling tank 9 for NH 3 removal, a pump 10, and a trap 11 for buffer and dehumidification. , a base gas line 14a for testing gas, which is equipped with a needle valve 12, a flow meter 13, etc.
Connected to this are NH 3 cylinder 15, pressure regulator 16,
Equipped with needle valve 17, flow meter 18, etc.
NH 3 gas line 14 b and both lines 14 a and 14 b
an opening/closing valve V for connecting the line 14c downstream of the confluence point with the introduction pipe 5, and a heater 1 for heating the vicinity of the line 14c to 300 to 400°C.
9.

還元触媒3の検査は、次のようにして行なわれ
る。
The reduction catalyst 3 is inspected as follows.

前記ポンプ10によりガス採取管8で煙道内排
ガスを連続採取する。採取した排ガスを、NH3
除去用バプリング槽9に通して、排ガス中に含ま
れている未知濃度のNH3ならびにSO3ミスト、ダ
スト、ドレン等の測定上障害となる物質を除去す
る。尚、前記槽9内には、予め1%程度の稀硫酸
を収容して排ガス中のNH3と中和反応させても
よく、予め水を入れておき、バブリングに伴つて
NH3を水に溶かすようにしてもよいが、前記槽
9を空にしておいても、煙道内排ガス中には、通
常多量の水分が含まれているので、煙道内排ガス
の吸引開始後、短時間にドレンが槽9に溜まり、
バブリングが行なわれ、NH3の除去が行なわれ
ることになる。
The exhaust gas in the flue is continuously sampled by the gas sampling pipe 8 using the pump 10 . The collected exhaust gas is converted into NH3
The exhaust gas is passed through a bubbling tank 9 for removal to remove substances that may be a hindrance to measurement, such as NH 3 of unknown concentration and SO 3 mist, dust, and drain contained in the exhaust gas. In addition, about 1% dilute sulfuric acid may be stored in the tank 9 in advance to cause a neutralization reaction with NH 3 in the exhaust gas, or water may be filled in advance and the
NH 3 may be dissolved in water, but even if the tank 9 is emptied, the flue gas usually contains a large amount of water, so after the flue gas suction starts, Drain accumulates in tank 9 in a short time,
Bubbling will occur and NH 3 will be removed.

これによつて、検査用ガスのベースガスが得ら
れ、このベースガスは一定流量流れるようにニー
ドル弁12で調整される。
As a result, the base gas of the test gas is obtained, and this base gas is adjusted by the needle valve 12 so that it flows at a constant flow rate.

一方、NH3ボンベ15からN2をバランスガス
とした既知濃度のNH3ガスを一定流量流して、
前記ベースガスに注入混合し、NH3濃度の知ら
れた検査用ガスを連続的に調整する。この検査用
ガスは、清浄であるだけでなく、ベースガスが煙
道内排ガスから調整されているので、煙道内排ガ
スとほぼ同組成である。これは、干渉影響を除去
し得る点で、例えば、N2にNH3を添加して既知
濃度の検査用ガスを調整する場合よりも優れてい
る。
On the other hand, a constant flow of NH 3 gas with a known concentration using N 2 as a balance gas was flowed from the NH 3 cylinder 15.
A test gas with a known NH 3 concentration is continuously adjusted by injecting and mixing with the base gas. This test gas is not only clean, but also has approximately the same composition as the flue gas because the base gas is prepared from the flue gas. This is superior to, for example, adding NH 3 to N 2 to adjust a test gas of known concentration in that interference effects can be removed.

上記のようにして得た検査用ガスは、開閉バル
ブVを通つて導入管5に送給され、一部は分析計
7へと吸引され、残りは、前記第1ガス流路1b
に逆方向から送り込まれる。導入管5に送給され
る検査用ガスの総流量は、分析計7のガス採取流
量(導入管5と導入管6との総和流量)よりも大
になるように予め設定されている。従つて、プロ
ーブ1の第1ガス流路1bに逆方向から流れ込ん
だ検査用ガスの一部がフイルター4を通つて煙道
内2にオーバーフローし、残りの検査用ガスが第
2ガス流路1cを順方向に流れ、還元触媒3と接
触する。
The test gas obtained as described above is fed to the introduction pipe 5 through the on-off valve V, a part of which is sucked into the analyzer 7, and the rest is the first gas flow path 1b .
is sent from the opposite direction. The total flow rate of the test gas fed to the introduction pipe 5 is set in advance to be larger than the gas sampling flow rate of the analyzer 7 (the total flow rate of the introduction pipes 5 and 6). Therefore, a part of the test gas flowing into the first gas flow path 1b of the probe 1 from the opposite direction passes through the filter 4 and overflows into the flue 2, and the remaining test gas flows into the second gas flow path 1b. c in the forward direction and comes into contact with the reduction catalyst 3.

このとき、検査用ガス中のNOは、還元触媒3
の反応効率に応じて、脱硝反応により、既知濃度
のNH3と等濃度分反応消失し、このNOの減じた
検査用ガスが導入管6を経て分析計7へと吸引さ
れる。
At this time, NO in the test gas is reduced to the reduction catalyst 3.
Depending on the reaction efficiency of NH 3 , the denitrification reaction removes an amount equivalent to the known concentration of NH 3 , and this test gas with reduced NO is sucked into the analyzer 7 through the introduction pipe 6 .

従つて、分析計(前もつて、校正しておく)に
は、 検査用ガス中の既知のNH3濃度(ppm) ×反応効率(%)/100(%) に等しいNH3濃度が出力される。
Therefore, the analyzer (pre-calibrated) will output an NH 3 concentration equal to the known NH 3 concentration in the test gas (ppm) x reaction efficiency (%) / 100 (%). Ru.

従つて、還元触媒3の反応効率は、 分析計出力(ppm)/検査用ガス中のNH3濃度(ppm)
×100 によつて簡単に求めることができる。
Therefore, the reaction efficiency of the reduction catalyst 3 is: Analyzer output (ppm) / NH 3 concentration in test gas (ppm)
It can be easily determined by ×100.

尚、導入管5とライン14cとの接続部に流路
切換弁を設けて、検査用ガスを、プローブ1を通
すことなく1台の分析計7に流す状態と、プロー
ブ1の第1ガス流路1bに逆方向から流し、還元
触媒3を経て前記1台の分析計7に流す状態とに
切換えて、還元触媒3の反応効率を測定する場合
には、検査用ガスの流量は、正規のNH3測定時
に還元触媒3を経て吸引採取される量より大であ
れば、煙道内排ガスの流入を防止できる。これ
は、前記第1ガス流路1bを逆方向に流れる検査
用ガスは、プローブ1の先端に設けられたフイル
ター4によつて拡散され、余剰分がフイルター4
を経てプローブ1外に流出して、煙道内の排ガス
のプローブ1内への流入が防止されるからであ
る。また、上記の実施例では、煙道内排ガス中の
残留NH3を測定するための装置を例にあげて、
本発明を説明しているが、還元触媒を有しないラ
インにサンプルガスを流して、サンプルガス中の
NOを化学発光法により測定する一方、還元触媒
を有するラインにサンプルガスを流してNO2
NOに還元した後、同様なNO測定を行ない、後
者から前者を減算してNO2の濃度を測定するガ
ス分析装置や、酸化触媒を有しないラインにサン
プルガスを流してサンプルガス中のメタンを測定
する一方、酸化触媒を有するラインにサンプルガ
スを流して非メタン炭化水素を酸化した後、メタ
ンの測定を行ない、後者から前者を減算してサン
プルガス中の非メタン炭化水素を測定するガス分
析装置についても、本発明を適用可能である。
Note that a flow path switching valve is provided at the connection between the introduction pipe 5 and the line 14c , so that the test gas can flow to one analyzer 7 without passing through the probe 1, and the first gas of the probe 1 can be When measuring the reaction efficiency of the reduction catalyst 3 by switching the flow to flow path 1 b from the opposite direction and flowing through the reduction catalyst 3 to the one analyzer 7, the flow rate of the test gas is as follows. If the amount is larger than the amount sucked and collected through the reduction catalyst 3 during regular NH 3 measurement, the inflow of exhaust gas into the flue can be prevented. This is because the test gas flowing in the opposite direction through the first gas flow path 1b is diffused by the filter 4 provided at the tip of the probe 1, and the excess is passed through the filter 4.
This is because the exhaust gas in the flue is prevented from flowing into the probe 1 by flowing out of the probe 1 through the duct. In addition, in the above embodiment, an apparatus for measuring residual NH 3 in flue gas is taken as an example.
Although the present invention is described, the sample gas is passed through a line that does not have a reduction catalyst, and the
While NO is measured by chemiluminescence, the sample gas is passed through a line containing a reduction catalyst to collect NO 2 .
After reduction to NO, a similar NO measurement is performed, and methane in the sample gas is removed by using a gas analyzer that measures the concentration of NO2 by subtracting the former from the latter, or by flowing the sample gas through a line that does not have an oxidation catalyst. Gas analysis involves flowing a sample gas through a line with an oxidation catalyst to oxidize non-methane hydrocarbons, then measuring methane, and subtracting the former from the latter to measure the non-methane hydrocarbons in the sample gas. The present invention is also applicable to devices.

以上のように、本発明によれば、既知濃度の特
定成分が含まれた検査用ガスを、第1ガス流路に
逆方向から、分析計に吸引される量以上の量流し
て、前記検査用ガスを第2ガス流路によつて吸引
して前記分析計で分析すると共に、前記検査用ガ
スのうち触媒を通さない検査用ガスを前記分析計
で分析することにより、前記触媒の検査を行うた
め、プローブを煙道から抜き取ることなく、触媒
を容易かつ短時間に検査することができ、冒頭に
記した従来欠点を解消することが可能である。
As described above, according to the present invention, a test gas containing a specific component of a known concentration is flowed into the first gas flow path from the opposite direction in an amount greater than the amount sucked into the analyzer, and The catalyst is inspected by suctioning the test gas through the second gas flow path and analyzing it with the analyzer, and analyzing the test gas that does not pass through the catalyst with the analyzer. Therefore, the catalyst can be easily and quickly inspected without removing the probe from the flue, and the conventional drawbacks mentioned at the beginning can be overcome.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示す還元触媒検査装置
の構成図である。 1……プローブ、1a……先端吸気口、1b……
第1ガス流路、1c……第2ガス流路、3……触
媒、4……フイルター、7……分析計。
The drawing is a configuration diagram of a reduction catalyst inspection device showing an embodiment of the present invention. 1... Probe, 1 a ... Tip intake port, 1 b ...
First gas flow path, 1c ...Second gas flow path, 3...Catalyst, 4...Filter, 7...Analyzer.

Claims (1)

【特許請求の範囲】[Claims] 1 先端吸気口にフイルターを設けたサンプリン
グ用プローブに、先端吸気口よりも下流側におい
て2つに分岐した第1ガス流路と第2ガス流路と
を形成し、第2ガス流路にのみ触媒を設け、第1
ガス流路を経て吸引されたサンプルガス中の或る
成分の測定結果と、第2ガス流路を経て吸引され
たサンプルガス中の同一成分の測定結果とに基づ
いて前記触媒による酸化、還元等の反応や吸着が
生じた特定成分を測定するガス分析装置におい
て、既知濃度の特定成分が含まれた検査用ガス
を、前記第1ガス流路に逆方向から、分析計に吸
引される量以上の量流して、前記検査用ガスを前
記第2ガス流路によつて吸引して前記分析計で分
析すると共に、前記検査用ガスのうち触媒を通さ
ない検査用ガスを前記分析計で分析することによ
り、前記触媒の検査を行うことを特徴とするガス
分析装置における触媒の検査方法。
1 A first gas flow path and a second gas flow path are formed that are branched into two on the downstream side of the tip inlet in a sampling probe equipped with a filter at the tip inlet, and only the second gas flow path is provided with a filter. A catalyst is provided, and the first
Oxidation, reduction, etc. by the catalyst based on the measurement result of a certain component in the sample gas sucked through the gas flow path and the measurement result of the same component in the sample gas sucked through the second gas flow path. In a gas analyzer that measures a specific component that has undergone a reaction or adsorption, a test gas containing a specific component with a known concentration is passed into the first gas flow path from the opposite direction in an amount equal to or greater than the amount sucked into the analyzer. The test gas is sucked through the second gas flow path and analyzed by the analyzer, and the test gas that does not pass through the catalyst is analyzed by the analyzer. A method for testing a catalyst in a gas analyzer, characterized in that the catalyst is tested by:
JP12915983A 1983-07-14 1983-07-14 Inspection of catalyst in gas analyzing device Granted JPS6020146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12915983A JPS6020146A (en) 1983-07-14 1983-07-14 Inspection of catalyst in gas analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12915983A JPS6020146A (en) 1983-07-14 1983-07-14 Inspection of catalyst in gas analyzing device

Publications (2)

Publication Number Publication Date
JPS6020146A JPS6020146A (en) 1985-02-01
JPH058377B2 true JPH058377B2 (en) 1993-02-02

Family

ID=15002599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12915983A Granted JPS6020146A (en) 1983-07-14 1983-07-14 Inspection of catalyst in gas analyzing device

Country Status (1)

Country Link
JP (1) JPS6020146A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325292B4 (en) * 2003-06-04 2008-08-14 Umicore Ag & Co. Kg Method and apparatus for determining the activity and aging behavior of a catalyst
EP3336539B1 (en) 2016-12-14 2023-08-30 Horiba, Ltd. Gas analysis device, gas sampling device and gas analysis method

Also Published As

Publication number Publication date
JPS6020146A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
US6505524B1 (en) Mixing system and method
JP4550645B2 (en) Vehicle-mounted exhaust gas analyzer
JPH058377B2 (en)
CN105158422B (en) Device and method for measuring ammonia escape content in flue gas and ammonia escape content in smoke dust simultaneously
JP2010139281A (en) Instrument for measuring exhaust gas
JP2010013989A (en) Evaluation device for exhaust gas after-treatment device
EP0936467A2 (en) Exhaust gas analyzer and modal mass analysis method by gas trace process using the analyzer thereof
CN106918475B (en) Ship tail gas particulate matter dilution sampling system
JP3515671B2 (en) Gas sampling method
JP2019045283A (en) Exhaust gas analyzer, exhaust gas analysis method, and program for exhaust gas analysis
JPH06123682A (en) Device for measuring nox concentration
Morgan et al. New and improved procedures for gas sampling and analysis in the national air sampling network
JP4188096B2 (en) measuring device
JPS59197859A (en) Continuous measuring method of concentration of sulfur trioxide in waste gas
JP3244415B2 (en) Conversion efficiency inspection device in the converter from sulfur oxides to sulfur dioxide gas
JPS6242352Y2 (en)
McKee Effects of engine parameters and catalyst composition on vehicle sulfate emissions
Hariharan A novel integrated instrumentation technique for air pollution monitoring
Hjuler et al. Design of a flue gas probe for ammonia measurement
Shah et al. Measuring NOx in the presence of ammonia
JP3185596B2 (en) Separation dilution tunnel device
CN209662989U (en) A kind of film changeable hydrophobicity device for drying and filtering for gas analysis
Margeson et al. Determination of sulfur dioxide, nitrogen oxides, and carbon dioxide in emissions from electric utility plants by alkaline permanganate sampling and ion chromatography
Arnold Determination of sulfur trioxide in engine exhaust.
JP2553944B2 (en) How to measure engine oil consumption