JPS59204730A - Temperature detecting circuit - Google Patents

Temperature detecting circuit

Info

Publication number
JPS59204730A
JPS59204730A JP7997383A JP7997383A JPS59204730A JP S59204730 A JPS59204730 A JP S59204730A JP 7997383 A JP7997383 A JP 7997383A JP 7997383 A JP7997383 A JP 7997383A JP S59204730 A JPS59204730 A JP S59204730A
Authority
JP
Japan
Prior art keywords
temperature
iron alloy
thin film
resistance value
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7997383A
Other languages
Japanese (ja)
Inventor
Tadao Suzuki
忠男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA DENKI KOGYO KK
Tama Electric Co Ltd
Original Assignee
TAMA DENKI KOGYO KK
Tama Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA DENKI KOGYO KK, Tama Electric Co Ltd filed Critical TAMA DENKI KOGYO KK
Priority to JP7997383A priority Critical patent/JPS59204730A/en
Publication of JPS59204730A publication Critical patent/JPS59204730A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To utilize the circuit in precise temperature measurement, by connecting a highly stable fixed resistor having a specified resistance value to a thin film temperature sensor made of palladium-iron alloy or platinum-iron alloy in series, thereby correcting the dipped characteristic. CONSTITUTION:As a temperature sensor RB a thin film of palladium-iron alloy or a thin film of platinum-iron alloy is used. Resistors RA, RC, and RD, which are used for constituting a circuit, are selected so that resistance temperature coefficient is small and quality is stable for a long period. A highly stable fixed resistor RA has a resistance value, which is 2.5-5times that of the temperature sensor RB at the lowest temperature point in the temperature measuring range. By using said resistor RA, an output voltage having excellent linearity can be obtained from the sensor having a dipping characteristic. When the resistance temperature coefficient of the sensor is 6,000PPM/ deg.C, RA/RBis 2.5. When the coefficient is 4,000PPM/ deg.C, RA/RB is 4. The circuit is combined with a digital voltmeter, and a highly accurate, inexpensive thermometer can be obtained.

Description

【発明の詳細な説明】 本発明は、温度センサを用いる温度検出回路に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature detection circuit using a temperature sensor.

従来の負の抵抗温度特性を持つサーミスタを用いて精密
な温度計測をするには、号−ミスタの非直線性が大きい
ため複雑なリニアライザを必要とし、極めて同価となる
。また、正の抵抗温度特性を持つ白金薄膜温度センサは
、低6υl域で抵抗?!jc度係数が大きく高温域で小
さくなる凸状特性をボし、θ℃−50℃−100℃の例
では、中間の50℃で真11■より0913%の抵抗値
増加となり、温度換算で0.37℃(50℃に対して0
.74%)の誤差となる。しかも、この動作のためには
安定な定電流源が必要であり、西側となる。
Precise temperature measurement using a conventional thermistor with a negative resistance-temperature characteristic requires a complex linearizer, which is extremely expensive, due to the large nonlinearity of the thermistor. Also, platinum thin film temperature sensors with positive resistance-temperature characteristics have resistance in the low 6υl range? ! The jc degree coefficient is large and the convex characteristic becomes smaller in the high temperature range, and in the example of θ℃ - 50℃ - 100℃, the resistance value increases by 0913% from true 11■ at the intermediate 50℃, which is 0 in terms of temperature. .37℃ (0 for 50℃
.. 74%) error. Moreover, a stable constant current source is required for this operation, which is the case on the west side.

これらに対し、パラジウム鉄合金(PdFe)又は白金
鉄合金(PtFe)の薄賎温度センサは、前記白金薄膜
の特性とは逆に低温域で抵抗温度係数が小さく高温域で
大きくなる凹状特性を持っているため、精密温度測定用
としては利用されていなかった。しかし、特に、パラジ
ウム鉄合金の薄1模温度センサは、抵抗値、抵抗温度特
性、耐熱性、価格などにおいて一般の要求に合致してい
るため多量に使用されているものである。
On the other hand, thin temperature sensors made of palladium iron alloy (PdFe) or platinum iron alloy (PtFe) have a concave characteristic in which the temperature coefficient of resistance is small in the low temperature range and large in the high temperature range, contrary to the characteristics of the platinum thin film. Therefore, it was not used for precise temperature measurement. However, in particular, thin-film temperature sensors made of palladium-iron alloy are widely used because they meet general requirements in terms of resistance, resistance-temperature characteristics, heat resistance, price, etc.

本発明は、かかる点に鑑み、パラジウム鉄合金又は白金
鉄合金の薄膜温度センサの持つ凹状特セトを補正してこ
れらを精密温度測定にイ・11川できるようにすること
を目的とするものである。
In view of the above, the present invention aims to correct the concave characteristics of thin film temperature sensors made of palladium iron alloy or platinum iron alloy so that they can be used for precise temperature measurement. be.

本発明の特徴は、パラジウム鉄合金又は白金鉄合金の薄
膜温度センサを用い、温度測定範囲の最低温点における
これらの温度センサの抵抗値の2.5〜5倍の抵抗値を
持つ高安定固定抵抗をこれらの温度センサに直列に接続
し、この接続点より温度に比例した出力電圧を得るよう
にした点にある。
The feature of the present invention is that it uses a thin film temperature sensor made of palladium iron alloy or platinum iron alloy, and is highly stable and fixed with a resistance value that is 2.5 to 5 times the resistance value of these temperature sensors at the lowest temperature point of the temperature measurement range. The point is that a resistor is connected in series to these temperature sensors, and an output voltage proportional to the temperature is obtained from this connection point.

以ド、図面により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は、パラジウム鉄合金薄膜温度センサの抵抗温度
特性の例を示すものである。特性曲線A。
FIG. 1 shows an example of the resistance temperature characteristics of a palladium iron alloy thin film temperature sensor. Characteristic curve A.

B、C,Dについて25℃−75℃間で抵抗温度係数を
計算すると、A曲線では5000 PPM/ ’c 、
 8曲線では4000 PPM/”c 、 c曲線では
3600 PPM/’c 、 D曲線では2500 P
PM/”Cとなる。これらの曲線より、抵抗温度係数の
大ぎいものは非直線性も大きいことが分かる。なお、R
77’ R25は、25℃における抵抗値に対するT’
Cにおける抵抗値の比を示す。
Calculating the temperature coefficient of resistance between 25°C and 75°C for B, C, and D, the A curve is 5000 PPM/'c,
4000 PPM/'c for 8 curve, 3600 PPM/'c for c curve, 2500 P for D curve
PM/"C. From these curves, it can be seen that the larger the temperature coefficient of resistance, the greater the nonlinearity. Note that R
77' R25 is T' for the resistance value at 25°C.
The ratio of resistance values at C is shown.

第2図は、本発明の実施例を示す回路図である。FIG. 2 is a circuit diagram showing an embodiment of the present invention.

本例は、第1図の如き抵抗温度特性を持つPdFe薄膜
温度セン号をブリッジ回路の1辺に入れた場合である。
In this example, a PdFe thin film temperature sensor having resistance temperature characteristics as shown in FIG. 1 is placed on one side of the bridge circuit.

図においζ、Eは印加電圧電源、RA。In the figure, ζ and E are applied voltage power sources and RA.

Rc、RDは抵抗、RBばP d F elffi”、
IIQ jAA度センサ、X、Yは出力端子を示す。第
3図は、第、2図の回路について実験した結果を丞ず温
度−出力電圧特性図である。実験においては、E −2
,OVとし、PdFe薄膜温度センサRBにば、0℃−
100℃の抵抗温度係数が5000 PPM/”cで抵
抗値が0°Cでl kΩのものを使用した。図において
、aはRA/RB=1のとき、bはRA/RB−2のと
き、CはRA/RB=2.5のとき、dはRA/RB−
3のとき、0はRA/Re=4のとき、fはRA / 
Rs=5のときのそれぞれの特性曲線をボす。ただし、
RA−Rpはそれぞれの抵抗の抵抗値とし、RBは0℃
における値(温度測定範囲の最低温点がO′Cの場合こ
れを基準とする。)であり、RA=Rc 。
Rc and RD are resistances, RB is PdFelffi'',
IIQ jAA degree sensor, X and Y indicate output terminals. FIG. 3 is a temperature-output voltage characteristic diagram showing the results of experiments on the circuits shown in FIGS. In the experiment, E-2
, OV, and the PdFe thin film temperature sensor RB is 0℃-
A resistor with a temperature coefficient of resistance of 5000 PPM/''c at 100°C and a resistance value of l kΩ at 0°C was used. In the figure, a is when RA/RB=1, and b is when RA/RB-2. , C is RA/RB=2.5, d is RA/RB-
3, 0 is RA/Re=4, f is RA/
The respective characteristic curves when Rs=5 are plotted. however,
RA-Rp is the resistance value of each resistor, and RB is 0℃
(If the lowest temperature point in the temperature measurement range is O'C, this is the reference value.), and RA=Rc.

0℃においてRB=RDとした。3曲線より、抵抗RA
をPdFe温度センサの抵抗値RBと同一の抵抗値を持
つものに選定すると、出力電圧の増加の度合は温度上昇
に伴って小さくなり、P d F 4.度センサの抵抗
温度特性とは逆の傾向となることが判る。b−1曲線よ
り、RAの抵抗値を9日より犬きくしζ2倍、2.5倍
、3倍、・・・と変化させると、温度に対する出力電圧
の直線性が改善され、5倍以上では僅かながら補正過大
となることが判る。
RB=RD at 0°C. From the 3 curves, resistance RA
If P d F 4. is selected to have the same resistance value as the resistance value RB of the PdFe temperature sensor, the degree of increase in the output voltage becomes smaller as the temperature rises. It can be seen that the resistance-temperature characteristics of the temperature sensor have a tendency opposite to that of the temperature sensor. From the b-1 curve, when the resistance value of RA is changed from 9th to It can be seen that the correction is slightly excessive.

したかっ−C1上述の如き条件を組合わせると、0℃−
100°C間の温度領域における直線性の誤差を0.1
℃以内に補正することが可能であり、デジタル・ホルト
メータと結合することにより高精度で安価な温度計を得
ることができる。また、抵抗RcかRDをポテンショメ
ータ等で可変とすることにより、温度制御装置の温度設
定部に適用することができる。なお、必要に応じて測定
温度領域を0℃−100℃以上に拡大することも可能で
あり、温度センサとしてパラジウム鉄合金薄膜の外に白
金鉄合金薄膜を使用しうる。回路構成に用いるRA+ 
 RC,RDの各抵抗は、抵抗温度係数が小さく長期間
安定な品質のものを選定する必要がある。
I wanted to - C1 When the above conditions are combined, 0℃ -
The linearity error in the temperature range between 100°C and 0.1
It is possible to correct the temperature within °C, and by combining it with a digital holtometer, a highly accurate and inexpensive thermometer can be obtained. Further, by making the resistor Rc or RD variable with a potentiometer or the like, the present invention can be applied to a temperature setting section of a temperature control device. Note that the measurement temperature range can be expanded to 0° C. to 100° C. or higher if necessary, and a platinum iron alloy thin film can be used in addition to the palladium iron alloy thin film as a temperature sensor. RA+ used in circuit configuration
Each of the RC and RD resistors must be selected to have a low temperature coefficient of resistance and stable quality over a long period of time.

上記2種類の温度センサは、0℃−100℃間の抵抗温
度係数が5,000±1,000 PPM /”c程度
のばらつきを不ずので、6,000 PPM /’eの
場合はRA ’/ Rs−2,5,4000PPM /
 ’Cの場合はRA/RB=4とすると効果的である。
The above two types of temperature sensors have a variation in resistance temperature coefficient between 0℃ and 100℃ of about 5,000±1,000 PPM/'c, so if it is 6,000 PPM/'e, then RA' /Rs-2,5,4000PPM/
'C, it is effective to set RA/RB=4.

5000 PPM/ ”Cの場合は、上述のようにRA
 / Reを2.5〜5とするのがよい。この範囲外で
は、直線性が悪くなる。
5000 PPM/”C, use RA as described above.
/Re is preferably 2.5 to 5. Outside this range, linearity deteriorates.

結局、温度測定範囲の最低温点(実施例ではO″C)に
おけるPdFe又はPtFe温度センサの抵抗値の2.
5〜5倍の抵抗値を持つ高安定固定抵抗を選定し−ζ使
用することにより、凹状特性を持つ上記61d1度セン
サから直線性に優れた出力電圧を得ることができる。ま
た、抵抗Rc、RDは用途により適当に選択しうるが、
前述の例のようにRA=Rc、0’CにおいてRB =
RDとずれば、0℃基準の温度検出回路とすることがで
きる。
In the end, the resistance value of the PdFe or PtFe temperature sensor at the lowest temperature point in the temperature measurement range (O″C in the example) is 2.
By selecting a highly stable fixed resistor having a resistance value of 5 to 5 times and using -ζ, it is possible to obtain an output voltage with excellent linearity from the 61d 1 degree sensor having concave characteristics. In addition, the resistors Rc and RD can be appropriately selected depending on the application, but
As in the previous example, RA = Rc, RB = at 0'C
If it differs from RD, it can be used as a temperature detection circuit based on 0°C.

出力電圧の大きさは、印加する電椋電圧で容易に変更・
調整しうる。例えば、第3図の場合の出力電圧を10倍
にするには、PdFe温度センサの0℃における抵抗値
を10にΩとし、印加電比を20Vとすればよい。OV
〜20Vの11J変ta源を使用ずれは、感度をl m
V/ ’C〜20mV/”Cと連続的に変えることがで
きる。
The magnitude of the output voltage can be easily changed by changing the applied voltage.
Can be adjusted. For example, to increase the output voltage in the case of FIG. 3 by 10, the resistance value of the PdFe temperature sensor at 0° C. should be set to 10Ω, and the applied voltage ratio should be set to 20V. O.V.
Using a ~20V 11J variable ta source, the sensitivity is l m
It can be changed continuously from V/'C to 20mV/'C.

本発明によれば、白金薄膜温度センサのように定電圧電
源及び定電流源を必要とせず、定電圧電源のみでよく、
直線性誤差も白金薄膜温度センサの%以下に改善できる
According to the present invention, unlike a platinum thin film temperature sensor, a constant voltage power source and a constant current source are not required, and only a constant voltage power source is required.
The linearity error can also be improved to less than % of that of a platinum thin film temperature sensor.

更に、本発明の特にパラジウム鉄合金薄膜温度センサを
用いるものは、次のような利点を有する。
Furthermore, the present invention, particularly one using a palladium-iron alloy thin film temperature sensor, has the following advantages.

すなわち、PdFe薄膜温度センサは、抵抗値を太き(
することが容易であるため回路電流を小さく設定して発
熱による感度の!■化を防止しうる。これは、また、電
源の電流容量を小さくしうろことで重要な意味を持つ。
In other words, the PdFe thin film temperature sensor has a large resistance value (
Because it is easy to set the circuit current to a small value, the sensitivity due to heat generation can be reduced! ■It can prevent oxidation. This is also important in reducing the current capacity of the power supply.

一般に、高安定・定電圧電源は高価であり、多少電流容
量が小さくてよいとしても、それが極端に安価となるこ
とはない。しかし、本発明のように極端に小さい電流で
動作可能な検出回路にあっては、電源を全く別な思想の
下に構成することができる。第4図〜第6図はその電源
の例を示す回路図、第7図〜第9図はそれらにそれぞれ
対応する電圧変動特性図である。
Generally, highly stable and constant voltage power supplies are expensive, and even if the current capacity may be slightly smaller, it will not become extremely cheap. However, in a detection circuit that can operate with an extremely small current as in the present invention, the power supply can be constructed based on a completely different concept. FIGS. 4 to 6 are circuit diagrams showing examples of such power supplies, and FIGS. 7 to 9 are voltage fluctuation characteristic diagrams corresponding thereto, respectively.

例えば、第4図においてPdFe温度センサRBを20
にΩ、RAを80にΩとし、印加電圧を10Vとすると
、RA、−RB直列回路に0.1mAの電流が流れ、R
C’RD側にも0.1mΔ流れるので、全体e 0.2
mAの消費電流となる。この程度の消費電流の場合、専
用の定電圧ICや温度補償型定?!辻ダイオードを使用
する必要はなく、第4図〜第6図のような電源回路で充
分であることを実験により確認した。
For example, in Fig. 4, the PdFe temperature sensor RB is
When Ω is set to Ω, RA is set to 80Ω, and the applied voltage is 10V, a current of 0.1mA flows through the RA, -RB series circuit, and R
Since 0.1 mΔ also flows on the C'RD side, the total e 0.2
The current consumption is mA. In the case of this level of current consumption, do you need a dedicated constant voltage IC or a temperature compensated constant? ! It has been confirmed through experiments that it is not necessary to use the Tsuji diode, and that a power supply circuit as shown in FIGS. 4 to 6 is sufficient.

これらの図におい′ζ、RK=R門−Ro−1に見。In these figures, ′ζ, RK=R-Ro-1.

RN =Rp ’= 500Ω+ RC−RAであり、
o ’c ニおいてRB =RDである。また、トラン
ジスタTR□及びTR3ば、0℃−100’C間の電圧
の温度係数が10 PPM/”c (0,001%/ 
’C)辺土であることが望ましい。これは、安価な市販
品の中に容易に見出すことができる。トランジスタTR
2、TR4、TR5は、0℃−100°C間の電圧温度
係数が+’l mV/ ”Cの特性のものがよく、ダイ
オードD1.D2゜D3.D4は、0℃−100℃間の
本庄温度係数が一2mV/’Cの発光ダイオード(普通
の赤色発光ダイオード1.58Vが利用できる。)が適
当である。
RN = Rp' = 500Ω + RC-RA,
RB = RD in o 'c d. In addition, the temperature coefficient of voltage between 0°C and 100'C for transistors TR
'C) It is desirable to be on the edge. This can be easily found in inexpensive commercial products. transistor TR
2. TR4 and TR5 should preferably have a voltage temperature coefficient of +'l mV/''C between 0℃ and 100℃, and diodes D1.D2゜D3.D4 should have a voltage temperature coefficient between 0℃ and 100℃. A light emitting diode with a Honjo temperature coefficient of 12 mV/'C (ordinary red light emitting diode 1.58V is available) is suitable.

これらの回路において、トランジスタTRI〜TR5は
、ずべ゛ζベースを開放し、入力電圧Vinに対し逆方
向に接続する。ただし、ダイオードD1〜D。
In these circuits, the transistors TRI to TR5 all have their bases open and connected in the opposite direction to the input voltage Vin. However, diodes D1 to D.

は順方向とする。Voutば、ブリッジに対する印加電
圧(トランジスタのエミソク電圧)を表わす。
is in the forward direction. Vout represents the voltage applied to the bridge (the emitter voltage of the transistor).

実験結果を示す第7図〜第9図から判るように、これら
の電源回路により、入力電圧Vinの変動に伴うブリッ
ジ印加電圧Voutの変動を極めて小さくすることがで
きる。これ、らの電源凹路は、一般市販のトランジスタ
を逆極性で使用し最も安価な発光ダイオードを適宜組合
わせるものであるから、コスト上極めて有利で全体とし
て卵重に安価な高精度温度検出回路とすることが可能で
ある。
As can be seen from FIGS. 7 to 9 showing the experimental results, these power supply circuits can make it possible to extremely minimize fluctuations in the bridge applied voltage Vout due to fluctuations in the input voltage Vin. These power supply concave circuits use commercially available transistors with reverse polarity and suitably combine the cheapest light emitting diodes, so they are extremely cost effective and are extremely inexpensive as a whole. It is possible to do so.

なお、これまでPdFe又はPtFe温度センサRBを
ブリッジ回路の1辺に入れた場合について述べたが、上
記温度センサRBを上述のような2.5〜5倍の抵抗値
を持つ高安定固定抵抗RAと単に直列に接続し、この接
続点より出力電圧を取出すようにしたものでも、上述と
同様な効果を得ることができる。
Up to this point, we have described the case where a PdFe or PtFe temperature sensor RB is placed on one side of the bridge circuit, but the temperature sensor RB is connected to a highly stable fixed resistor RA with a resistance value of 2.5 to 5 times as described above. The same effect as described above can be obtained by simply connecting the terminal in series with the terminal and extracting the output voltage from this connection point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPdFe薄膜温度センサの抵抗温度特性の例を
示す図、第2図は本発明の実施例をボず回路図、第3図
は上記実施例の温度−出刃電圧時4−1′図、第4図〜
第6図は本発明に使用しうる電源の例をボす回路図、第
7図〜第9図はこれら電源回路のそれぞれに対応する電
圧変動特性図である。 RB ・・・・・PdFe又はptFe8膜温度センザ
、セン・・・・・温度測定範υHの最イ1.!4i11
に点における上記温度センサの抵抗値の2.5〜5倍の
抵抗値を有する高安定固定抵抗、X、Y・・・・・出力
端子。
Fig. 1 is a diagram showing an example of the resistance-temperature characteristics of a PdFe thin film temperature sensor, Fig. 2 is a circuit diagram of an embodiment of the present invention, and Fig. 3 is a diagram showing an example of the temperature vs. cutting voltage of the above embodiment. Figure, Figure 4~
FIG. 6 is a circuit diagram showing an example of a power supply that can be used in the present invention, and FIGS. 7 to 9 are voltage fluctuation characteristic diagrams corresponding to each of these power supply circuits. RB...PdFe or ptFe8 film temperature sensor, sensor...The lowest point in the temperature measurement range υH. ! 4i11
A highly stable fixed resistor having a resistance value 2.5 to 5 times the resistance value of the temperature sensor at point , X, Y...output terminals.

Claims (1)

【特許請求の範囲】 1、ハラジウム鉄合金薄膜温度センサと直列に、温度測
定範囲の最低温点における上記温度センサの抵抗値の2
.5〜5倍の抵抗値を有する高安定固定抵抗を接続し、
この接続点より温度に比例する出力電圧を得るようにし
た温度検出回路。 2、 白金鉄合金薄膜温度センサと直列に、温度測定範
囲の最低温点における上記温度センサの抵抗値の2.5
〜5倍の抵抗値を有する高安定固定抵抗を接続し、この
接続点より温度に比例する出力電圧を得るようにした温
度検出回路。
[Claims] 1. In series with the haladium iron alloy thin film temperature sensor, 2 of the resistance value of the temperature sensor at the lowest temperature point of the temperature measurement range.
.. Connect a highly stable fixed resistor with a resistance value of 5 to 5 times,
A temperature detection circuit that obtains an output voltage proportional to temperature from this connection point. 2. In series with the platinum iron alloy thin film temperature sensor, 2.5 of the resistance value of the above temperature sensor at the lowest temperature point of the temperature measurement range.
A temperature detection circuit in which a highly stable fixed resistor with a resistance value of ~5 times is connected, and an output voltage proportional to the temperature is obtained from this connection point.
JP7997383A 1983-05-07 1983-05-07 Temperature detecting circuit Pending JPS59204730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7997383A JPS59204730A (en) 1983-05-07 1983-05-07 Temperature detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7997383A JPS59204730A (en) 1983-05-07 1983-05-07 Temperature detecting circuit

Publications (1)

Publication Number Publication Date
JPS59204730A true JPS59204730A (en) 1984-11-20

Family

ID=13705264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7997383A Pending JPS59204730A (en) 1983-05-07 1983-05-07 Temperature detecting circuit

Country Status (1)

Country Link
JP (1) JPS59204730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240206A2 (en) * 1986-04-01 1987-10-07 LUCAS INDUSTRIES public limited company Temperature sensitive resistance element
US4937810A (en) * 1986-04-23 1990-06-26 Drexler Technology Corporation Optical recording tape with continuous prerecorded tracks
CN106092361A (en) * 2016-08-12 2016-11-09 中国航空工业集团公司西安飞行自动控制研究所 A kind of temperature sampling circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240206A2 (en) * 1986-04-01 1987-10-07 LUCAS INDUSTRIES public limited company Temperature sensitive resistance element
EP0240206A3 (en) * 1986-04-01 1988-12-14 LUCAS INDUSTRIES public limited company Temperature sensitive resistance element
US4937810A (en) * 1986-04-23 1990-06-26 Drexler Technology Corporation Optical recording tape with continuous prerecorded tracks
CN106092361A (en) * 2016-08-12 2016-11-09 中国航空工业集团公司西安飞行自动控制研究所 A kind of temperature sampling circuit

Similar Documents

Publication Publication Date Title
US4099115A (en) Constant-voltage regulated power supply
JPS6214783B2 (en)
JPS6142876B2 (en)
US3973147A (en) Temperature measuring circuit
US4021722A (en) Temperature-sensitive current divider
US4106341A (en) Linearized thermistor temperature measuring circuit
US3457493A (en) Multiple constant current supply
JPS59204730A (en) Temperature detecting circuit
US2864053A (en) Silicon diode error detector
US3952595A (en) Temperature correcting circuit
US3370222A (en) Constant current power supply
US6507233B1 (en) Method and circuit for compensating VT induced drift in monolithic logarithmic amplifier
US3528022A (en) Temperature compensating networks
JPS6122766B2 (en)
JPH0823482B2 (en) Temperature compensation circuit for semiconductor strain gauge
JPS5812086Y2 (en) conversion device
JPH06109677A (en) Humidity detection circuit
JPS5844330Y2 (en) drive circuit
JP2885581B2 (en) Temperature and humidity detection circuit
JPS6217685B2 (en)
JPS6317246B2 (en)
RU1778556C (en) Device for measuring temperature difference
JPS6111779Y2 (en)
SU503145A1 (en) Temperature measuring device
JPS5915505B2 (en) Temperature compensation circuit for semiconductor resistance effect elements