JPS59204681A - Solar gel pond - Google Patents

Solar gel pond

Info

Publication number
JPS59204681A
JPS59204681A JP58079720A JP7972083A JPS59204681A JP S59204681 A JPS59204681 A JP S59204681A JP 58079720 A JP58079720 A JP 58079720A JP 7972083 A JP7972083 A JP 7972083A JP S59204681 A JPS59204681 A JP S59204681A
Authority
JP
Japan
Prior art keywords
acid
water
salts
water gel
colored water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58079720A
Other languages
Japanese (ja)
Other versions
JPS6342958B2 (en
Inventor
Kaoru Kawase
川瀬 薫
Kiyoshi Hayakawa
浄 早川
Hiroshi Taoda
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58079720A priority Critical patent/JPS59204681A/en
Publication of JPS59204681A publication Critical patent/JPS59204681A/en
Publication of JPS6342958B2 publication Critical patent/JPS6342958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PURPOSE:To provide a low-cost solar gel pond of improved heat storage efficiency, by using a water-containing gel prepared by neutralizing, with an acid, salt, etc., an aqueous solution containing an inorganic salt, water-soluble organic polymer, etc. CONSTITUTION:The objective water-containing gel can be obtained by neutralizing an aqueous solution prepared by incorporating water with (A) an alkali (alkaline earth) salt such as sodium silicate, potassium silicate, lithium silicate, and (B) a water-soluble organic polymer such as PVA, cellulosic water-soluble resin, polysaccharide derivative, or plus, (C) Soot or a dye such as Sulfur Black by a neutralizing agent, e.g., chloride from Mg, Ca, Mn, etc., acid metal salt. The concentrations of the components (A) and (B) in said aqueous solution are pref., as follows: (1) for the component (A), 0.1-10wt% calculated as silicate, (2) for the component (B), 0.1-5wt%.

Description

【発明の詳細な説明】 本発明は新しい蓄熱材料として色水ゲルを用いたソーラ
ポンドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar pond using colored water gel as a new heat storage material.

ソーラボンドとは太陽光を熱の形で吸収し、貯蔵するこ
とができる池のことである。
A solar bond is a pond that can absorb and store sunlight in the form of heat.

従来のソーラボンドの集熱および蓄熱の方法は塩類溶液
を用いて濃度勾配を作り対流を防いで断熱効果を上げて
放熱を抑制することである。この濃度勾配を形成するに
は、塩の種類や濃度によって異なるが濃厚塩溶液に真水
を注入すればよい。
The conventional solar bond heat collection and storage method is to use a salt solution to create a concentration gradient to prevent convection, increase the heat insulation effect, and suppress heat radiation. To form this concentration gradient, fresh water may be injected into the concentrated salt solution, depending on the type and concentration of salt.

この濃度勾配に応じて密度勾配が形成され、この密度勾
配により、温度差による密度差の発生を防止し、さらに
浮力による対流の発生をも防止することができる。対流
が防止されれば放熱が抑制されて長期の蓄熱が可能とな
る。
A density gradient is formed in accordance with this concentration gradient, and this density gradient prevents the occurrence of a density difference due to a temperature difference, and also prevents the occurrence of convection due to buoyancy. If convection is prevented, heat radiation is suppressed and long-term heat storage becomes possible.

しかしながら塩類水のソーラボンドでは次のような欠点
がある。
However, the salt water Solarbond has the following drawbacks.

第一に製塩類溶液に真水を流して、濃度勾配を強制的に
形成する方法であるため、常時上層部にが必要である。
Firstly, since it is a method of forcing fresh water to flow through the salt solution to forcibly form a concentration gradient, it is necessary to have water in the upper layer at all times.

第二にこの方法は塩類水勾配の形成を行って蓄熱を開始
する丑でに数カ月の期間を要する。第三に漏水による塩
害があるので魚のIn化や養殖などの塩害が致命的なも
のには使用できない。第四に塩類水は20%以上にしな
ければな食塩以外は経済的に使えない。第六に蓄熱量は
比熱と温度および質量の積によって現わされるが、水の
比熱が一番大きい、それ放向温度で同質量の熱量は水が
一番大きいことになる。一般に塩類は比熱が小さく、塩
類溶液の比熱は溶液の比重が大きくなるにしたがって小
さくなるから同温度で同質量の高濃度塩類溶液の熱量は
少なくなる。それ故濃厚塩水ソーラボンドは効率が悪い
といえる。
Second, this method requires several months to build up the saline gradient and initiate heat storage. Thirdly, it causes salt damage due to water leakage, so it cannot be used in situations where salt damage is fatal, such as fish incubation or aquaculture. Fourthly, salt water cannot be used economically except for salt, which must be at least 20% salt. Sixth, the amount of heat stored is expressed by the product of specific heat, temperature, and mass, and the specific heat of water is the largest, so water has the largest amount of heat for the same mass at its radiation temperature. Generally, salts have a small specific heat, and the specific heat of a salt solution decreases as the specific gravity of the solution increases, so the amount of heat of a highly concentrated salt solution of the same mass at the same temperature decreases. Therefore, it can be said that concentrated salt water Solarbond is inefficient.

第七に藻、泥や砂など混入した場合には大量の濃厚塩類
水のため、塩害が起るなどして投棄できないなどの欠点
がある。
Seventh, if algae, mud, or sand is mixed in, the large amount of concentrated saline water can cause salt damage and cannot be dumped.

本発明は上記欠点を種々考慮して、大量の集熱、蓄熱可
能なソーラポンド用蓄熱材料を鋭意研究した結果、全く
新しいソーラポンド用蓄熱材料としてゲル状物質を用い
ることにより、その目的を達成しうろことを見出し、こ
の知見に基づいて本発明に全った。
The present invention has been made in consideration of the various drawbacks mentioned above, and as a result of intensive research into a heat storage material for solar ponds that can collect and store a large amount of heat, the present invention has achieved the objective by using a gel-like substance as a completely new heat storage material for solar ponds. The present invention was developed based on this finding.

水ソーラボンドより大巾に改善することを特徴とする蓄
熱材料を提供するものである。
The present invention provides a heat storage material that is significantly improved over water solar bond.

本発明の蓄熱材料について、さらに詳しく記す。The heat storage material of the present invention will be described in more detail.

先づ原料のケイ酸塩類であるケイ酸ナトリウム、ケイ酸
カリウムおよびケイ酸リチウムは粉末でも濃厚溶液(ア
メ状)でもよい。また水溶性有機高分子樹脂としてはカ
ルレボキシメチル七ルロ゛−ヌ、ヒドロキシプロヒルセ
ルロース、ヒドロキシメチルセルロース、メチルセルロ
ースナトのセルロース系、アミロースなどの多糖類誘導
体、′ポリアクリル酸ヒドロキシエチル、ポリアクリル
酸およびその塩、ポリアクリル酸およびその塩、ポリビ
ニルヒロリドン、ポリビニルアルコールのいずれでもケ
イ酸塩とよく混合し均一な色水ゲルが生成する。中和剤
としての塩類は塩化マグネシウム、塩化カルシウム、塩
化アルミニウムなどの塩化物、または硝酸マグネシウム
、硝酸カルシウム、硝酸アルミニウムなどの硝酸塩、ま
たは硫酸マグネシウム、硫酸カルシウム、硫酸アルミニ
ウムなどの硫酸塩、または酢酸マグネシウム、酢酸カル
シウム、酢酸アルミニウムなどの酢酸塩および他の酸類
、例えば有機酸塩であるクエン酸マグネシウムクエン酸
カルシウム、酒石酸マクネシウム、酒石酸カルシウムな
どの有機塩類で、上記いずれの塩類でもゲルが生成する
。中和剤としての酸類は塩酸、硫酸、硝酸あるいは酢酸
、コハク酸、クエン酸、フマル酸などである。
First, the raw silicates, sodium silicate, potassium silicate, and lithium silicate, may be in the form of a powder or a concentrated solution (candy-like). Examples of water-soluble organic polymer resins include cellulose-based celluloses such as caleboxymethyl heptalurine, hydroxyproylcellulose, hydroxymethylcellulose, and methylcellulose, polysaccharide derivatives such as amylose, hydroxyethyl polyacrylate, and polyacrylic acid. and its salts, polyacrylic acid and its salts, polyvinylhydrolidone, and polyvinyl alcohol, all of which mix well with silicate to form a uniformly colored water gel. Salts as neutralizing agents include chlorides such as magnesium chloride, calcium chloride, and aluminum chloride, or nitrates such as magnesium nitrate, calcium nitrate, and aluminum nitrate, or sulfates such as magnesium sulfate, calcium sulfate, and aluminum sulfate, or magnesium acetate. , acetates such as calcium acetate, aluminum acetate, and other acids, such as organic salts such as magnesium citrate, calcium citrate, macnesium tartrate, and calcium tartrate. Gels are formed with any of the above salts. Acids used as neutralizing agents include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, succinic acid, citric acid, and fumaric acid.

ゲル生成の反応条件および蓄熱材料としての最適条件を
記すと、ゲルの生成はケイ酸塩を溶解したのち、水溶性
有機高分子樹脂を加えて完全に溶解したのち、酸や塩で
中和すれば、水を多量に含んだ、いわゆる色水ゲルが生
成するが、ケイ酸塩単独の色水ゲルより水溶性有機高分
子樹脂を添加した場合の方がケイ酸塩が少なくても色水
ゲルが生成し、々おかつ透明度がよくなり、光の吸収効
率が」二列する。経済的にはゲルが多量の水を含み、な
おかつ流動性が起らないようなケイ酸塩および水溶性有
機高分子樹脂の濃度が望捷しい。通常用いられるケイ酸
塩濃度としては07%から70%が、また水溶性有機高
分子樹脂の濃度としては07%から5%が最適でちる。
The reaction conditions for gel production and the optimal conditions for use as a heat storage material are as follows: After dissolving the silicate, a water-soluble organic polymer resin is added to completely dissolve the gel, and then the gel is neutralized with acid or salt. For example, a so-called colored water gel containing a large amount of water is produced, but it is better to add a water-soluble organic polymer resin than a colored water gel containing silicate alone, even if the silicate content is small. is produced, the transparency is improved, and the light absorption efficiency is improved. Economically, it is desirable to have a concentration of the silicate and the water-soluble organic polymer resin such that the gel contains a large amount of water and no fluidity occurs. The optimum concentration of silicate usually used is 0.7% to 70%, and the optimum concentration of water-soluble organic polymer resin is 0.7% to 5%.

中和する条件としては、酸や塩などの種類によって、濃
度や量が異なるが、通常の中和条件は水素イオIン濃度
が乙〜どの間が適当である。溶液がゲル状になるいわゆ
るゲル化時間は水素イオンa度によって決まるが、たと
えば20°Cで2s%のケイ酸ナトリウムと3%のポリ
ビニルアルコールを溶解した溶液を50%の硫酸で水素
イオン濃度70に中和したとき、7時間でゲル化が始ま
りミ2〜3時間で完結する。また塩類である艦化アルミ
ニウムの場合にはケイ酸ナトリウム−ポリビニアルコー
ル 加した時点で直ちにゲル化が起る。ゲル化に使用する酸
、塩は要求されるゲル化速度にしたがって選択すればよ
く、簡単に大量の色水ゲルを製造することができる。さ
らに墨や黒色の染料を用いれば一層光吸収が上がる。
The concentration and amount of neutralizing conditions vary depending on the type of acid, salt, etc., but the usual neutralizing conditions are suitable when the hydrogen ion concentration is between 1 and 2. The so-called gelation time when a solution becomes gel-like is determined by the degree of hydrogen ion a, but for example, a solution of 2s% sodium silicate and 3% polyvinyl alcohol at 20°C is heated to a hydrogen ion concentration of 70% with 50% sulfuric acid. When neutralized, gelation begins in 7 hours and is completed in 2 to 3 hours. In the case of aluminum carrier, which is a salt, gelation occurs immediately upon addition of sodium silicate-polyvinyl alcohol. The acids and salts used for gelation can be selected according to the required gelation rate, and a large amount of colored water gel can be easily produced. Furthermore, using ink or black dye will further increase light absorption.

以上の方法で製造した色水ゲルは低濃度のケイ酸塩およ
び水溶性有機高分子樹脂で蓄熱材料としの運般は容易で
あるし、生成した色水ゲルは中性であるからボンドから
漏水しても全く無害である。
The colored water gel produced by the above method has a low concentration of silicate and water-soluble organic polymer resin, so it can be easily transported as a heat storage material, and since the colored water gel produced is neutral, water leaks from the bond. However, it is completely harmless.

色水ゲルは少量のケイ酸塩と水溶性有機高分子樹脂によ
って大量の水を抱え込むため、水の対流を防止し、放熱
を抑制するため、熱が効果的に蓄えられる。また熱量の
目安である比熱は少量のケイい塩類を多47(に使用す
るため比熱が小さくなり、同温度、同質承の熱量ならば
色水ゲルボンドの方がはるかに多忙の熱量が蓄積してい
ることになる。
Colored water gel holds a large amount of water with a small amount of silicate and a water-soluble organic polymer resin, which prevents water convection and suppresses heat radiation, allowing heat to be stored effectively. In addition, the specific heat, which is a measure of the amount of heat, is small because a small amount of silica salt is used in a large amount of water.If the amount of heat is the same at the same temperature and the same material, colored water gel bond will accumulate a much higher amount of heat. There will be.

以上の諸【范は本発明の最も有利な特徴とするところで
ある。
The above features are the most advantageous features of the present invention.

次に本発明を実施例により詳細に説明するが、本発明は
その要旨をこえない限り以下の実施例に限定されるもの
ではない。
Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例/ 、!S2の粉末ケイ酸すトリウムを9 3 3 ydの
水に溶解したのち、2yのポリビニルアルコールを添加
し均一に溶解したのち、グ39−の硫酸を20mlの水
に溶解した溶液を先のケイ酸ナトリウム−に73−0薄
tを注ぎ、約7時間後に溶液力jゲル化し始め、3時間
後に静かに.230mlの水を注入し、ゲル相と水相で
/lとした。一方同じ/lの魔法瓶に2s%の塩化ナト
リウムを7 5 0 ml注ぎ、静かに230dの水を
注いで/lとした。
Example/ ,! After dissolving S2 powdered sodium silicate in 933 yd of water, adding 2y of polyvinyl alcohol and dissolving it uniformly, a solution of S2's sulfuric acid dissolved in 20ml of water was added to the silicate powder. Pour 73-0 diluted solution into sodium solution, and after about 7 hours, the solution will begin to gel, and after 3 hours, the solution will start to gel. 230 ml of water was injected to make a ratio of gel phase and aqueous phase to /l. On the other hand, 750 ml of 2s% sodium chloride was poured into the same /l thermos flask, and 230d of water was gently added to make the volume /l.

soowtvpングステン電球の真下に魔法瓶を3個数
べて設置した。電球と魔法瓶の間隔は魔法瓶の開口部か
ら電球ガラス表面まで300顧で、日射計による光量は
0.fOりcal−c1++  −#lln  である
I placed three thermos flasks directly under the soowtvp ungsten light bulb. The distance between the bulb and the thermos is 300 mm from the opening of the thermos to the bulb glass surface, and the amount of light measured by the pyranometer is 0. fOri cal-c1++ -#lln.

温度の測定は各々の魔法瓶の開口部から/りQmmのと
ころに熱電対を設置し、記録計を用いて行なった。光の
照射は電球を乙時間Q、灯し、/g時間消灯を反復する
ことによって太陽の日射とほぼ同じようにした。この侭
滅行程を長期に経って測定したところ、温度の上昇経過
は色水ゲルと食塩を比較すると色水ゲルの方が常に食塩
より高い温度で保たれた。すなわち乙時間を灯した直後
の最高間抜の最低温度は色水ゲルの方が5,2°Cも高
く、また73時間後の最高温度は色水ゲルの方がg、S
oCも高い値が得られた。
The temperature was measured by installing a thermocouple at a distance of /Q mm from the opening of each thermos flask and using a recorder. The light irradiation was made to be almost the same as the solar radiation by repeatedly turning on a light bulb for an hour Q and turning it off for /g hours. When we measured this extinction process over a long period of time, we found that when comparing the temperature rise of colored water gel and common salt, the colored water gel always maintained a higher temperature than the common salt. In other words, the minimum temperature of the highest temperature immediately after lighting the otsu hour is 5.2 °C higher for the colored water gel, and the maximum temperature after 73 hours is g, S higher for the colored water gel.
A high value of oC was also obtained.

Claims (1)

【特許請求の範囲】 l) 無機塩類と水溶性有機高分子との混合溶液または
それに染料を添加した水溶液を酸、塩類でどのアルカリ
塩およびアルカリ土類塩の7種又は2種以上を使用する
特許請求の範囲の第1項記載の色水ゲルソーラポンド。 3) 色水ゲル中に含有する水溶性有機高分子とシテホ
リビニルアルコール、カルボキシメチルセIレロース、
ヒドロキシプロピルセルロ−スロキゾエチ/レセルロー
ス、メチルセルローヌナトのセルロース系水溶性樹脂、
アミロースなどの多糖類誘導体、ポリアクリル酸ヒドロ
キシエチル、ポリメクアクリル酸およびその塩、ポリア
クリル酸およびその塩、ポリビニルピロリドン・の7種
又はΩ種以上を使用する特許請求の範囲の第1項記載の
色水ゲルソーラボンド。 4) 色水ゲルを生成する無機塩類の中和剤としての酸
は塩酸、硫酸、硝酸あるいは酢酸、コハク酸、クエン酸
、フマル酸などの有機酸で、その7種又は2種以上を使
用する特許請求の範囲の第1項記載の色水ゲルソーラポ
ンド。 よび酢酸、フマル酸、クエン酸、コハク酸などの有機酸
の酸金属塩の7種又は2種以上を使用する特許請求の範
囲の第1項記載の色水ゲルソーラポンド。 6) 色水ゲル中に含有する染料は墨、サルファブラッ
ク、ダイアモンドブラック、ナフト−7レブラツクなど
黒色を発色する染料の7種又は2種以上を使用する特許
請求の範囲の第1項記載の包水ゲルソーラポンド。
[Claims] l) A mixed solution of an inorganic salt and a water-soluble organic polymer or an aqueous solution to which a dye is added, using seven or more types of alkaline salts and alkaline earth salts among acids and salts. A colored water gel solar pond according to claim 1. 3) The water-soluble organic polymer contained in the colored water gel, sitefoli vinyl alcohol, carboxymethyl celerose,
Hydroxypropylcellulose/recellulose, methylcellulose cellulose water-soluble resin,
Claim 1 describes the use of seven or more types of polysaccharide derivatives such as amylose, hydroxyethyl polyacrylate, polymethacrylic acid and its salts, polyacrylic acid and its salts, and polyvinylpyrrolidone. colored water gel solar bond. 4) Acids used as neutralizing agents for inorganic salts that produce colored water gels include hydrochloric acid, sulfuric acid, nitric acid, or organic acids such as acetic acid, succinic acid, citric acid, and fumaric acid, and seven or more of these are used. A colored water gel solar pond according to claim 1. The colored water gel solar pond according to claim 1, which uses seven or more acid metal salts of organic acids such as acetic acid, fumaric acid, citric acid, and succinic acid. 6) The package according to claim 1, wherein the dye contained in the colored water gel is seven or more of black coloring dyes such as ink, sulfur black, diamond black, and naphtho-7rebrak. Water gel solar pond.
JP58079720A 1983-05-06 1983-05-06 Solar gel pond Granted JPS59204681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079720A JPS59204681A (en) 1983-05-06 1983-05-06 Solar gel pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079720A JPS59204681A (en) 1983-05-06 1983-05-06 Solar gel pond

Publications (2)

Publication Number Publication Date
JPS59204681A true JPS59204681A (en) 1984-11-20
JPS6342958B2 JPS6342958B2 (en) 1988-08-26

Family

ID=13698031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079720A Granted JPS59204681A (en) 1983-05-06 1983-05-06 Solar gel pond

Country Status (1)

Country Link
JP (1) JPS59204681A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241723U (en) * 1988-09-14 1990-03-22

Also Published As

Publication number Publication date
JPS6342958B2 (en) 1988-08-26

Similar Documents

Publication Publication Date Title
IL161124A (en) Dissolution of cellulose using ionic liquids and regeneration of cellulose therefrom
JPH0565863B2 (en)
JPS6014010B2 (en) Manufacturing method of organic silver salt
KR850000239A (en) Preparation and Encapsulation Method of Particles
JPS59204681A (en) Solar gel pond
JPS57206658A (en) Novel trisazo compound and its preparation
JPS5891103A (en) Production of dispersion of colloidal silver particles
GB1323111A (en) Photographic direct positive silver halide material
JPS6340457B2 (en)
JPS6340456B2 (en)
JPS59202282A (en) Thermal energy storage material for solar pond
US3594207A (en) Cathode ray tube manufacture
CN220995724U (en) High-temperature-resistant medical laser film
US3420669A (en) Photodevelopable,direct-print compositions containing cuprous salts
GB858517A (en) Improvements in or relating to the welding of tubular members
CN112341357B (en) Preparation method of 4-methoxy phenylhydrazine hydrochloride
JPS58135995A (en) Radiation shielding transparent material
US3951656A (en) Direct-positive silver halide emulsion fogged with a cyanoborohydride anion
SU667944A1 (en) Heat-developed photographic material
TW201714819A (en) Emergency capsule for rapid oxygen enrichment and modification of water
ES8606451A1 (en) Sodium erythrosine prepn. from fluorescein
JPS59152981A (en) Preparation of heat accumulative material
JPS5938276A (en) Heat storage material
JPS6058480A (en) Heat storage material
SU662902A1 (en) Method of producing sulphonic-acid bromide of mercury