JPS59204283A - Amorphous semiconductor photoconductive element - Google Patents

Amorphous semiconductor photoconductive element

Info

Publication number
JPS59204283A
JPS59204283A JP58079050A JP7905083A JPS59204283A JP S59204283 A JPS59204283 A JP S59204283A JP 58079050 A JP58079050 A JP 58079050A JP 7905083 A JP7905083 A JP 7905083A JP S59204283 A JPS59204283 A JP S59204283A
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
layer
photoconductive
amorphous
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58079050A
Other languages
Japanese (ja)
Other versions
JPH049389B2 (en
Inventor
Isao Sakata
功 坂田
Yutaka Hayashi
豊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58079050A priority Critical patent/JPS59204283A/en
Publication of JPS59204283A publication Critical patent/JPS59204283A/en
Publication of JPH049389B2 publication Critical patent/JPH049389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce the recombination of electrons and holes and thus improve the sensitivity by a method wherein a layer forming a barrier against the carrier of at least one of photo-generating electrons and holes is provided in contact with at least one surface of an amrophous semiconductor. CONSTITUTION:The layer 2 forms the barrier against both the electrons and holes photo-generating in the amorphous semiconductor 1. Therefore, the carriers generated in said semiconductor 1 do not reach the surface, the interface between a substrate 5, or both, running through said semiconductor 1 by means of an external impressed field without being influenced by the recombination at these regions, and reaching electric terminals 3 and 4, thus leading out as a photocurrent.

Description

【発明の詳細な説明】 本発明は、アモルファス半導体光導電素子に閃するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an amorphous semiconductor photoconductive device.

アモルファス半導体を用いた従来の光導電素子は、〜ス
テンレス1、ガラス、単結晶半導体、絶縁膜等の基版上
に成長させた単層のアモルファス半導体に光電流取出し
用の電極対を蒸着したしたキャリア(電子、正孔)は印
加電圧に従t7’、−1′・′ 電極に向って移動する間に、アモルファス半導体表面、
アモルファス半導体と基板との界面及び光導電層中にお
ける再結合のため、その密度が減少し、この結果光電流
が低下し感度の良好な素子を得ることが困難であった。
Conventional photoconductive elements using amorphous semiconductors consist of a single layer of an amorphous semiconductor grown on a substrate such as stainless steel, glass, single crystal semiconductor, or an insulating film, on which a pair of electrodes for extracting photocurrent is deposited. While carriers (electrons, holes) move toward the t7', -1'・' electrode according to the applied voltage, the amorphous semiconductor surface,
Due to recombination at the interface between the amorphous semiconductor and the substrate and in the photoconductive layer, its density decreases, resulting in a decrease in photocurrent, making it difficult to obtain a device with good sensitivity.

本発明は、以上に鑑み、アモルファス半導体表面、アモ
ルファス半導体と基板との界面及びス半導体光導の実施
例につき説明する。
In view of the above, the present invention will be described with reference to embodiments of an amorphous semiconductor surface, an interface between an amorphous semiconductor and a substrate, and a semiconductor light guide.

第7図はアモルファス半導体光導電N1の表面側のみに
第二の層を設けた実施例の概略構成図で、1は第1のア
モルファス半導体光導電層2は第二の層、8,4は電気
端子、5は基板である。第2図はアモルファス半導体光
導電層1と基板5との間に第二の層を挿入した実施例の
概略構成図、第3図は第1のアモルファス半導体ツ0導
寛N1の表面側と基板5との界面側の両方に第二の層を
設けた実施例の概略構成図である。
FIG. 7 is a schematic diagram of an embodiment in which the second layer is provided only on the surface side of the amorphous semiconductor photoconductive layer N1, where 1 is the first amorphous semiconductor photoconductive layer 2, and 8 and 4 are the second layer. The electrical terminal 5 is a board. FIG. 2 is a schematic configuration diagram of an embodiment in which a second layer is inserted between the amorphous semiconductor photoconductive layer 1 and the substrate 5, and FIG. 3 is a diagram showing the surface side of the first amorphous semiconductor photoconductive layer N1 and the substrate. 5 is a schematic configuration diagram of an example in which a second layer is provided on both interface sides with 5. FIG.

ここで第二の層2は (1)  第1のアモルファス半導体光導電層1に対し
てバリアを形成するようなものであること。
Here, the second layer 2 is of a type that (1) forms a barrier to the first amorphous semiconductor photoconductive layer 1;

(2)  あるいは、電子、正孔のうちの一方のキャリ
アに対してバリアを形成し、他方のアモルファス半導体
光導電層1からの流入を許容するようなものであること
(2) Alternatively, it should form a barrier against carriers of one of electrons and holes, and allow inflow from the other amorphous semiconductor photoconductive layer 1.

(8)  あるいは第1のアモルファス半導体光導電層
1よりバンドギャップの大きいアモルファス半導体であ
ること。
(8) Alternatively, the amorphous semiconductor has a larger band gap than the first amorphous semiconductor photoconductive layer 1.

(4) あるいは、第7のアモルファス半導体層1の主
キャリアとは逆の導電形のアモルファス半導体であるこ
と。
(4) Alternatively, the amorphous semiconductor has a conductivity type opposite to that of the main carrier of the seventh amorphous semiconductor layer 1.

のいずれかの条件を満たすものとする。Either of the following conditions shall be met.

なお、本’te明においてはアモルファス半導体中で光
照射により発生する電子、正孔のうち(キャリア密度)
×(キャリア移動度)積の大きいものを主キャリアと呼
ぶ。
In addition, in this paper, among the electrons and holes generated by light irradiation in an amorphous semiconductor, (carrier density)
The carrier with a large x (carrier mobility) product is called the main carrier.

上記第二の層2を第1のアモルファス半導体尾導電M1
の光入射面側に設ける場合には、第二の層2の厚さはこ
の層中での光吸収損失割合が第1のアモルファス半導体
光導電層1におけるキャリア増加割合より小さくなるよ
う第二の層の膜厚を膚整する。
The second layer 2 is made of a first amorphous semiconductor tail conductive layer M1.
When provided on the light incident surface side of the second layer 2, the thickness of the second layer 2 is set such that the light absorption loss rate in this layer is smaller than the carrier increase rate in the first amorphous semiconductor photoconductive layer 1. Adjust the thickness of the layer.

第1図〜第3図において、8,4は第1のアモルファス
半導体光導電層1に対するコンタクトで、この間に外部
電圧を印加し光電流を取出すための電気端子である。光
導電素子の光電流取出し用に従来用いられてきた収集電
極の代わりにスイッチ用トランジスタ、低抵抗半導体領
域を光導電層に接続した構成も本発明の素子を電子」と
呼ぶことにする。この電子ではycはアpルファス半導
体表面側から人別する′1)))あるいは基板5が透明
な場合は基板側から入射させることも可能である。
In FIGS. 1 to 3, 8 and 4 are contacts to the first amorphous semiconductor photoconductive layer 1, which are electrical terminals for applying an external voltage and extracting a photocurrent. The device of the present invention will also be referred to as an "electronic" device with a configuration in which a switching transistor and a low-resistance semiconductor region are connected to the photoconductive layer instead of the collecting electrode conventionally used for extracting the photocurrent of the photoconductive device. For these electrons, yc can be separated from the surface side of the amorphous semiconductor ('1))), or if the substrate 5 is transparent, it is also possible to make them enter from the substrate side.

次に、上記第1のアモルファス半導体光導α111 、
第二の層2を構成する材料及び作成法について説明する
。材料としては、水素化アモルファスシリコン(a−8
i:旧)、フッ素化アモルファスシリ:l > (a 
Sx:F、a Si:F’H)+水累化アモルファスシ
リコンナイトライド(a−8iN:H)、水素化アモル
ファスンリコンカーバイドスシリコンゲルマニウム(a
−8iGe:I()+ 7ツ一−化アモルファスシリコ
ンゲルマニウム(a−8i←e:F:’11)、 水素
化アモルファスシリコンスズ合釡−(a−8ign :
H)、 水素化アモルファスガリウム砒素(a −Ge
As:H)、水素化アモルファスカーボン(a−0:H
)、水素化アモルファスゲルマニウム(a−Ge:H)
等を用いる。さらに、第一の層2には上記材料にp形ま
たはn形の不純物を添加したものを用いることができる
。これらの材料はグロー放電分解法、スパッタ法、熱O
VD法、光OVD法、クラスタイオンビーム法、イオン
ブレーティング法、蒸着法(水素化処理を含む)により
作成される。
Next, the first amorphous semiconductor light guide α111,
The material constituting the second layer 2 and the method for making it will be explained. The material is hydrogenated amorphous silicon (A-8
i: old), fluorinated amorphous silicate: l > (a
Sx:F, a Si:F'H) + water-accumulated amorphous silicon nitride (a-8iN:H), hydrogenated amorphous silicon recon carbide silicon germanium (a
-8iGe:I()+ 7-mono-densified amorphous silicon germanium (a-8i←e:F:'11), hydrogenated amorphous silicon tin pot - (a-8ign:
H), amorphous gallium arsenide hydride (a-Ge
As:H), hydrogenated amorphous carbon (a-0:H
), amorphous germanium hydride (a-Ge:H)
etc. are used. Furthermore, the first layer 2 can be made of the above-mentioned material to which p-type or n-type impurities are added. These materials can be processed using glow discharge decomposition method, sputtering method, thermal O
It is created by VD method, optical OVD method, cluster ion beam method, ion blating method, and vapor deposition method (including hydrogenation treatment).

次に、本発明の作用について説明する。第スの層2が第
1のアモルファス半導体層l中で光発生した電子、正孔
の両方に対してバリアを形成する場合には、第1のアモ
ルファス半導体層1で発生したキャリアは表面、または
、基板5との界面、または、その両方に到達せず、これ
らの領域での再結合の影響を受けずに第1のアモルファ
ス半導体層1の中を外部印加電界に従い走行し′電気端
子8,4に到達し光電流として取出される。表面及び基
板界面での再結金員よるキャリア数の低下がないため、
取出される光電流は従来型に比べ増加し、アモルファス
十4φ〜電素子の感度向上が実現される。
Next, the operation of the present invention will be explained. When the first amorphous semiconductor layer 2 forms a barrier against both electrons and holes that are photogenerated in the first amorphous semiconductor layer 1, the carriers generated in the first amorphous semiconductor layer 1 are transferred to the surface or , the interface with the substrate 5, or both, and travels within the first amorphous semiconductor layer 1 according to the externally applied electric field without being affected by recombination in these regions, and the electric terminal 8, 4 and is taken out as a photocurrent. Because there is no decrease in the number of carriers due to re-solidification at the surface and substrate interface,
The extracted photocurrent is increased compared to the conventional type, and the sensitivity of the amorphous 14φ to electronic element is improved.

第一の層2が第1のアモルファス半導体層]で光発生し
たキャリアの一方に対しバリアを形成し、他方のキャリ
アの流入を許容する場合、及び第一の層2の導電形が第
1のアモルファス半導体層lの主キャリアと逆の場合に
は、第1のアモルファス半導体層で光発生した電子、正
孔の一方が第一の層に流入し、電子、正孔が空間的に分
離されるので光導電層中でのキャリア再結合割合が低下
し、再結合によるキャリア数の低減が生じにくくなるた
め外部に取り出される光電流が従来型素子に比べ増加し
素子感度が向上する。
When the first layer 2 forms a barrier to one of the carriers photogenerated in the first amorphous semiconductor layer and allows the inflow of the other carrier, and when the conductivity type of the first layer 2 is the first amorphous semiconductor layer, In the opposite case to the main carriers of the amorphous semiconductor layer l, one of the electrons and holes photogenerated in the first amorphous semiconductor layer flows into the first layer, and the electrons and holes are spatially separated. Therefore, the rate of carrier recombination in the photoconductive layer is reduced, and the number of carriers is less likely to be reduced by recombination, so that the photocurrent extracted to the outside increases compared to conventional devices, and the device sensitivity improves.

また、この時、第1のアモルファス半導体層1中を走行
するキャリアは表面、または、基板界面、または、その
両方におけるキャリア再結合の影響を殆ど受けないため
、キャリア数が増加し、外部に取出される光電流が増大
し素子感度が向上する。
Moreover, at this time, carriers traveling in the first amorphous semiconductor layer 1 are hardly affected by carrier recombination at the surface, the substrate interface, or both, so the number of carriers increases and is taken out to the outside. The photocurrent generated increases, and the element sensitivity improves.

第一の層2との間のバリアによりほぼ完全に空間電荷層
が広がる厚さに第1のアモルファス半導体層1を形成し
た場合には、光を照射しないときのキャリア数を著しく
低く抑えられるので、暗電流が小さくなり暗電流と光電
流との比を大きくとることができる。さらに、第1のア
モルファス半導体層1中で光発生した電子、正孔が空間
電荷層による電界のため容易に空間的に分離され、第1
のアモルファス半導体層1中でのキャリア再結合割合が
低下するための素子感度が向上する。
If the first amorphous semiconductor layer 1 is formed to such a thickness that the space charge layer is almost completely spread out by the barrier between it and the first layer 2, the number of carriers can be kept extremely low when no light is irradiated. , the dark current becomes smaller and the ratio of dark current to photocurrent can be increased. Furthermore, the electrons and holes photogenerated in the first amorphous semiconductor layer 1 are easily spatially separated due to the electric field caused by the space charge layer, and the
Since the carrier recombination rate in the amorphous semiconductor layer 1 is reduced, the element sensitivity is improved.

次に、本発明の変形例を以下に列挙する。Next, modified examples of the present invention will be listed below.

を形成し、その内の第1組(2≦i≦n)を構成する第
(λi−/)層は、第(i −/ )組を構成する第(
Ji−3)層よりバンドギャップが小さく、第21層は
第(2i −/ )増の少なくとも一方の面に設け、第
(2i−/)層で光グむ生する電子、正孔の少なくとも
一方に対し、バリアを形成するアモルファス半導体光導
電素子。
The (λi-/)-th layer forming the first set (2≦i≦n) is the (λi-/)-th layer forming the (i-/)-th set (2≦i≦n).
The 21st layer has a smaller band gap than the Ji-3) layer, and the 21st layer is provided on at least one surface of the (2i-/)-th layer, and at least one of the electrons and holes generated in the (2i-/)-th layer. In contrast, an amorphous semiconductor photoconductive element forms a barrier.

〔変形例2〕 第1のアモルファス半導体光導電層と第スの層とが複数
組積層されたアモルファス半導体において、第(,2i
)層は第(,2i −/)僧で光発生するキャリアの一
方に対してバリアを形成し、他方のキャリアの流入を許
容する材料により構成するアモルファス半導体光導電素
子。
[Modification 2] In an amorphous semiconductor in which a plurality of sets of a first amorphous semiconductor photoconductive layer and a second layer are stacked,
) layer is formed of a material that forms a barrier against one of the carriers photogenerated at the (,2i −/)th layer and allows the inflow of the other carrier.

〔変形例8〕 第1のアモルファス半導体光導電1’(tと第一の層と
が複数組@層されたアモルファス半導体光導電素子にお
いて(第4を図示)、第(21)層を第(2土−/)/
*のアモルファス半導体よりバンドギャップの大きいア
モルファス半導体で構成するアモルファス半導体光導電
素子。
[Modification 8] In an amorphous semiconductor photoconductive element in which a plurality of sets of the first amorphous semiconductor photoconductive layer 1' (t and the first layer are layered (the fourth is shown), the (21st) layer is 2 Sat-/)/
*An amorphous semiconductor photoconductive element composed of an amorphous semiconductor with a larger band gap than the amorphous semiconductor.

〔変形例4〕 第1のアモルファス半導体光導電層と第一の層とが複数
組積層されたアモルファス半導体光導電素子において、
第(21)層を第(,21−/)層の主キャリアと逆の
導電形の膜で構成するアモルファス半導体光導電素子。
[Modification 4] In an amorphous semiconductor photoconductive element in which a plurality of sets of a first amorphous semiconductor photoconductive layer and a first layer are laminated,
An amorphous semiconductor photoconductive element in which the (21)th layer is composed of a film having a conductivity type opposite to that of the main carrier of the (,21-/)th layer.

〔髪形例5〕 第1のアモルファス半導体光導電層と第一の層とが複数
組積層されたアモルファス半導体光導電素子において、
第(21)層との間のバリアの電位差により、はぼ完全
に空間電荷層が広がる厚さに第(,2i−/)層のアモ
ルファス半導体薄膜を形成したアモルファス半導体光導
電素子。
[Hairstyle Example 5] In an amorphous semiconductor photoconductive element in which a plurality of sets of a first amorphous semiconductor photoconductive layer and a first layer are laminated,
An amorphous semiconductor photoconductive element in which an amorphous semiconductor thin film of the (,2i-/)th layer is formed to a thickness such that a space charge layer almost completely spreads due to the potential difference of a barrier between the (21st) layer and the (21)th layer.

これら第1のアモルファス半導体光導電層と第一の層と
が複数組積層されたアモルファス半導体光導電素子とそ
の変形例1〜変形例5においては、光入射面から素子中
に向ってバンドギャップが小さくなるように多層構造を
形成し、短波長の光は光入射面近傍の層で長波長の光は
より奥の層で吸収させる。このようにして、白色光に対
する素子感度が向上する。また、各層からの電極を独立
にとり出せば入射ytの波長分布に応じた出力が得られ
分光分布の測定が可能となる。夫々の層で光発生した電
子、正孔については、その一方または両方が素子表面ま
たは基板界面または表面及び基板界面に到達しないよう
に、光導電層中で光発生した電子、爪孔を空間分離する
ような性質の層として、光キャリアの一方に対してバリ
アを形成し、他方の流入を許容する層あるいは、光導電
層の主ギヤリアとは逆の導電形を有する層を各光導電層
の少なくとも−、方の面に設ける。この結果、素子表面
、基板との界面、光導電層中でのキャリア再結合割合が
低下し、光電流が増加し、素子感度が向上する。この場
合、バリア形成層等は光入射面と反対側の光導[%のバ
ンドギャップより、大きいバンドギャップを有する材料
で構成されることが素子感度上望ましい。
In the amorphous semiconductor photoconductive element in which a plurality of sets of the first amorphous semiconductor photoconductive layer and the first layer are laminated, and in Modifications 1 to 5 thereof, the band gap increases from the light incident surface toward the inside of the element. A multilayer structure is formed to reduce the size, and short wavelength light is absorbed in layers near the light entrance surface, while long wavelength light is absorbed in deeper layers. In this way, the element sensitivity to white light is improved. Furthermore, if the electrodes from each layer are taken out independently, an output corresponding to the wavelength distribution of the incident yt can be obtained, making it possible to measure the spectral distribution. Regarding the electrons and holes photo-generated in each layer, the photo-generated electrons and holes are spatially separated in the photoconductive layer so that one or both of them do not reach the element surface or the substrate interface, or the surface and substrate interface. A layer that forms a barrier to one side of the photocarriers and allows the other to flow in, or a layer that has a conductivity type opposite to that of the main gear of the photoconductive layer is added to each photoconductive layer. Provided on at least one side. As a result, the carrier recombination rate at the element surface, the interface with the substrate, and in the photoconductive layer decreases, the photocurrent increases, and the element sensitivity improves. In this case, it is desirable for the barrier forming layer etc. to be made of a material having a bandgap larger than the bandgap of the light guide [%] on the side opposite to the light incident surface in terms of device sensitivity.

以上説明したように、本発明によればアモルファス半導
体光導電素子の表面基板との界面、光導電層中でのキャ
リア再結合割合を低減し、アモルファス元導電素子の感
度向上が実現される。また、光入射面側から美に向かっ
てバンドギャップの小さくなる多層構造を形成し、本発
明によるキャリア再結合割合低減の手法をこの構造に適
用することにより白色光に対する素子感度同上が実現さ
れる。また、光導電層中で光発生した電子、正孔を空間
的に分離する場合(特許請求の範囲第(2)項、第(4
)項、第(6)項、〔変するものである。
As explained above, according to the present invention, the carrier recombination rate at the interface with the surface substrate of an amorphous semiconductor photoconductive element and in the photoconductive layer is reduced, and the sensitivity of the amorphous original conductive element is improved. In addition, by forming a multilayer structure in which the bandgap decreases toward the surface from the light incidence side and applying the method of reducing the carrier recombination rate according to the present invention to this structure, the same device sensitivity to white light can be achieved. . In addition, when electrons and holes photogenerated in the photoconductive layer are spatially separated (claims (2) and (4)
), paragraph (6), [changes].

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のアモルファス半導体光導電
素子において、第一の層を第1のアモルファス半導体光
導電層の表面側のみに設けた場合の概略構成図、第、2
図は本発明の一実施例のアモルファス半導体光導電素子
において、第一の層を第1のアモルファス半導体光導電
層と基板との間に挿入した場合の概略構成図、第3図は
本発明の一実施例のアモルファス半導体光導電素子にお
いて、第一の層を第1のアモルファス半導体光導電層の
両側に設けた場合の概略構成図、第11図は本発明の多
層構造アモルファス半導体光導電素子において、光導電
層の両側にバリア層を設けた場合の概略構成図である。 図中、1は第1のアモルファス半導体光導電“ン”・1
(・。
FIG. 1 is a schematic configuration diagram of an amorphous semiconductor photoconductive device according to an embodiment of the present invention in which the first layer is provided only on the surface side of the first amorphous semiconductor photoconductive layer;
The figure is a schematic configuration diagram of an amorphous semiconductor photoconductive device according to an embodiment of the present invention in which the first layer is inserted between the first amorphous semiconductor photoconductive layer and the substrate. FIG. 11 is a schematic configuration diagram when the first layer is provided on both sides of the first amorphous semiconductor photoconductive layer in an amorphous semiconductor photoconductive device according to an embodiment of the present invention. , is a schematic configuration diagram when barrier layers are provided on both sides of a photoconductive layer. In the figure, 1 is the first amorphous semiconductor photoconductor.
(・.

Claims (6)

【特許請求の範囲】[Claims] (1)第1のアモルファス半導体と、該第1のアモルフ
ァス半導体に接して設けられた少なくとも二つの−g%
端子と、口1j記第1のアモルファス半導体において、
光発生する電子、正孔の少なくとも一方のキャリアに対
してバリアを形成する第λの層を前記第1のアモルファ
ス半導体の少なくとも一方の面に接して設けたことを特
徴とするアモルファス半導体光導電素子。
(1) A first amorphous semiconductor and at least two -g% semiconductors provided in contact with the first amorphous semiconductor.
In the terminal and the first amorphous semiconductor of Section 1j,
An amorphous semiconductor photoconductive element characterized in that a λ-th layer forming a barrier against carriers of at least one of photogenerated electrons and holes is provided in contact with at least one surface of the first amorphous semiconductor. .
(2)  特許請求の範囲第(1)項記載のアモルファ
ス半導体光導電素子において、第スの層は一方のキャリ
アに対してバリアを形成し、他方のキャリアの流入を許
容する材料から構成されることを特徴とするアモルファ
ス半導体光導電素子。
(2) In the amorphous semiconductor photoconductive device according to claim (1), the first layer is made of a material that forms a barrier against one carrier and allows the other carrier to flow in. An amorphous semiconductor photoconductive device characterized by:
(3)  特許請求の範囲第(1)項記載のアモルファ
ス半導体光導電素子において、第コの層は第1のアモル
ファス半導体よりバンドギャップの大きいアモルファス
半導体の層であることを特徴とするアモルファス半導体
光導電素子。
(3) In the amorphous semiconductor photoconductive device according to claim (1), the third layer is an amorphous semiconductor layer having a larger band gap than the first amorphous semiconductor. conductive element.
(4) 特許請求の範囲第(1)項記載のアモルファス
半導体光導電素子において、第λの層は第1のアモルフ
ァス半導体層の主キャリアと逆の導電形の膜であること
を特徴とするアモルファス半導体光導電素子。
(4) In the amorphous semiconductor photoconductive device according to claim (1), the λ-th layer is a film having a conductivity type opposite to that of the main carrier of the first amorphous semiconductor layer. Semiconductor photoconductive device.
(5)特許請求の範囲第(1)項記載のアモルファス半
導体光導電簀子において、第スの層との間にバリアの電
位差により、はぼ完全に空間′fu荷層が広がる厚さに
第1のアモルファス半導体の層ヲ形成シたことを特徴と
するアモルファス半導体光導電素子。
(5) In the amorphous semiconductor photoconductive screen according to claim (1), the thickness of the first layer almost completely expands the space due to the potential difference of the barrier between the first layer and the second layer. An amorphous semiconductor photoconductive element comprising an amorphous semiconductor layer formed therein.
(6)特許請求の範囲第(1)項記載のアモルファス半
導体光導電素子において、イ;/のアモルフス半導体の
層と第ユの層とが複数組積層されたことを/#徴とする
アモルファス半導体光導電素子。
(6) In the amorphous semiconductor photoconductive device according to claim (1), the amorphous semiconductor is characterized in that a plurality of sets of the amorphous semiconductor layer A;/ and the layer U are laminated. Photoconductive element.
JP58079050A 1983-05-06 1983-05-06 Amorphous semiconductor photoconductive element Granted JPS59204283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079050A JPS59204283A (en) 1983-05-06 1983-05-06 Amorphous semiconductor photoconductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079050A JPS59204283A (en) 1983-05-06 1983-05-06 Amorphous semiconductor photoconductive element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5180666A Division JPH07118549B2 (en) 1993-06-25 1993-06-25 Amorphous semiconductor photoconductive device

Publications (2)

Publication Number Publication Date
JPS59204283A true JPS59204283A (en) 1984-11-19
JPH049389B2 JPH049389B2 (en) 1992-02-20

Family

ID=13679066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079050A Granted JPS59204283A (en) 1983-05-06 1983-05-06 Amorphous semiconductor photoconductive element

Country Status (1)

Country Link
JP (1) JPS59204283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137484A (en) * 1986-11-29 1988-06-09 Pentel Kk Semiconductor device
US4980736A (en) * 1987-03-23 1990-12-25 Hitachi, Ltd. Electric conversion device
JPH0878719A (en) * 1994-09-01 1996-03-22 Nec Corp Photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137484A (en) * 1986-11-29 1988-06-09 Pentel Kk Semiconductor device
US4980736A (en) * 1987-03-23 1990-12-25 Hitachi, Ltd. Electric conversion device
JPH0878719A (en) * 1994-09-01 1996-03-22 Nec Corp Photoelectric conversion element

Also Published As

Publication number Publication date
JPH049389B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
EP0122778B1 (en) Narrow band gap photovoltaic devices with enhanced open circuit voltage
EP0276002B1 (en) Thin film transistor
US5045482A (en) Method of making a tandem PIN semiconductor photoelectric conversion device
US5923049A (en) Trichromatic sensor
JPH0359588B2 (en)
EP0178148A2 (en) Thin film photodetector
JPS59204283A (en) Amorphous semiconductor photoconductive element
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3091151B2 (en) Manufacturing method of integrated photovoltaic device
WO1985002691A1 (en) Photosensitive member for electrophotography
JPS5910593B2 (en) Method of manufacturing photovoltaic device
JPH0722643A (en) Amorphous semiconductor photoconductive element
JPH01216581A (en) Semiconductor device
JPH046880A (en) Amorphous silicon carbide film, formation thereof and photovoltaic device using same
JPS6322465B2 (en)
JPS60239068A (en) Photovoltaic device
JPS639756B2 (en)
JPS59202673A (en) Superposed photodetector
JP2000299487A (en) Light receiving element for ultraviolet rays
JP2661689B2 (en) Light sensor
JPS6199386A (en) Photoelectromotive force device
JP3242513B2 (en) Photoelectric conversion device
JPH02210882A (en) Phototransistor and manufacture thereof
JPS60148177A (en) Semiconductor light-receiving element
JPS5854680A (en) Photovoltaic power device