JPS59204129A - Adjuvant - Google Patents

Adjuvant

Info

Publication number
JPS59204129A
JPS59204129A JP58079145A JP7914583A JPS59204129A JP S59204129 A JPS59204129 A JP S59204129A JP 58079145 A JP58079145 A JP 58079145A JP 7914583 A JP7914583 A JP 7914583A JP S59204129 A JPS59204129 A JP S59204129A
Authority
JP
Japan
Prior art keywords
lem
xylose
immune
culture
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58079145A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sugano
菅野延彦
Youko Nagaharu
前田浩明
Tetsuji Takarada
長治葉子
Hiroaki Maeda
宝田哲仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NODA SHIYOKUKIN KOGYO KK
Original Assignee
NODA SHIYOKUKIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NODA SHIYOKUKIN KOGYO KK filed Critical NODA SHIYOKUKIN KOGYO KK
Priority to JP58079145A priority Critical patent/JPS59204129A/en
Priority to CA000442726A priority patent/CA1220136A/en
Publication of JPS59204129A publication Critical patent/JPS59204129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)

Abstract

PURPOSE:An adjuvant having high safety, acting for prevention of infectious diseases, consisting of glycoprotein and nitrogen-containing low-molecular-weight substances comprising xylose in a culture of a mycelium belonging to Basidiomyces such as Cortinellus shiitake, etc. cultivated in a solid medium rich in a xylose component as a main component. CONSTITUTION:An adjuvant containing glycoprotein and nitrogen-containing low- molecular-weight substances comprising xylose as a main contained in a culture of a mycelium belonging to Basidiomyces (e.g., Cortinellus shiitake, Pleurotus ostreatus, Flammulina velutipes, pholiota nameko, Lyophyllum aggregatum, etc.) cultivated in a solid medium rich in a xylose component such as bagasse, rice bran, etc. The adjuvant has immune increasing effect on cancers, various kinds of virus diseases, or diseases of immune incompetence (allergic diseases) etc.

Description

【発明の詳細な説明】 この発明はバガスなどキシロース成分に富む固体培地に
て培養された椎茸等の菌糸体培養物中に含有されている
キシロースを主成分とする糖蛋白および含窒素低分子物
質からなる免疫増強剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the use of xylose-based glycoproteins and nitrogen-containing low-molecular substances contained in mycelium cultures such as shiitake mushrooms cultured in a solid medium rich in xylose components such as bagasse. The present invention relates to an immune enhancer consisting of:

細菌、ウィルス、真菌による感染症および発癌と生体の
免疫との関係は学問的にも明らかである。
The relationship between bacterial, viral, and fungal infections and carcinogenesis and the body's immunity is academically clear.

そして、免疫能の低下が多(の感染症に結び付き、発癌
を誘発し、担癌状態では更に免疫能の低下が進み、また
生体の防御機構は複雑で、体液中に存在する多くの細胞
および物質が連鎖的に関与している。
The decline in immune capacity is linked to many infectious diseases, which induces carcinogenesis, and in cancer-bearing states, the decline in immune capacity progresses further.The defense mechanism of the body is complex, and many cells and Substances are involved in a chain.

ところで、免疫機構は体液性免疫と細胞性免疫があり、
前者は免疫グロブリンによる抗原沈降や食細胞によるク
リアランス等が主な作用で、全身感染症から生体を防御
し、後者はT−cellから産生される種々のリンフ才
力インによるマクロファージの活性化が主な作用で、細
胞寄生性の抗原の排除に関与している。
By the way, the immune system consists of humoral immunity and cell-mediated immunity.
The former mainly involves antigen precipitation by immunoglobulins and clearance by phagocytes, and protects the body from systemic infections, while the latter mainly involves the activation of macrophages by various lymphocytes produced from T-cells. It is involved in the elimination of cell-parasitic antigens.

然して、加齢や薬物投与、過労等により上記の免疫機構
が低下して多くの感染症に対する抵抗力が弱まり発癌を
誘発されるのであるが、体液性免疫、細胞性免疫の何れ
か一方または両方の低下を防ぐことにj;り感染症の予
防および治療が可能となることは学問的にも明らかであ
る。一般的には弱毒の抗体を与えるワクチンが開発され
ているが、ワクチンが存在しない抗原または普通は低毒
と考えられている微生物による感染症等があり、総体的
な免疫力の増強が望ましい場合が必要であるが、従来強
い副作用を有していたり、逆にアナフィラキシ−を誘発
したりする物質が多く、一長一短があったが、本物質は
副作用を有さず体液性免疫および細胞性免疫の両方の免
疫能を増強することに特徴がある。そのため、ウィルス
についてもHepatitis  virus 、  
Influenza  virus 、 Herpes
virusとその有効スペクトラムは広い。
However, due to aging, drug administration, overwork, etc., the immune system described above declines, weakening the resistance to many infectious diseases and inducing carcinogenesis.Humoral immunity, cell-mediated immunity, or both It is academically clear that it is possible to prevent and treat infectious diseases by preventing a decline in Vaccines that provide attenuated antibodies have generally been developed, but when there is an infection caused by an antigen for which there is no vaccine or a microorganism that is normally considered to be of low virulence, and it is desirable to strengthen overall immunity. Conventionally, there were many substances that had strong side effects or induced anaphylaxis, and had both advantages and disadvantages, but this substance has no side effects and is effective at stimulating humoral immunity and cellular immunity. It is characterized by enhancing both immune capacities. Therefore, regarding viruses such as Hepatitis virus,
Influenza virus, Herpes
Viruses and their effective spectrum are wide.

本発明に係る免疫増強剤は癌、各種ウィルス病。The immune enhancer according to the present invention is used for cancer and various viral diseases.

あるいは免疫不全の疾患(アレルギー性疾患)等に対し
て免疫増強効果が認められた。また、本発明に係る免疫
増強剤がいがなる作用機作により免疫能を増強している
かは学問的には未解決であるが、該増強剤中のキシロー
スを主成分とする糖蛋白および含窒素低分子物質が抗体
産生細胞を増加しているか、あるいは抗体産生能力を高
めているからに他ならないと推察される。また、一般的
に病原性が低いと言われている真菌の感染症は悪性腫瘍
、膠原病等の消耗性基礎疾患による免疫状態の低下が大
きな原因とされているが、その代表的な真菌であるca
ndida  albicansにも有効であり、悪性
腫瘍の誘発も真菌の感染症と類似する面もあるので、本
物質の用途は非常に広い。
In addition, an immune-enhancing effect was observed for immunodeficiency diseases (allergic diseases), etc. In addition, although it is academically unresolved whether the immune enhancer of the present invention enhances immune function through its mechanism of action, it is important to note that the It is inferred that this is because the low-molecular-weight substance increases the number of antibody-producing cells or enhances the ability to produce antibodies. In addition, fungal infections, which are generally said to be of low pathogenicity, are largely caused by a weakened immune system due to debilitating underlying diseases such as malignant tumors and collagen diseases. Some ca
It is also effective against ndida albicans, and the induction of malignant tumors is similar in some respects to fungal infections, so the uses of this substance are extremely wide.

この発明はキシロース成分に富む固体培地にて培養され
た、菌糸体培養物中に含有されているキシロースを主成
分とする糖、蛋白および含窒素低分子物質を有効成分と
するもので、安全性が高く、かつ幅広い感染症防御に作
用する免疫増強剤を提供することを目的とするものであ
る。
This invention uses as active ingredients sugar, protein, and nitrogen-containing low-molecular substances containing xylose as the main component, which are contained in a mycelium culture cultured in a solid medium rich in xylose components, and are safe. The purpose of the present invention is to provide an immune enhancer that has high anti-inflammatory properties and is effective in protecting against a wide range of infectious diseases.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは先にバカス等繊維質成分を主材とし、これ
に米糠等を加えてなる固体培地にて椎茸など担子菌類に
属する菌糸体を培養し、この菌糸体培養物から抗癌物質
を抽出する抽出方法について発明を完成しているが(特
開昭57−206618号)、本発明は上記発明を発展
させ、その抽出液の有効利用を更に研究した結果得られ
たものである。
The present inventors first cultivated mycelium belonging to Basidiomycetes, such as shiitake mushrooms, in a solid medium made mainly of fibrous components such as Bacchus and added rice bran, etc., and extracted anticancer substances from this mycelial culture. (Japanese Patent Application Laid-Open No. 57-206618) has completed the invention of an extraction method for extracting the above-mentioned liquid.The present invention was obtained as a result of further research on the effective use of the extract.

すなわち、上記抽出液を分析した結果、該抽出液中には
キシロースを主成分とする糖蛋白および含窒素低分子物
質が多量に喬有されており、かつ培地成分を分析した結
果、例えばバカス(砂糖きびのしぼりかす)、米糠等に
はキシロースが多量に含まれており、よって、本発明者
らはこのキシロース成分を主成分とする糖、蛋白および
含窒素低分子物質が免疫増強作用を機作しているものと
認定した。
That is, as a result of analyzing the above-mentioned extract, it was found that a large amount of glycoproteins and nitrogen-containing low-molecular substances containing xylose as a main component were contained in the extract, and as a result of analyzing the medium components, for example, Bacchus ( Sugar cane dregs), rice bran, etc. contain a large amount of xylose. Therefore, the present inventors believe that sugar, protein, and nitrogen-containing low-molecular substances, mainly composed of xylose, exert their immune-enhancing effects. It was recognized that this was done.

本発明は上記のごとき理由からキシロース成分に富む培
地を採択しなければならないが、これには例えばバガス
、むぎわら、いねわら、とうもろこしの茎葉、杉などの
単子葉植物が挙げられ、また、培地栄養源として米糠が
挙げられる。
In the present invention, a medium rich in xylose components must be adopted for the above reasons, and examples thereof include monocotyledonous plants such as bagasse, barley straw, rice straw, corn stems and leaves, and cedar; Rice bran is mentioned as a nutritional source.

また、本発明において使用される担子菌類としては、椎
茸、平葺イ榎茸、なめこ、しめじ等が挙げられるが、椎
茸菌糸体培養物から抽出するのが最も活性が優れていた
Furthermore, the basidiomycetes used in the present invention include Shiitake mushrooms, Hirafuki Enoki mushrooms, Nameko mushrooms, Shimeji mushrooms, etc., and the activity extracted from Shiitake mycelium culture was the most excellent.

本発明に係る免疫増強剤はこれを、ガスクロマトグラフ
ィーにより分析した結果、キシロースを主成分とする糖
蛋白および含窒素低分子物質の含有されていることが判
明した。
As a result of analyzing the immune enhancer according to the present invention by gas chromatography, it was found that it contained a glycoprotein mainly composed of xylose and a nitrogen-containing low-molecular substance.

以下実施例を説明する。Examples will be described below.

粉砕したバガス90%、米糠5%、フスマ等の栄養源5
%を配合した固体培地を常法により殺菌し、これに椎茸
の固体種菌を接種する。接種の完了したる培地は室温1
8℃〜20℃、湿度60%に空調した培養室内に移して
菌糸体の培養を行なう。
Nutrient sources 5: 90% crushed bagasse, 5% rice bran, bran, etc.
% solid medium is sterilized by a conventional method and inoculated with a solid seed of shiitake mushrooms. The medium after inoculation is kept at room temperature1.
The mycelium is cultured in a culture room air-conditioned at 8°C to 20°C and 60% humidity.

上記培養の完了したる培地は栽培室に移して放置する。The culture medium on which the above culture has been completed is transferred to a cultivation room and left there.

すると培地表面から椎茸子実体の発生が始まるが、この
時点において培地を栽培室から取り出し、これを粉砕機
により栂指大に粉砕する。
Shiitake mushroom fruiting bodies then begin to develop from the surface of the medium, and at this point the medium is removed from the cultivation chamber and crushed into toga finger-sized pieces using a crusher.

この粉砕した培地(菌糸体と培地との混合した状態のも
ので、以下これを菌糸体培養物という)はこれをタンク
中に充填するとともに、菌糸体培養物6009に対し、
PH3〜PH8に調整した5にの清水を加え、一定の時
間を保ちつつ段階的に変化させて混合、撹拌を行なう。
This pulverized medium (a mixture of mycelium and medium, hereinafter referred to as mycelium culture) is filled into a tank, and the mycelium culture 6009 is
Add the clean water in Step 5 whose pH has been adjusted to 3 to 8, and mix and stir by changing the pH step by step while keeping the pH constant.

すなわち温度は40℃〜60℃に各PHに合わせて変化
させるが、これは菌糸体培養物中に存在するセルラーゼ
、キチナーゼ、グルコシダーゼ、プロテアーゼなどの酵
素の活性条件に合わせ、エンチメーションを促すためで
ある。最終的には酵素の失活を兼ねて温度を60℃に上
昇させて混合、撹拌を行なうが、この撹拌によって菌糸
体成分、菌糸体の代謝産物a′3よび培地成分中の木質
分解物が水に溶脱される。
In other words, the temperature is varied from 40°C to 60°C according to each pH level, and this is to match the activity conditions of enzymes such as cellulase, chitinase, glucosidase, and protease present in the mycelium culture, and to promote enzymation. be. Finally, the temperature is raised to 60°C to inactivate the enzyme, and mixing and stirring are performed, but this stirring removes mycelial components, mycelial metabolites a'3, and wood decomposition products in the medium components. Leached into water.

かくして得られた懸濁液は、これをネル布地の濾過袋に
充填し、これを加圧、濾過してその濾液をメンブランフ
ィルタで濾過、滅菌し、抽出液を得る。
The suspension thus obtained is filled into a flannel cloth filter bag, which is then pressurized and filtered, and the filtrate is filtered and sterilized through a membrane filter to obtain an extract.

次に前記の如くして得られた抽出液を凍結乾燥せしめて
粉末体(以下LEMと称する)とする。
Next, the extract obtained as described above is freeze-dried to form a powder (hereinafter referred to as LEM).

実施例 (1)実施者  富山医科薬科大学薬学部生物学教室(
日本薬学会第103年会発表) <2)LEMのアルコール沈澱部分を5epl+aro
se6Bで分画し、2つのピークを得て、 void側よりLAPl、LAP2とした。
Example (1) Implementer: Department of Biology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University (
Presented at the 103rd Annual Meeting of the Pharmaceutical Society of Japan) <2) 5 epl + aro of the alcohol precipitated part of LEM
Fractionation was performed using se6B to obtain two peaks, which were labeled LAP1 and LAP2 from the void side.

(3)マクロファージ  モルモットより誘導した腹腔
滲出細胞のマクロファージ (4)ラット腹水肝癌(A84.14)の蛋白質(5)
実験方法  ドンリュウラットにAl−1414を移植
する前日よりLAPl、LA P2を腹腔内投与し、AH414移植 後2〜8日まで1日毎にlli!臓を摘出し細胞化する
。ガラス毛細管にモルモッ トマクロファージ、牌臓細胞、抗原蛋 白溶液を重層し、シャーレで・48時間培養した後に遊
走細胞が作る面積を測 定する。
(3) Macrophages Macrophages of peritoneal exudate cells induced from guinea pigs (4) Proteins of rat ascites liver cancer (A84.14) (5)
Experimental method LAPl and LA P2 were intraperitoneally administered to Donryu rats from the day before transplanting Al-1414, and lli! The viscera is removed and transformed into cells. A glass capillary is layered with guinea pig macrophages, spleen cells, and an antigen protein solution, and after culturing in a petri dish for 48 hours, the area created by migrating cells is measured.

(6)LAP1投与群は投与後4日〜60の間ぐマクロ
フッ・−ジ遊走の活性が認められたが、LA1〕2では
活性化は明らかではなかった。なお参考図の図面代用写
真中、左側がLΔP1投与群を、右側がLAP2投与群
を示す。
(6) In the LAP1 administration group, macrophage migration activity was observed for 4 to 60 days after administration, but no activation was evident in LA1]2. In addition, in the photograph substituted for the reference drawing, the left side shows the LΔP1 administration group, and the right side shows the LAP2 administration group.

LAPlはΔrabinose、 G 1ucose、
 Qalactose。
LAPl is Δrabinose, G 1ucose,
Qalactose.

M annoselZ yloseより構成される多糖
と産生アミノ酸を主とするペプタイドよりなる50〜8
0万分子量のベプヂドグルカンであることが判明した。
50-8 consisting of a polysaccharide composed of M annoselZ ylose and a peptide mainly composed of produced amino acids
It turned out to be vepzidoglucan with a molecular weight of 1,000,000.

実施例 〈1)実施者 大阪市立大学医学部第2生化学教室 (2)細胞性免疫において、抗体産生細胞は非特異的リ
ンパ球活性化物質によるin  vitroにお(ブる
リンパ球の幼若化と同じ経過をたどって増殖を行なう。
Example (1) Implementer Osaka City University School of Medicine, Department of Biochemistry (2) In cellular immunity, antibody-producing cells are in vitro treated with non-specific lymphocyte activators (juvenile lymphocytes). Propagation follows the same process.

リンパ球をPWMの存在下で培養す ると、B 1asvcellとなりDNA合成が更新す
る。そこでDNA前駆物質とし て、H3−thymiclineを加えて培養し細胞内
に取込まれたH3− thymidineを測定づ゛る
ことによりリンパ球の活性化の程度を知る。
When lymphocytes are cultured in the presence of PWM, they become B1asvcells and DNA synthesis is renewed. Therefore, by adding H3-thymicline as a DNA precursor, culturing the cells, and measuring the H3-thymidine taken into the cells, the degree of lymphocyte activation can be determined.

(3)リンパ球 ヒト末梢血のリンパ球(4)実験方法
 リンパ球懸濁液にPWMおよびLEMを加えて96時
間培養し、次に 31−(−thymidtneを加え、24時間培養し
た後細胞を溶解し、3 H−thymidineの取り
込みをシンデレージョンカウンタで計測した。
(3) Lymphocytes Human peripheral blood lymphocytes (4) Experimental method PWM and LEM were added to the lymphocyte suspension and cultured for 96 hours. Next, 31-(-thymidtne was added and cultured for 24 hours. The cells were then cultured for 24 hours. It was dissolved, and the incorporation of 3 H-thymidine was measured using a cinderase counter.

(5)結果 LEMはPWMによるDNA合成をLEM
I度100〜300μg/mIAの範囲で促進した。ま
たLEMのみで も、DNA合成促進作用を有しでJ3す、LEMはL 
ymphocyte blastogenic fac
torであることが確認された。
(5) Results LEM is DNA synthesis by PWM.
It was promoted in the range of 100 to 300 μg/mIA. In addition, LEM alone has the effect of promoting DNA synthesis.
ymphocyte blastogenic fac
It was confirmed that it was tor.

実施例 (1)実施者 大阪市立大学医学部第2生化学教室 く2)抗体産生に関する実験 (3)実験方法 TNP−3RBCで免疫化したマクロ
ファージにLEMを添加して2 4時間培養し、その培養上澄みを取り、PWMと共にヒ
ト末梢血細胞を添加し て抗TNP−3RBCの産生をp lague法により
確認した。
Example (1) Performer Osaka City University School of Medicine, Department of Biochemistry 2) Experiments related to antibody production (3) Experimental method LEM was added to macrophages immunized with TNP-3RBC and cultured for 24 hours. The supernatant was taken, human peripheral blood cells were added together with PWM, and the production of anti-TNP-3RBC was confirmed by the plague method.

LEMはP’WMによるTNP−8RBCに対する抗体
産生を促進し、その最適′a度は200μq/m Jl
であった。またしEMそのものにもわずかながら抗体産
生活性が認められた。
LEM promotes the production of antibodies against TNP-8RBC by P'WM, and its optimal degree is 200 μq/m Jl.
Met. In addition, a small amount of antibody production activity was observed in EM itself.

実施例 (1)ヒト末梢血をC0nCa1laVa l 1ll
AおよびLEMで刺激培養し、生合成される1nter
  Ienkin−1の生成量を定量 C0DAにLEM50μg/m 14以上添加すること
によりIL−1の生成が大幅に増加した。
Example (1) Human peripheral blood C0nCa1laVa l 1ll
1nter biosynthesized by stimulating culture with A and LEM
Quantifying the production amount of Ienkin-1 By adding 50 μg/m or more of LEM to C0DA, the production of IL-1 was significantly increased.

次にLEMを5ephadexG−75テ分画シ、紫外
部吸収を示す3つの画分(voidよりFl、、F2゜
[:3)を得Iζ。(第2図参照。) 次に上記F1.F2.F3各の画分のInterlen
kin −1assayを行なった。
Next, the LEM was fractionated using 5 ephadex G-75 to obtain three fractions (Fl from void, F2°[:3) showing ultraviolet absorption. (See Figure 2.) Next, the above F1. F2. Interlen of each F3 fraction
Kin-1 assay was performed.

Votalに近いF3 N19子ff110.000g
F3 N19 child ff110.000g close to Votal
.

下の含窒素化合物)に近い活性が認められノζ。Activity similar to that of nitrogen-containing compounds (see below) was observed.

実施例 (1)実施者 明治薬科人学微生物学教至(2)免疫抑
制状態における真菌の感染症に対するLEMの効果を確
認した。
Example (1) Implementer: Meiji Pharmaceutical Humanities and Microbiology (2) The effect of LEM on fungal infections in an immunosuppressed state was confirmed.

(3)動物実M  マウスfcRK()6〜7週齢 (4)攻撃筒 candida  albicans 
(J−101210”  /molts(3 (5)免疫抑制剤 cOrtiSOne(6)LEM投
与投与法び経路 300μ(7/m。
(3) Animal fruit M mouse fcRK () 6-7 weeks old (4) Attack tube candida albicans
(J-101210”/molts (3) (5) Immunosuppressant cOrtiSOne (6) LEM administration Administration method and route 300μ (7/m.

use腹腔内投与 (7)実験群M4成 (8)M果 Q、 albicans接種後25日の生
存率G−125%  G−II83%  G−I111
00%  G−IV50% 以上よりしEMは免疫抑制状態におけるマウスの感染防
御において有効性が認められ、その投与方法は長期間投
与の必要はなく、菌の感染を受りてから投与しても充分
効果を発揮することが判明し Iこ 。
use intraperitoneal administration (7) Experimental group M4 adult (8) M fruit Q, survival rate 25 days after albicans inoculation G-125% G-II 83% G-I111
00% G-IV50% or more, EM has been recognized to be effective in preventing infection in mice in an immunosuppressed state, and its administration does not require long-term administration, and can be administered after bacterial infection. It has been found to be fully effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1りはセファデックスG75により本願発明に係る物
質を展開した状態を示すか画展開図である。 手続補正書 1.事件の表示 特願昭5858−79l4 5、発明の名称 免疫増強剤 3、補正をする者 事件との関係  特許出願人 住 所  千葉県野田市清水121番地名 称   野
田食菌工業株式会社 代表名飯塚千代吉 4、代理人〒101 住 所  東京都千代田区内神田1丁目15番16号6
、補正の対象 明細書全文及び図面  2゜ 明     細     書 1、発明の名称 免疫増強剤 2、特許請求の範囲 (1)キシロース成分に富む固体培地にて培養された椎
茸等担子菌類に属する菌糸体培養物中のキシロースを主
成分とする糖、蛋白および含窒素低分子物質からなる免
疫増強剤。 (2)前記固体培地はバガスと米糠からなる特許請求の
範囲第1項記載の免疫増強剤。 (3)前記担子菌は椎茸であることを特徴とする特許請
求の範囲第1項記載の免疫増強剤。 3、発明の詳細な説明 この発明はバガスなとキシロース成分に富む固体培地に
て培養された椎茸等の菌糸体培養物中に含有されている
キシロースを主成分とする糖、蛋白および含窒素低分子
物質からなる免疫増強剤に関するものである。 Ill菌、ウィルス、真菌による感染症および発癌と生
体の免疫との関係は学問的にも明らかである。 そして、免疫能の低下が多くの感染症に結び付き、発癌
を誘発し、担癌状態では更に免疫能の低下が進み、また
生体の防御機構は複雑で、体液中に存在する多くの細胞
および物質が連鎖的に関与している。 ところで、免疫機構は体液性免疫と細胞性免疫があり、
前者は免疫グロブリンによる抗原沈降や食細胞によるク
リアランス等が主な作用で、全身感染症から生体を防御
し、後者は1−−cellから産生される種々のリンフ
才力インによるマクロファージの活性化が主な作用で、
細胞寄生性の抗原の排除に関与している。 然して、加齢や薬物投与、過労等により上記の免疫機構
が低下して多くの感染症に対する抵抗力が弱まり発癌を
誘発されるのであるが、体液性免疫、細胞性免疫の何れ
か一方または両方の低下を防ぐことにより感染症の予防
および治療が可能となることは学問的にも明らかである
。一般的には弱毒の抗体を与えるワクチンが開発されて
いるが、ワクチンが存在しない抗原または普通は低毒と
考えられている微生物による感染症等があり、総体的な
免疫力の増強が望ましい場合が必要であるが、従来強い
副作用を有していたり、逆にアナフィラキシ−を誘発し
たりする物質が多く、一長一短があったが、本物質は副
作用を有さず体液性免疫J3よび細胞性免疫の両方の免
疫能を増強することに特徴がある。そのため、ウィルス
についてもHepatitis  virus 11 
nfluenza  virus 、 Hcrpesv
irusとその有効スペクトラムは広い。 本発明に係る免疫増強剤は癌、各種ウィルス病。 あるいは免疫不全の疾患(アレルギー性疾患)等に対し
て免疫増強効果が認められた。また、本発明に係る免疫
増強剤がいかなる作用機作により免疫能を増強している
かは学問的には未解決であるが、該増強剤中のキシロー
スを主成分とする糖、蛋白および含窒素低分子物質が抗
体産生細胞を増加しているか、あるいは抗体産生能力を
高めているからに他ならないと推察される。ま1〔、一
般的に病原性が低いと言われている真菌の感染症は悪性
腫瘍、膠原病等の消耗性基礎疾患による免疫状態の低下
が大きな原因とされているが、その代表的な真菌である
candida  albicansにも有効であり、
悪性腫瘍の誘発も真菌の感染症と類似する面もあるので
、本物質の用途は非常に広い。 この発明はキシロース成分に富む固体培地にて培養され
た、菌糸体培養物中に含有されているキシロースを主成
分とする糖、蛋白および含窒素低分子物質を有効成分と
するもので、安全性が高く、かつ幅広い感染症防御に作
用する免疫増強剤を提供することを目的とするものであ
る。 以下本発明の詳細な説明する。 本発明者らは先にバカス等繊維質成分を主材とし、これ
に米糠等を加えてなる固体−培地にて椎茸など担子菌類
に属する菌糸体を培養し、この菌糸体培養物から抗癌物
質を抽出する抽出方法について発明を完成しているが(
特開昭57−206618号)、本発明は上記発明を発
展させ、その抽出液の有効利用を更に研究した結果得ら
れたものである。 すなわち、上記抽出液を分析した結果、該抽出液中には
キシロースを主成分とする糖、蛋白および含窒素低分子
物質が多量に含有されており、かつ培地成分を分析した
結果、例えばバカス(砂糖きびのしぼりかす)、米糠等
にはキシロースが多聞に含まれており、よって、本発明
者らはこのキシロース成分を主成分とする糖、蛋白およ
び含窒素低分子物質が免疫増強作用を機作しているもの
と認定した。 本発明は上記のごとぎ理由からキシロース成分に富む培
地を採択しなければならないが、これには例えばバガス
、むぎわら、いねわら、とうもろこしの茎葉、杉などの
単子葉植物が挙げられ、また、培地栄養源として米糠が
挙げられる。 また、本発明において使用される担子菌類としては、椎
茸、平葺、榎茸、なめこ、しめじ等が挙げられるが、椎
茸菌糸体培養物から抽出するのが最も活性が優れていた
。 本発明に係る免疫増強剤はこれを、ガスクロマトグラフ
ィーにより分析した結果、キシロースを主成分とする糖
、蛋白および含窒素低分子物質の含有されていることが
判明した。 以下実施例を説明する。 粉砕したバガス90%、米糠5%、フスマ等の栄養源5
%を配合した固体培地を常法により殺菌し、これに椎茸
の固体種菌を接種する。接種の完了したる培地は室温1
8℃〜2C1、湿度60%に空調した培養室内に移して
菌糸体の培養を行なう。 上記培養の完了したる培地は栽培室に移して放置する。 すると培地表面から椎茸子実体の発生が始まるが、この
時点において培地を栽培室から取り出し、これを粉砕機
により栂指大に粉砕する。 この粉砕した培地(菌糸体と培地との混合した状態のも
ので、以下これを菌糸体培養物という)はこれをタンク
中に充tiするとともに、菌糸体培養物600gに対し
、P H3〜PH8に調整した5℃の清水を加え、一定
の時間を保ちつつ段階的に変化させて混合、撹拌を行な
う。すなわち温度は40℃〜60℃に各PHに合わせて
変化させるが、これは菌糸体培養物中に存在するセルラ
ーゼ、ギチナーゼ、グルコシダーゼ、プロテアーゼなど
の酵素の活性条件に合わせ、エンチメーションを促すた
めである。最終的には酵素の失活を兼ねて温度を60℃
に上昇させて混合、撹拌を行なうが、この撹拌によって
菌糸体成分、菌糸体の代謝産物および培地成分中の木質
分解物が水に溶脱される。 かくして得られた懸濁液は、これをネル布地の濾過袋に
充填し、これを加圧、濾過してその濾液をメンブランフ
ィルタで濾過、滅菌し、抽出液を得る。 次に前記の如くして得られた抽出液を凍結乾燥せしめて
粉末体(以下LEMと称する)とする。 実施例 (1)実施者  富山医科薬科大学薬学部生物学教室(
日本薬学会第103年会発表) (2)LEMのアルコール沈澱部分を5epharos
e6Bで分画し、2つのピークを得て、 void側よりLAPl、LAP2とした。 (3)マクロファージ  モルモットより誘導した腹腔
滲出細胞のマクロファージ (4)ラット腹水肝癌(AH414)の蛋白質(5)実
験方法  ドンリュウラットにA l−1414を移植
する前日よりLAPl、LA P2を腹腔的投与し、Al−1414移植1多2・−8
日まで1日毎に牌臓を摘出し細胞化する。ガラス毛細管
にモルモッ トマクロファージ、牌臓細胞、抗原蛋 白溶液を重層し、シャーレで48時間 培養した後に遊走細胞が作る面積を測 定する。 (6)LAP1投与群は投与後4日〜6日の間でマクロ
ファージ遊走の活性が認められたが、LAP2では活性
化は明らかではなかった。なお参考図の図面代用写真中
、左側がLAP1投与群を、右側がLAP2投与群を示
す。 L A P 1はA rabinose、 Q 1uc
ose、 Qalactose。 Mannose、 xyloseより構成される多糖と
産生アミノ酸を主とするベプタイドよりなる50〜80
万分子量のペプチドグルカンであることが判明した。 実施例 (1)実施者 大阪市立大学医学部第2生化学教室 (2)細胞性免疫において、抗体産生細胞は非特異的リ
ンパ球活性化物質によるin  vitroにおけるリ
ンパ球の幼若化と同じ経過をたどって増殖を行なう。 リンパ球をPWMの存在下、で培養す ると、BlasVcellとなりDNA合成が更新する
。そこでDNA前駆物質どし て、H3−thymidineを加えて培養し細胞内に
取込まれたH 3−thyn+1dineを測定するこ
とによりリンパ球の活性 化の程度を知る。 (3)リンパ球 ヒト末梢血のリンパ球(4)実験方法
 リンパ球懸濁液にP W M iJ3よびLEMを加
えて96時間培養し、次に 3 H−thymidineを加え、24 時間培養し
た後細胞を溶解し、3 H−thymidineの取り
込みをシンチレーションカウンタで計測した。 (5)結果 LEMはPWMによるDNA合成をLEM
11度100〜300μ9/m乏の範囲で促進した。ま
たしEMのみで も、DNA合成促進作用を有しており、LEMはL y
mphocyte blastogenic fact
orであることが確認された。 実施例 (1)実施者 大阪市立人学医学部第2生化学教室 (2)抗体産生に関する実験 (3)実験方法 TNP−8RBCで免疫化したマクロ
ファージにLEMを添加して2 4時間培養し、その培養上澄みを取り、PWMと共にヒ
ト末梢血細胞を添加し て抗TNP−8RBCの産生をp laguC法により
確認した。 LEMはPWMによるTNP−8RBCに対′?l−る
抗体産生を促進し、その最適濃度は200μQ/Ifで
あった。またLEMそのものにもわずf’Xながら抗体
産生活性が認められた。 実施例 (1)E:l−末梢血をconcanava l i 
nAおよびLEMテ刺激培養L/し生合成サレ8int
er  1eukin−1の生成量を定量 C0nAにLl:M3C1[] /m 1.以上添加す
ることによりIL−1の生成が大幅に増加しIC。 次にLEMを5ephadexG −7’ 5で分画し
、紫外部吸収を示’?I’ 3 ”)の画分(void
よりFl、F2゜(:3)を得た。(第2図参照。) 次に上記F1.F2.F3各の画分のInterLeL
Ikill −(assayを行なった。 Totalに近いF3(推定分子量1o、000以下の
含窒素化合物)に近い活性が認められた。 実施例 (1)実施者 明治薬科大学微生物学教室(2)免疫抑
制状態における真菌の感染症に対するしEMの効果を確
認した。 (3)動物実験 マウスrcRK()6〜7週齢 (4)攻撃菌 Candida  albicans 
(J −1012105/mouse (5)免疫抑制剤 Cortisone(6)LEM投
与投与上び経路 300μg/m。 use腹腔内投与 (7)実験群構成 (8)結果 C,albicans接種後25日の生存
率G−125% G−[I83% G−I[[100%
 G−IV50% 以上よりLEMは免疫抑制状態におけるマウスの感染防
御において有効性が認められ、その投与方法は長期間投
与の必要はなく、菌の感染を受けてから投与しても充分
効果を発揮することが判明した。 実施例 (1)目的 LEMのpolyclonal  act
ivator活性を調べる。 (2)実験者 大阪市立人学医学部生化学教室(3)実
験方法 正常ヒト末梢血から、リンパ球に富む単核細胞
をl” 1col l −Conray重層遠心法によ
って分離し、10%非動化ウシつ児血清を含むイーグル
MEM液で2X 106cells /mの細胞浮遊液
とした。 これに種々の濃度のLEMを加えて、37℃で72時間
培養し、形成される抗TPN−8RBC抗体産生細胞数
をプラーク計測によって測定した。 (4)結果 Fig2に示′?l−ように、100〜2
00μ+1/vUのLEMを添加することによって抗体
産生細胞数は、LEM非添加対照群より有意に増加した
。このことはLEMに弱いながらpolyclo、na
l  activator活性があることを示唆した。 実施例 (1)目的 PWM刺激末梢血単核細胞の抗体産生に及
ばずLEMの影響を調べる。 (2)実験者 大阪重置大学医学部生化学教室(3)実
験方法 正常ヒト末梢血から調整した単核細胞浮遊液(
2X 10’ cells /、g、)にpokewe
ed  mitogem  (PWM)を50μgz”
n+u添加し、それと同時に種々の濃度のLEMを加え
て37℃で72時間培養し、抗TNP−8RBC抗体産
生細胞数をプラーク計測によって測定した。 (4)結果 LEMを加えない系における抗丁NP−8
RBC抗体産生細胞数は、10’個のviable  
cell当tcす632±109個となった。L[EM
を加えた系における抗TNP−8RBC抗体産生細胞数
を上記LEMを加えない系に対する%で表わすとF i
g3に示すようになった。すなわち、抗体産生は有意に
促進され、特に200μg/mのしEMを添加すると、
抗TNP−8RBG抗体産生細胞数はLEMを加えない
系の約1.7倍となった。この結果から、LEMは抗体
産生に関与するリンパ球または単球の何れかに作用して
抗体産生を増幅すると考えられる。 実施例 (1)目的 ELM処理マクロファージ培養上清のリン
パ球増殖に及ぼす影響を調べる。 (2)実験者 大阪重置大学医学部生化学教室(3)実
験方法 モルモットの腹腔浸出細胞のマクロファージに
、種々の濃度のLEMを加えて6時間培養し、その培養
上清を分離した。 一方正常ヒト末梢血単核細胞浮遊液(IX106cel
ls / mu )を調整し、その17IIlに前述の
l−2M処理マクロファージ培養上清0.1mlを加え
、48時間培養後、3H−サイミジンく比活性5Ci/
mmol)を1uci/m加えて更に24時間18養し
た。そして、31」−サイミジンの酸不溶性分画への取
込みを指標としてリンパ球の増殖を測定した。 また、前述と同様にして種々の濃度のL E Mで処理
したマクロファージ培養上清を、PWMとともに正常ヒ
ト末梢血単核細胞浮遊液に加え、48時間培養後、3H
−サイミジンを加えて24時間培養し、リンパ球の増殖
を測定した。 (4)結果 PWMを加えない系においては、Fio4
に示すように、100〜200μm/11IIlのLf
EMで処理したマクロファージ培養上清中に、と1〜単
核細胞の増殖(DNA合成)を有意に促進する活性が認
められた。このことから、f−ig2に示したLEMの
polyclonal抗体産生に、一部マクロファージ
の活性化が関与する可能性が推測される。 また、PWM刺激単核細胞の増殖については、F 1(
15ニ示ツct−u:、50〜3ooμg/憾のLEM
で処理したマクロファージ培養上清を加えた場合、リン
パ球の増殖はLEM非処理マクロファージ培養上清を加
えた場合より約1.5倍上病した。このことから、PW
M刺激単核細胞の抗体産生のり、 E Mによる増幅が
マクロファージ活性化によることが推測される。 しかしながら、マクロファージ培養上清中には少量のL
EMが含まれているので、LEMが直接リンパ球に作用
する可能性も全面的には否定できない。ただし、マクロ
ファージ培養上清は1憾の単核細胞浮遊液に0.1蛙し
か添加していないのでLEMがリンパ球に直接作用した
としてblその程度は低いものだと考えられる。 実施例 (1)目的 12M処理マクロファージ培養上清の分画
と各分画のリンパ球増殖に及ぼす影響を調べる。 (2)実験者 大阪重置大学医学部生化学教室(3)実
験方法 LEMで処理したマクロファージの培養上清を
5ephadex Qカラム(5X15’Ocm)にか
けて分画し、280 nmの吸充度から蛋白溶出曲線を
作成するとF ig6に示すようになる。 この溶出パターンから溶出液を11g7のように分け、
それをカラムにかける前の容量に濃縮補正してから、各
々0.1憾をConA (20μo /m)どともに単
核細胞浮遊液(2x、106cells /憾)1憾に
添加し、実験例8と同様にして3H−ザイミジンの酸不
溶性分画への取込みを指標としてリンパ球の増殖を測定
した。 (4)結果 11g7に示すように、l−E M処理マ
クロファージ培養上清添加群ではConAによるリンパ
球のDNA合成が顕著に上冒し、特に、第5分画を添加
した場合、約4倍となった。このことは、LEM処理マ
クロファージ培養土清中にインターロイキン1が存在す
る可能性を示唆する。 実施例 (1)目的 活性化マクロファージによる分離肝細胞障
害に対するLEMの影響を調べる。 (2)実験者 大阪重置大学医学部生化学教室(3)実
験方法 分離肝細胞浮遊液(1x10scells /
vn )に種々の濃度のLEMを添加して6時間処理し
た。LPSで刺激したマクロファージの培養上清を分離
し、これを上記の分離肝細胞浮遊液に添加して、3H−
ロイシン酸の酸不溶性分画への取込みを指標として肝細
胞の蛋白合成量を測定した。 (4)結果 200μg/誠のLEMで前もって肝細胞
を処理した後、活性化マクロファージ培養上清を添加す
ると、肝細胞の蛋白合成は、LEM非処理肝細胞に活性
化マクロファージ培養上清を添加したときより有意に高
くなっに0このことは、LEMに肝細胞を防御する作用
があることを示唆する。 4、図面の簡単な説明 第1図はセファデックスG75により本願発明に係る物
質を展開した状態を示す分画展開図、第2図はLEMの
P olyclonal activatorの活性を
グラフを用いて示した図、第3図はPWM刺激末梢血単
核細胞の抗体産生に及ぼすLEMの効果をグラフを用い
て示した図、第4図はL’EM処iマクロファージ培養
上清のリンパ球増殖に及ばず効果をグラフを用いて示し
た図、第5図は12M処理マクロファージ培養上清のP
WM刺激単核細胞増殖に及ぼす効果をグラフを用いて示
した図、第6図はセファデックスG−75カラムクロマ
トによるLEM処理マクロファージ上清の分画展開図、
第7図はLEM処理マクロファージ上清両分のCon、
61刺激単核細胞増殖に及ぼす効果をグラフを用いて示
した図、第8図は活性化マクロファージの培養上清によ
る肝細胞障害に対するLEMの防御作用をグラフを用い
て示した図である。 特許出願人 野田食菌工業株式会社 第2図 C0NCENTRArlQN 第3図 C0NCENTRA’rLON 第4図 C0NCENTRA’rLON 第5図 CONCENrRATjON 第6図 TUBE   NUMBER 第7図
The first is a developed image showing the state in which the material according to the present invention is developed using Sephadex G75. Procedural amendment 1. Indication of the case Patent application No. 5858-7914 5. Title of the invention: Immune enhancer 3. Person making the amendment Relationship to the case Patent applicant Address: 121 Shimizu, Noda City, Chiba Prefecture Name: Noda Shokubaku Kogyo Co., Ltd. Representative name: Iizuka Chiyokichi 4, Agent 101 Address 1-15-16-6 Uchikanda, Chiyoda-ku, Tokyo
, Full text of the specification to be amended and drawings 2. Specification 1. Name of the invention Immune enhancer 2. Claims (1) Mycelium belonging to Basidiomycetes such as Shiitake mushrooms cultured in a solid medium rich in xylose component An immune enhancer consisting of sugars, proteins, and nitrogen-containing low-molecular substances mainly consisting of xylose in culture. (2) The immune enhancer according to claim 1, wherein the solid medium comprises bagasse and rice bran. (3) The immune enhancer according to claim 1, wherein the basidiomycete is a shiitake mushroom. 3. Detailed Description of the Invention The present invention relates to sugars, proteins, and nitrogen-containing substances mainly containing xylose contained in mycelial cultures of shiitake mushrooms, etc., cultured in a solid medium rich in bagasse and xylose components. This invention relates to an immune enhancer consisting of a molecular substance. The relationship between infectious diseases and carcinogenesis caused by Ill bacteria, viruses, and fungi and the immune system of the body is academically clear. The decline in immune function is linked to many infectious diseases, induces cancer development, and in cancer-bearing states, the decline in immune function progresses further.The body's defense mechanism is complex, and many cells and substances exist in body fluids. are involved in a chain reaction. By the way, the immune system consists of humoral immunity and cell-mediated immunity.
The former mainly involves antigen precipitation by immunoglobulins and clearance by phagocytes, and protects the body from systemic infections, while the latter involves the activation of macrophages by various lymphocytes produced from 1-cell. The main effect is
Involved in eliminating cell-parasitic antigens. However, due to aging, drug administration, overwork, etc., the immune system described above declines, weakening the resistance to many infectious diseases and inducing carcinogenesis.Humoral immunity, cell-mediated immunity, or both It is academically clear that preventing and treating infectious diseases is possible by preventing a decline in Vaccines that provide attenuated antibodies have generally been developed, but when there is an infection caused by an antigen for which there is no vaccine or a microorganism that is normally considered to be of low virulence, and it is desirable to strengthen overall immunity. Conventionally, there were many substances that had strong side effects or induced anaphylaxis, and had both advantages and disadvantages, but this substance has no side effects and is effective against humoral immunity J3 and cellular immunity. It is characterized by enhancing the immune capacity of both. Therefore, regarding viruses, Hepatitis virus 11
nfluenza virus, Hcrpesv
irus and its effective spectrum is wide. The immune enhancer according to the present invention is used for cancer and various viral diseases. In addition, an immune-enhancing effect was observed for immunodeficiency diseases (allergic diseases), etc. In addition, although it is academically unresolved by what mechanism of action the immunopotentiator of the present invention enhances immune function, it is important to note that the It is inferred that this is because the low-molecular-weight substance increases the number of antibody-producing cells or enhances the ability to produce antibodies. 1. Fungal infections, which are generally said to be of low pathogenicity, are largely caused by a weakened immune system due to debilitating underlying diseases such as malignant tumors and collagen diseases; It is also effective against the fungus Candida albicans,
Since the induction of malignant tumors is similar in some respects to fungal infections, the uses of this substance are extremely wide. This invention uses as active ingredients sugar, protein, and nitrogen-containing low-molecular substances containing xylose as the main component, which are contained in a mycelium culture cultured in a solid medium rich in xylose components, and are safe. The purpose of the present invention is to provide an immune enhancer that has high anti-inflammatory properties and is effective in protecting against a wide range of infectious diseases. The present invention will be explained in detail below. The present inventors first cultivated mycelium belonging to Basidiomycetes, such as shiitake mushrooms, in a solid medium made mainly of fibrous components such as Bakasu and to which rice bran, etc. were added. Although he has completed the invention of an extraction method for extracting substances (
(Japanese Patent Application Laid-Open No. 57-206618), the present invention was obtained as a result of developing the above-mentioned invention and further researching the effective use of the extract. That is, as a result of analyzing the above-mentioned extract, it was found that the extract contained large amounts of sugars, proteins, and nitrogen-containing low-molecular substances whose main component was xylose, and as a result of analyzing the medium components, for example, Bacchus ( Xylose is contained in large amounts in sugar cane dregs), rice bran, etc. Therefore, the present inventors believe that sugar, protein, and nitrogen-containing low-molecular substances, mainly composed of xylose, exert their immune-enhancing effects. It was recognized that this was done. In the present invention, for the above reasons, a medium rich in xylose components must be used, and examples thereof include monocots such as bagasse, wheat straw, rice straw, corn stems and leaves, and cedar; Rice bran is mentioned as a nutrient source for the culture medium. Furthermore, examples of the basidiomycete used in the present invention include shiitake mushrooms, hirabuki mushrooms, enoki mushrooms, nameko mushrooms, shimeji mushrooms, etc., and the activity extracted from shiitake mycelium culture was the most excellent. As a result of analyzing the immunopotentiator according to the present invention by gas chromatography, it was found that it contained sugars whose main components were xylose, proteins, and nitrogen-containing low-molecular substances. Examples will be described below. Nutrient sources 5: 90% crushed bagasse, 5% rice bran, bran, etc.
% solid medium is sterilized by a conventional method and inoculated with a solid seed of shiitake mushrooms. The medium after inoculation is kept at room temperature1.
The mycelium is cultured in a culture chamber air-conditioned at 8°C to 2C1 and 60% humidity. The medium on which the above culture has been completed is transferred to a cultivation room and left there. Shiitake mushroom fruiting bodies then begin to develop from the surface of the medium, and at this point the medium is removed from the cultivation chamber and crushed into toga finger-sized pieces using a crusher. This pulverized medium (a mixture of mycelium and medium, hereinafter referred to as mycelial culture) is filled in a tank, and at the same time, the pH of 600 g of mycelial culture is 3 to 8. Add fresh water adjusted to 5°C, and mix and stir by changing the temperature in stages at a constant time. In other words, the temperature is varied from 40°C to 60°C according to each pH level, and this is to match the activity conditions of enzymes such as cellulase, gitinase, glucosidase, and protease present in the mycelium culture and to promote enzymation. be. Finally, the temperature was raised to 60°C to also deactivate the enzyme.
Mixing and stirring are carried out by raising the temperature to a certain temperature, and by this stirring, mycelium components, mycelium metabolites, and wood decomposition products in the medium components are leached into water. The suspension thus obtained is filled into a flannel cloth filter bag, which is then pressurized and filtered, and the filtrate is filtered and sterilized through a membrane filter to obtain an extract. Next, the extract obtained as described above is freeze-dried to form a powder (hereinafter referred to as LEM). Example (1) Implementer: Department of Biology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University (
(Presentation at the 103rd Annual Meeting of the Pharmaceutical Society of Japan) (2) The alcohol precipitated portion of LEM was
Fractionation was performed using e6B to obtain two peaks, which were labeled LAP1 and LAP2 from the void side. (3) Macrophages Macrophages of peritoneal exudate cells induced from guinea pigs (4) Proteins of rat ascites liver cancer (AH414) (5) Experimental method LAP1 and LA P2 were intraperitoneally administered from the day before transplanting Al-1414 to Donryu rats. and Al-1414 transplantation 1 2・-8
The spleen is removed and transformed into cells every day. Guinea pig macrophages, spleen cells, and an antigen protein solution are layered on a glass capillary tube, and after culturing in a petri dish for 48 hours, the area created by the migrated cells is measured. (6) In the LAP1 administration group, macrophage migration activity was observed between 4 and 6 days after administration, but no activation was evident in LAP2. In addition, in the photograph substituted for the reference drawing, the left side shows the LAP1 administration group, and the right side shows the LAP2 administration group. L A P 1 is A rabinose, Q 1uc
ose, Qalactose. 50-80 consisting of polysaccharides composed of Mannose and xylose and peptides mainly composed of produced amino acids
It turned out to be a peptidoglucan with a molecular weight of 1,000,000. Example (1) Implementer Osaka City University School of Medicine, Department of Biochemistry (2) In cellular immunity, antibody-producing cells undergo the same process as lymphocyte juvenileization in vitro by non-specific lymphocyte activators. Follow and propagate. When lymphocytes are cultured in the presence of PWM, they become BlasVcells and DNA synthesis is renewed. Therefore, the degree of activation of lymphocytes can be determined by adding H3-thymidine as a DNA precursor, culturing the cells, and measuring H3-thyn+1dine taken into the cells. (3) Lymphocytes Human peripheral blood lymphocytes (4) Experimental method PWM iJ3 and LEM were added to the lymphocyte suspension and cultured for 96 hours, then 3H-thymidine was added and cultured for 24 hours. Cells were lysed, and 3 H-thymidine uptake was measured using a scintillation counter. (5) Results LEM is DNA synthesis by PWM.
It was promoted in the range of 11 degrees 100 to 300μ9/m. Furthermore, EM alone has the effect of promoting DNA synthesis, and LEM has the effect of promoting DNA synthesis.
mphocyte blastogenic fact
It was confirmed that or. Example (1) Implementer Osaka City Faculty of Human Sciences, Department of Biochemistry 2 (2) Experiment on antibody production (3) Experimental method LEM was added to macrophages immunized with TNP-8RBC and cultured for 24 hours. The culture supernatant was taken, human peripheral blood cells were added together with PWM, and production of anti-TNP-8RBC was confirmed by the plaguC method. Is LEM compatible with TNP-8RBC using PWM? The optimal concentration was 200 μQ/If. Furthermore, antibody production activity was observed in LEM itself, even though it was f'X. Example (1) E: Concanavali peripheral blood
nA and LEM tea stimulation culture L/shi biosynthesis sample 8int
Quantitatively quantify the production amount of er 1eukin-1 to C0nA: Ll:M3C1[]/m 1. By adding the above, the production of IL-1 increases significantly and IC. Next, the LEM was fractionated with 5ephadexG-7'5 and showed ultraviolet absorption. I'3'') fraction (void
From this, Fl, F2° (:3) was obtained. (See Figure 2.) Next, the above F1. F2. InterLeL of each F3 fraction
An Ikill-(assay was performed. An activity close to that of F3 (a nitrogen-containing compound with an estimated molecular weight of 10,000 or less) close to Total was observed. Example (1) Implementer Meiji Pharmaceutical University Microbiology Department (2) Immunosuppression (3) Animal experiment Mouse rcRK () 6-7 weeks old (4) Attacking bacteria Candida albicans
(J-1012105/mouse (5) Immunosuppressant Cortisone (6) LEM administration and route 300 μg/m. Use intraperitoneal administration (7) Experimental group composition (8) Results Survival rate 25 days after C. albicans inoculation G-125% G-[I83% G-I[[100%
G-IV of 50% or higher indicates that LEM is effective in preventing infection in immunosuppressed mice, and its administration does not require long-term administration, and is sufficiently effective even when administered after bacterial infection. It turns out that it does. Example (1) Purpose LEM polyclonal act
Examine ivator activity. (2) Experimenter: Department of Biochemistry, Osaka City School of Human Sciences (3) Experimental method: Mononuclear cells rich in lymphocytes were separated from normal human peripheral blood by l"1col l-Conray multilayer centrifugation, and 10% immobile. A cell suspension of 2X 106 cells/m was made with Eagle MEM containing fetal bovine serum. Various concentrations of LEM were added to this and cultured at 37°C for 72 hours to determine the production of anti-TPN-8RBC antibodies. The number of cells was measured by plaque counting. (4) Results As shown in Fig. 2, 100 to 2
By adding 00μ+1/vU of LEM, the number of antibody-producing cells was significantly increased compared to the control group to which LEM was not added. Although this is weak against LEM, polyclo, na
activator activity. Example (1) Purpose To examine the effect of LEM on antibody production of PWM-stimulated peripheral blood mononuclear cells. (2) Experimenter: Department of Biochemistry, Faculty of Medicine, Osaka Jioki University (3) Experimental method: Mononuclear cell suspension prepared from normal human peripheral blood (
Pokewe to 2X 10' cells /,g,)
ed mitogen (PWM) at 50μgz”
n+u and at the same time various concentrations of LEM were added and cultured at 37°C for 72 hours, and the number of anti-TNP-8RBC antibody producing cells was measured by plaque counting. (4) Results Resistant NP-8 in the system without adding LEM
The number of RBC antibody-producing cells is 10'viable
The total number of cells per cell was 632±109. L[EM
The number of anti-TNP-8RBC antibody producing cells in the system in which LEM was added is expressed as a percentage of the system in which LEM was not added.
It became as shown in g3. That is, antibody production was significantly promoted, especially when 200 μg/m of EM was added.
The number of anti-TNP-8RBG antibody-producing cells was about 1.7 times that of the system without LEM. From this result, it is considered that LEM acts on either lymphocytes or monocytes involved in antibody production to amplify antibody production. Example (1) Purpose To examine the effect of ELM-treated macrophage culture supernatant on lymphocyte proliferation. (2) Experimenter: Department of Biochemistry, Faculty of Medicine, Osaka Jooki University (3) Experimental method: Macrophages of guinea pig peritoneal exudate cells were cultured with various concentrations of LEM for 6 hours, and the culture supernatant was separated. On the other hand, normal human peripheral blood mononuclear cell suspension (IX106cel
ls/mu), and added 0.1 ml of the above-mentioned l-2M-treated macrophage culture supernatant to the 17IIl, and after culturing for 48 hours, the specific activity of 3H-thymidine was increased to 5Ci/mu.
mmol) was added at 1 uci/m and incubated for an additional 24 hours. Then, lymphocyte proliferation was measured using the incorporation of 31''-thymidine into the acid-insoluble fraction as an indicator. In addition, macrophage culture supernatants treated with various concentrations of LEM in the same manner as described above were added to a normal human peripheral blood mononuclear cell suspension together with PWM, and after 48 hours of culture, 3H
-Thymidine was added and cultured for 24 hours, and lymphocyte proliferation was measured. (4) Results In the system without PWM, Fio4
As shown in , Lf of 100-200μm/11III
In the macrophage culture supernatant treated with EM, an activity that significantly promoted the proliferation (DNA synthesis) of mononuclear cells was observed. From this, it is inferred that activation of macrophages may be partially involved in polyclonal antibody production of LEM shown in f-ig2. In addition, regarding the proliferation of PWM-stimulated mononuclear cells, F1(
15 days CT-U: 50-3ooμg/lEM
When LEM-treated macrophage culture supernatant was added, lymphocyte proliferation was approximately 1.5 times higher than when LEM-untreated macrophage culture supernatant was added. From this, PW
It is speculated that antibody production by M-stimulated mononuclear cells and amplification by EM is due to macrophage activation. However, a small amount of L is present in the macrophage culture supernatant.
Since it contains EM, the possibility that LEM acts directly on lymphocytes cannot be completely denied. However, since only 0.1 frog was added to the macrophage culture supernatant per mononuclear cell suspension, it is thought that even if LEM acted directly on lymphocytes, the extent of the effect would be low. Example (1) Purpose To investigate the fractionation of 12M-treated macrophage culture supernatant and the effect of each fraction on lymphocyte proliferation. (2) Experimenter: Department of Biochemistry, Faculty of Medicine, Osaka Jooki University (3) Experimental method: The culture supernatant of macrophages treated with LEM was fractionated using a 5 ephadex Q column (5 x 15'Ocm), and the protein was eluted from the absorbance at 280 nm. When the curve is created, it will look like the one shown in Fig.6. From this elution pattern, divide the eluate into 11g7 portions,
After correcting the concentration to the volume before applying it to the column, 0.1 ml of each was added to 1 ml of mononuclear cell suspension (2x, 106 cells/ml) along with ConA (20μo/m), Experimental Example 8 In the same manner as above, lymphocyte proliferation was measured using the incorporation of 3H-zymidine into the acid-insoluble fraction as an index. (4) Results As shown in 11g7, in the l-E M-treated macrophage culture supernatant addition group, DNA synthesis of lymphocytes by ConA was markedly increased, and in particular, when the fifth fraction was added, the DNA synthesis of lymphocytes was increased by about 4 times. became. This suggests the possibility that interleukin 1 exists in the LEM-treated macrophage culture medium. Example (1) Purpose To examine the effect of LEM on isolated hepatocyte injury caused by activated macrophages. (2) Experimenter: Department of Biochemistry, Faculty of Medicine, Osaka Juiki University (3) Experimental method: Isolated hepatocyte suspension (1x10cells/
vn) was treated with various concentrations of LEM for 6 hours. 3H-
The amount of protein synthesis in hepatocytes was measured using the incorporation of leucine acid into the acid-insoluble fraction as an index. (4) Results When hepatocytes were previously treated with 200 μg/Makoto's LEM and then activated macrophage culture supernatant was added, hepatocyte protein synthesis decreased. This result suggests that LEM has a protective effect on hepatocytes. 4. Brief explanation of the drawings Fig. 1 is a fractionation development diagram showing the state in which the substance according to the present invention is developed using Sephadex G75, and Fig. 2 is a diagram showing the activity of polyclonal activator of LEM using a graph. , Figure 3 is a graph showing the effect of LEM on antibody production of PWM-stimulated peripheral blood mononuclear cells, and Figure 4 shows that L'EM-treated i-macrophage culture supernatant had no effect on lymphocyte proliferation. Figure 5 shows the P of 12M-treated macrophage culture supernatant.
A diagram showing the effect on WM-stimulated mononuclear cell proliferation using a graph, Figure 6 is a fractionation development diagram of LEM-treated macrophage supernatant using Sephadex G-75 column chromatography,
Figure 7 shows Con of both LEM-treated macrophage supernatants;
FIG. 8 is a graph showing the effect of LEM on 61-stimulated mononuclear cell proliferation, and FIG. 8 is a graph showing the protective effect of LEM against hepatocyte damage caused by the culture supernatant of activated macrophages. Patent Applicant Noda Shokuboku Kogyo Co., Ltd. Figure 2 C0NCENTRArlQN Figure 3 C0NCENTRA'rLON Figure 4 C0NCENTRA'rLON Figure 5 CONCENrRATjON Figure 6 TUBE NUMBER Figure 7

Claims (1)

【特許請求の範囲】 (1〉キシロース成分に富む固体培地にて培養された椎
茸等担子菌類に属−する菌糸体培養物中のキシロースを
主成分とする糖蛋白および含窒素低分子物質からなる免
疫増強剤。 (2)前記固体培地はバガスと米糠からなる特許請求の
範囲第1項記載の免疫増強剤。 (3)前記担子菌は椎茸・であることを特徴とする特許
請求の範囲第1項記載の免疫増強剤。
[Scope of Claims] (1) Consisting of glycoproteins containing xylose as a main component and nitrogen-containing low-molecular substances in a mycelium culture belonging to Basidiomycetes such as shiitake mushrooms cultured in a solid medium rich in xylose components. Immune enhancer. (2) The immune enhancer according to claim 1, wherein the solid medium comprises bagasse and rice bran. (3) The immune enhancer according to claim 1, wherein the basidiomycete is a shiitake mushroom. The immune enhancer according to item 1.
JP58079145A 1983-05-06 1983-05-06 Adjuvant Pending JPS59204129A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58079145A JPS59204129A (en) 1983-05-06 1983-05-06 Adjuvant
CA000442726A CA1220136A (en) 1983-05-06 1983-12-07 Immunopotentiation agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079145A JPS59204129A (en) 1983-05-06 1983-05-06 Adjuvant

Publications (1)

Publication Number Publication Date
JPS59204129A true JPS59204129A (en) 1984-11-19

Family

ID=13681788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079145A Pending JPS59204129A (en) 1983-05-06 1983-05-06 Adjuvant

Country Status (2)

Country Link
JP (1) JPS59204129A (en)
CA (1) CA1220136A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283239A (en) * 1989-02-10 1994-02-01 Jcr Pharmaceuticals Co. Ltd. Inhibitor of herpesvirus absorption

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121919A (en) * 1977-03-30 1978-10-24 Kirin Seagram Ltd Interferon inducing agent containing polysaccharide mainly
JPS5441801A (en) * 1977-09-06 1979-04-03 Kirin Seagram Ltd Kss22a
JPS54140711A (en) * 1978-03-23 1979-11-01 Kirin Brewery Antiicancer agent
JPS54148702A (en) * 1978-05-12 1979-11-21 Kirin Brewery Kss22b
JPS5527101A (en) * 1978-03-04 1980-02-27 Kirin Brewery Co Ltd Preventive and remedy for infectious diseases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121919A (en) * 1977-03-30 1978-10-24 Kirin Seagram Ltd Interferon inducing agent containing polysaccharide mainly
JPS5441801A (en) * 1977-09-06 1979-04-03 Kirin Seagram Ltd Kss22a
JPS5527101A (en) * 1978-03-04 1980-02-27 Kirin Brewery Co Ltd Preventive and remedy for infectious diseases
JPS54140711A (en) * 1978-03-23 1979-11-01 Kirin Brewery Antiicancer agent
JPS54148702A (en) * 1978-05-12 1979-11-21 Kirin Brewery Kss22b

Also Published As

Publication number Publication date
CA1220136A (en) 1987-04-07

Similar Documents

Publication Publication Date Title
Chen et al. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells
Zhang et al. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom
Benson et al. The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro
Breene Nutritional and medicinal value of specialty mushrooms
Lau et al. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp.(tiger׳ s milk mushrooms) in Malaysia–A review
Sugano et al. Anticarcinogenic actions of water-soluble and alcohol-insoluble fractions from culture medium of Lentinus edodes mycelia
KR100199920B1 (en) The method of culturing cordyceps
Ho Wong et al. Purification and characterization of a laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae)
KR20060121576A (en) A crude exopolysaccharides produced from phellinus baumii mycellium having hypoglycemic activity and preparation method thereof
JPS58118519A (en) Anticancer agent
CN106072632B (en) Ganoderma lucidum extract and preparation method and application thereof
Ji et al. The immunosuppressive effects of low molecular weight chitosan on thymopentin-activated mice bearing H22 solid tumors
US4621055A (en) Process for producing biologically active factors
AU2019304308A1 (en) Bioactive extract
JPH07173070A (en) Hiv-type viral activity inhibitor
JPS59204129A (en) Adjuvant
Padkina et al. Heterologous interferons synthesis in yeast Pichia pastoris
AU629855B2 (en) Therapeutic agent for aids and process for preparing it
JP2002087981A (en) Improving agent for metabolic disorder against sugar and lipid
JP2004091780A (en) Polysaccharides of antrodiacamphorata fungus
Jockusch et al. Early cell death caused by TMV mutants with defective coat proteins
EP0154066A1 (en) Immunopotentiation agents
CN110698548B (en) Cordyceps militaris active protein CMPr and preparation method and application thereof
CN109328865B (en) Preparation method of cordyceps militaris and cordyceps militaris prepared by same
JP4435465B2 (en) Antiallergic agent