JPS5920401B2 - Steel plate width control method - Google Patents
Steel plate width control methodInfo
- Publication number
- JPS5920401B2 JPS5920401B2 JP53042375A JP4237578A JPS5920401B2 JP S5920401 B2 JPS5920401 B2 JP S5920401B2 JP 53042375 A JP53042375 A JP 53042375A JP 4237578 A JP4237578 A JP 4237578A JP S5920401 B2 JPS5920401 B2 JP S5920401B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- width
- roll stand
- steel strip
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
- B21B37/22—Lateral spread control; Width control, e.g. by edge rolling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Description
【発明の詳細な説明】
この発明は、鋼ストリップを熱間圧延によって得るとき
の幅制御法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the width when obtaining steel strip by hot rolling.
鋼ストリップを熱間圧延によって得る場合、種種の要因
によってその幅が変化する。When steel strip is obtained by hot rolling, its width varies depending on various factors.
この幅変化量が大きいと、熱間圧延後、たとえばサイド
トリマで一定幅の鋼ストリップに仕上げるときに、トリ
ミング化(しろ)が大きくなり歩留低下せしめることに
なる。If this amount of width change is large, trimming (margin) will be large when finishing the steel strip with a constant width after hot rolling, for example with a side trimmer, resulting in a decrease in yield.
スラブを熱間圧延して鋼ストリップを得るときに、幅変
動を生せしめる因子には種種のものがあるけれとも、最
も大きな因子として温度のバラツキがある。When hot rolling a slab to obtain a steel strip, there are various factors that cause width variations, but the most significant factor is temperature variation.
第1図、第2図に、鋼ストリップの熱間圧延の粗圧延段
階における材料(被圧延材)温度(幅方向中央点の温度
)と、堅ロールスタンドにおけるエージング後の材料の
幅との関係を示す。Figures 1 and 2 show the relationship between the material (rolled material) temperature (temperature at the center point in the width direction) during the rough rolling stage of hot rolling of steel strip and the width of the material after aging in a hard roll stand. shows.
第1図イにおいてT m i nは最低温度を、Tma
xは最高温度を示す。In Figure 1A, Tmin is the minimum temperature, Tma
x indicates the maximum temperature.
Tiは材料頭端から長さ方向にtiなる距離の位置にお
ける温度を示し、ΔTiはTiとTm1nとの差である
。Ti represents the temperature at a distance ti in the length direction from the head of the material, and ΔTi is the difference between Ti and Tm1n.
第1図口に、イで示した温度分布に対応する材料幅の状
況を示す。Figure 1 shows the material width situation corresponding to the temperature distribution shown in A.
第1図口において、Bminは温度Tmax部分に対応
する幅を、BmaXは温度Tm1n部分に対応する幅を
、Biは距離11、温度Tiの点での幅を示しΔBiは
BiとBminの差である。In the opening of Figure 1, Bmin is the width corresponding to the temperature Tmax portion, Bmax is the width corresponding to the temperature Tm1n portion, Bi is the width at the point of distance 11 and temperature Ti, and ΔBi is the difference between Bi and Bmin. be.
第2図に、材料毎の平均温度の相違の影響を示す。FIG. 2 shows the effect of differences in average temperature for each material.
第2図イには、成る材料の平均温度がTKI、他の材料
の平均温度がTK2でその差がΔTKであることを示し
、第2図口に第1図イに示しだ温度水準に対応して幅水
準がBKI、BK2となり、ΔTKに対応してΔBKが
存在することを示している。Figure 2 (a) shows that the average temperature of the material is TKI, the average temperature of other materials is TK2, and the difference is ΔTK, and the opening of Figure 2 corresponds to the temperature level shown in Figure 1 (a). The width levels become BKI and BK2, indicating that ΔBK exists in correspondence to ΔTK.
このように、材料温度の動向が圧延製品幅のバラツキは
強い影響があることがわかる。Thus, it can be seen that the trend of material temperature has a strong influence on the variation in the width of the rolled product.
他方、省エネルギのために、鋼塊を分塊圧延して、或は
溶鋼を連続鋳造して得られる鋼片を冷却することなく高
温のままホットストリップミルに投入するダイレクトロ
ーリング方式や、前述の高温鋼片をそのまま加熱炉に装
入(ホットチャージ)し、再加熱した後ホットストリッ
プミルに投入する操業形態が採られるようになってきた
。On the other hand, in order to save energy, there is a direct rolling method in which steel slabs obtained by blooming a steel ingot or continuous casting of molten steel are fed into a hot strip mill at a high temperature without being cooled, or the above-mentioned direct rolling method. An operation mode has come to be adopted in which high-temperature steel billets are charged as they are into a heating furnace (hot charge), reheated, and then charged into a hot strip mill.
ところで、従来の再加熱方式によるホットストリップの
幅変動量とダイレクトローリング或はホットチャージ方
式によるホットストリップの幅変動量を比較してみると
、後者の方が値が大きい。By the way, when comparing the amount of width variation of the hot strip by the conventional reheating method and the amount of width variation of the hot strip by the direct rolling or hot charging method, the latter has a larger value.
発明者等はこの点の解明を行ない、その結果に基づいて
この発明を完成するに至った。The inventors have elucidated this point and have completed this invention based on the results.
前述のようなダイレクトローリング材や、ホットチャー
ジ材は、従来の常温から鋼片を再加熱する再加熱方式に
比して、材料幅方向における温度差が大きい。Direct rolling materials and hot charging materials as described above have a larger temperature difference in the material width direction than the conventional reheating method of reheating a steel billet from room temperature.
第3図に、従来の再加熱方式でスラブを熱間圧延すると
きの、仕上圧延機列前段における材料の幅方向における
温度分層を示す。FIG. 3 shows the temperature distribution in the width direction of the material at the front stage of the finishing mill row when hot rolling a slab using the conventional reheating method.
材料の幅方向中央部と側縁部の間で15〜30°Cの温
度差がある。There is a temperature difference of 15 to 30°C between the center and side edges of the material in the width direction.
前述のダイレクトローリング材やホントチャージ材では
、材料の幅方向中央部と側縁部間の温度差が大きく、た
とえば分塊圧延機から直接、ホットストリップミルに材
料を送るダイレクトローリングの場合それは70〜11
0℃になる。In the above-mentioned direct rolling materials and real charge materials, there is a large temperature difference between the center and side edges of the material in the width direction.For example, in the case of direct rolling where the material is sent directly from the blooming mill to the hot strip mill, the temperature difference is 70~70°C. 11
It becomes 0℃.
これば幅拡がり量で言えば従来の場合の約3倍にもなる
。In terms of width expansion, this will be approximately three times that of the conventional case.
本発明者等は、鋼板の圧延において、鋼板の幅拡がりが
、主として鋼板端部(側縁部)(以下エツジ部という)
のメタルフローに起因するものであることに鑑み、圧延
材料の幅拡がり量と材料温度との相関に関し、圧延材料
幅方向中央部の温度、エツジ部の温度、圧延材料幅方向
中央部とエツジ部の温度差について研究、解明を進めた
結果、第4図に示す、次の如き知見を得た。The present inventors have discovered that during rolling of a steel plate, the width expansion of the steel plate mainly occurs at the edges (side edges) of the steel plate (hereinafter referred to as edge portions).
Considering that this is caused by the metal flow of the rolled material, regarding the correlation between the width expansion amount of the rolled material and the material temperature, the temperature at the center in the width direction of the rolled material, the temperature at the edge part, and the temperature at the center part in the width direction of the rolled material and the edge part. As a result of research and elucidation of the temperature difference, the following knowledge, shown in Figure 4, was obtained.
(イ)鋼板の幅拡がり量は、幅方向中央部の温度よりも
エツジ部の温度に大きく支配される。(a) The amount of width expansion of a steel plate is controlled more by the temperature of the edge portion than the temperature of the center portion in the width direction.
(ロ)さらに、厳密には、第5図に示すように幅方向中
央部とエツジ部の温度差にも支配される。(b) Furthermore, to be more precise, it is also controlled by the temperature difference between the widthwise central part and the edge part, as shown in FIG.
なお第4図で横軸はバ一温度、縦軸は粗圧延部での総幅
拡がり量、曲線C1はエツジ部温度との関係、点線曲線
C2は板幅中央部温度との関係を示す。In FIG. 4, the horizontal axis shows the bar temperature, the vertical axis shows the total width expansion amount in the rough rolled part, the curve C1 shows the relationship with the edge part temperature, and the dotted line curve C2 shows the relation with the center part temperature of the board width.
また第5図の横軸は中央部とエツジ部との温度差、縦軸
は均一温度材に対する幅拡がり量差を示す。In addition, the horizontal axis in FIG. 5 shows the temperature difference between the center part and the edge part, and the vertical axis shows the difference in the amount of width expansion for the uniform temperature material.
これらの事実から、ホントチャージ材、或はダイレクト
ローリング材の幅精度が、従来の再加熱材に比して劣る
のは、従来、圧延材料の幅方向中央部の温度のみに着目
して、幅制御を行なってきたためであると考えられる。Based on these facts, the width accuracy of true charge material or direct rolling material is inferior to conventional reheated material. This is thought to be due to the fact that they have been under control.
なお従来板幅方向中央部の温度を検出していたのは、圧
延材の幅はスラブ毎に変るから温度検出端の位置換えを
その都度性なわねばならないからである。The reason why the temperature has conventionally been detected at the center in the width direction of the plate is because the width of the rolled material varies from slab to slab, so the position of the temperature detection end must be changed each time.
従来の幅方向中央部の測温に基づく、幅制御では、ホッ
トチャージ材、ダイレクトローリング材の幅のバラツキ
を所望の値以下にすることは不可能である。With the conventional width control based on temperature measurement at the center in the width direction, it is impossible to reduce the variation in the width of the hot charge material and the direct rolling material to a desired value or less.
この発明は、圧延材の幅方向において温度バラツキの大
きなホットチャージ材、ダイレクトローリング材を対象
として圧延製品の幅のバラツキを小さくできる圧延方法
を得ることを目的としてなされた。The present invention has been made with the object of providing a rolling method that can reduce the variation in the width of rolled products, targeting hot charge materials and direct rolling materials that have large temperature variations in the width direction of the rolled products.
この発明は、圧延材のエツジ部の温度に着目し、この部
分の温度を圧延材長さ方向に沿って検出し、その温度の
変化に対応して、竪型ロールスタンドのロール開度を変
化せしめて、最終圧延製品の幅のバラツキを極めて小さ
い値にすること、ならびに、さらに圧延材幅方向中央部
とエツジ部との温度差を圧延材長さ方向に沿って検出し
、エツジ部の検出値と相撲ってこれら検出値に対応して
堅ロールスタンドのロール開度を変化せしめて最終圧延
製品の幅のバラツキを極めて小さい値にすることによっ
て特徴づけられる。This invention focuses on the temperature of the edge portion of the rolled material, detects the temperature of this portion along the length of the rolled material, and changes the roll opening of the vertical roll stand in response to the temperature change. At the very least, it is necessary to reduce the variation in the width of the final rolled product to an extremely small value, and to detect the temperature difference between the center part in the width direction of the rolled material and the edge part along the length direction of the rolled material, and to detect the edge part. It is characterized by changing the roll opening degree of the rigid roll stand in response to these detected values, thereby reducing the variation in the width of the final rolled product to an extremely small value.
以下に、この発明をその実施例に基づいて、さらに詳細
に説明する。The present invention will be explained in more detail below based on examples thereof.
第6図は、この発明になる、鋼板の幅制御法を実施する
ときの装置を示すものである。FIG. 6 shows an apparatus for carrying out the method of controlling the width of a steel plate according to the present invention.
第6図において、REは堅ロールスタンド即チエソジャ
であり、RMは粗圧延機であって水平ロールを有する。In FIG. 6, RE is a hard roll stand, and RM is a rough rolling mill with horizontal rolls.
TCは粗圧延機の計時装置、NCは粗圧延機の圧延ロー
ルの回転数計であり、MV。TC is a timing device of the rough rolling mill, NC is a rotation speed meter of the rolling rolls of the rough rolling mill, and MV.
MCEは演算装置である。MCE is a computing device.
RT E 5 RT Cは温度検出装置、ENCは堅ロ
ールスタンドの圧延ロールの回転数計である。RT E 5 RT C is a temperature detection device, and ENC is a rotation speed meter of a rolling roll on a hard roll stand.
ETCは堅ロールスタンドの計時装置、EMVは積分器
、RESは堅ロールスタンドロール開度調整機構即ち操
作端である。ETC is a timing device for the rigid roll stand, EMV is an integrator, and RES is a rigid roll stand roll opening adjustment mechanism, that is, an operating end.
このように構成される装置で、スラブからシートバーに
圧延する段階で均一な幅の圧延材とするには、エツジヤ
REと、その前段に設けた粗圧延機の計時装置ETCお
よびTCならびに、それぞれの圧延機の回転数計ENC
およびNCによって、圧延材料の噛込開始からそのスタ
ンド(圧延機)における圧延完了までの時間jE 、j
R、ロール回転数NE、NRが検出される。In order to obtain a rolled material with a uniform width at the stage of rolling from a slab to a sheet bar with a device configured in this way, it is necessary to use the edger RE, the timing devices ETC and TC of the roughing mill installed in the preceding stage, and the respective Rolling mill rotation speed meter ENC
and NC, the time from the start of biting of the rolled material to the completion of rolling in the stand (rolling mill) jE, j
R, roll rotation speeds NE and NR are detected.
これらの検出値tE、tR2NE、NRば、演算装置M
VKtR)NRが、演舅装置EIVIVにtE、NEが
入力される。These detected values tE, tR2NE, NR, arithmetic device M
VKtR)NR, tE and NE are input to the performance device EIVIV.
それぞれの演算装置MV、EMVからは、圧延材の長さ
tが出力され、演算装置MCEに入力される。The length t of the rolled material is output from each of the calculation devices MV and EMV, and is input to the calculation device MCE.
一方、圧延材のエツジ部の温度Tg或は、エツジ部の温
度TEと幅方向中央部の温度T′CをRTE 、RTc
によって検出し、検出値を演算装置MCEに入力する。On the other hand, the temperature Tg at the edge of the rolled material, or the temperature TE at the edge and the temperature T'C at the center in the width direction, are expressed as RTE and RTc.
and inputs the detected value to the arithmetic unit MCE.
演算装置MCEでは、圧延材長さ方向における、エツジ
部および幅方向中央部の温度が杷握され、圧延材エツジ
部の圧延材長さ方向における温度変化ΔTE1 =TE
i TEm i n 。In the calculation device MCE, the temperature at the edge portion and the center portion in the width direction in the longitudinal direction of the rolled material is clamped, and the temperature change in the longitudinal direction of the rolled material at the edge portion of the rolled material is calculated as follows: ΔTE1 = TE
i TEmin.
或は圧延材幅方向中央部の圧延材長さ方向における温度
変化Δ’pc i=T’c i TCmi n、さら
には、圧延材幅方向中央部とエツジ部の圧延材長さ方向
各点における温度差ΔT’I)i=’pci ’r=
iが演算量される。Alternatively, the temperature change in the longitudinal direction of the rolled material at the central part in the width direction of the rolled material Δ'pc i = T'c i TCmin, and further, the temperature change in the longitudinal direction of the rolled material at the central part in the width direction and the edge part of the rolled material Temperature difference ΔT'I)i='pci'r=
i is the amount of calculation.
これらの変化量算出値ΔTEi、Δ’rc i tΔT
Diから、粗圧延機RMから放出された圧延材の幅変動
量ΔRi を、第4図において、線C1で示す、圧延
材エツジ部の、圧延材長さ方向における温度変化ΔTE
iに起因する幅変動量、すなわちΔBi−f(ΔTEi
)を、演算装置MCEによって演算々出し、つぎに、第
5図に示す、圧延材幅方向中央部と、エツジ部の圧延材
長さ方向各点における温度差ΔTDiに起因する幅変動
量すなわち、ΔBi−f(ΔTCi、ΔTD i )
ヲ、演算々出スル。These calculated values of change ΔTEi, Δ'rc i tΔT
From Di, the width variation ΔRi of the rolled material discharged from the rough rolling mill RM is determined by the temperature change ΔTE at the edge of the rolled material in the longitudinal direction of the rolled material, which is shown by line C1 in FIG.
The amount of width variation due to i, that is, ΔBi−f(ΔTEi
) is calculated by the calculation unit MCE, and then the width fluctuation amount due to the temperature difference ΔTDi at each point in the longitudinal direction of the rolled material between the center part in the width direction of the rolled material and the edge part shown in FIG. 5, that is, ΔBi-f(ΔTCi, ΔTDi)
Wow, calculations are out.
処で、ΔTDiに起因する、第5図に示す圧延材の幅変
動量ΔBi は、第7図に示すように、圧延材幅方向
中央部の、圧延材長さ方向における温度変化量ΔTci
によって変化するから、ΔTclの測定結果に対応して
、ΔTDiに起因するΔBiを演算々出する。Here, the amount of width variation ΔBi of the rolled material shown in FIG. 5 due to ΔTDi is equal to the amount of temperature change ΔTci in the longitudinal direction of the rolled material at the central part in the width direction of the rolled material, as shown in FIG.
Therefore, ΔBi caused by ΔTDi is calculated according to the measurement result of ΔTcl.
このようにして算出されたΔTEiの寄与分と、ΔTD
iの寄与分とを重畳(相加)して、合計幅変動量を算出
する。The contribution of ΔTEi calculated in this way and ΔTD
The total width variation amount is calculated by superimposing (adding) the contribution of i.
次に、演算装置MCEでは、粗圧延機RMから放出され
る圧延材料の長さ方向における幅変動量ΔBiを消去す
るに必要なエンジャREのロール開度変化量ΔSi
をΔSi=g(ΔBi)の関係から演算々出し、その結
果を記憶する。Next, the arithmetic unit MCE calculates the amount of change in the roll opening degree ΔSi of the endanger RE necessary to eliminate the amount of width variation ΔBi in the longitudinal direction of the rolled material discharged from the rough rolling mill RM.
are calculated from the relationship ΔSi=g(ΔBi), and the results are stored.
さらに、粗圧延機RMから放出された圧延材がエツジヤ
REのロールに噛込まれた時点と、その後の時間の経過
を計時装置ETCで検出し、対応する時刻におけるエツ
ジヤREの堅ロールの回転数をENCで検出し、それぞ
れの検出値tE、NEを積分器EMVに入力し、積分器
EMVは、エツジヤREに入っている圧延材長さEti
を演算々出し、その結果を演算装置MCEに入力する。Furthermore, the timing device ETC detects the time when the rolled material discharged from the rough rolling mill RM is bitten by the roll of the Edger RE and the passage of time thereafter, and the rotational speed of the hard roll of the Edger RE at the corresponding time. is detected by the ENC, and the detected values tE and NE are input to the integrator EMV, and the integrator EMV calculates the length Eti of the rolled material in the edger RE.
, and input the results to the arithmetic unit MCE.
演算装置MCFJは記憶していた幅変動のあった圧延材
長さ方向における位置ti(E、ffi換算値)とEl
・を比較し、Eti−ti=0となったらΔSiなるエ
ツジヤREの堅ロール開度所要変化量信号を、ロール開
度調整機構RESに送る。The arithmetic unit MCFJ stores the memorized position ti (E, ffi conversion value) and El in the longitudinal direction of the rolled material where the width has changed.
When Eti-ti=0, a signal of the required change in the hard roll opening of the edger RE, which is ΔSi, is sent to the roll opening adjustment mechanism RES.
口−ル開度調整機構RESはその信号に従って、エツジ
ヤREの堅ロール開度を変化させる。The opening adjustment mechanism RES changes the opening of the edger RE in accordance with the signal.
さらにスラブが最初の粗圧延機或はエンジャに噛込む前
に既に述べた圧延材エツジ部或は幅方向中央部の温度を
検出し、その検出結果に基づいて、以降の各パスにおけ
る、エツジ部、中央部の圧延材温度を伝熱計算により求
め、この温度予測値に基づいて、粗圧延機RMから放出
された圧延材の長さ方向における幅変動量ΔBiを演算
装置MCEによって算出し、その結果に基づいて粗圧延
機RMに後続するエツジヤREでのロール開度所要変化
量ΔSiを演算々出し、ロール開度調整機構RESによ
ってロール開度を変化させる。Furthermore, before the slab is bitten into the first rough rolling mill or ender, the temperature of the edge part or the center part of the rolled material mentioned above is detected, and based on the detection result, the temperature of the edge part in each subsequent pass is detected. , the temperature of the rolled material at the center is determined by heat transfer calculation, and based on this predicted temperature value, the amount of width variation ΔBi in the length direction of the rolled material discharged from the rough rolling mill RM is calculated by the arithmetic unit MCE. Based on the results, a required amount of change ΔSi in the roll opening degree in the edger RE following the rough rolling mill RM is calculated, and the roll opening degree is changed by the roll opening adjustment mechanism RES.
即ち、最初の粗圧延機或はエツジヤに噛込む前のスラブ
温度を検出し、その検出結果を演算装置に入力するとと
もに、
材料の温度−T。That is, the temperature of the slab before it is bitten by the first rough rolling mill or edger is detected, the detection result is input to the calculation device, and the temperature of the material -T.
厚さ;H6 幅:W。Thickness; H6 Width: W.
長さ;L。Length: L.
移送時間;t。Transfer time; t.
を入力し
■ 輻射による温度低下量ΔTrは
ΔTr= f (To 、to )
■ デスケーリングによる温度低下量ΔTsはΔT8=
f(To、Tw)
■ 塑性加工発熱による温度上昇ΔTMはΔTM= f
(Ho t Hl、To 、tV )■ ロールとの
接触による温度低下量ΔTRはΔT R= f (To
、T R2V t l d )但しTW;水温
Hl:出側板厚
V :圧延速度
TR;ロール表面温度
td;接触弧長
から、材料の各々の部分における温度降下量ΔTを
ΔT−To−ΔTR−ΔT8+ΔTM−ΔTRを演算々
出する。Input ■ The amount of temperature decrease ΔTr due to radiation is ΔTr= f (To , to ) ■ The amount of temperature decrease ΔTs due to descaling is ΔT8=
f (To, Tw) ■ Temperature rise ΔTM due to plastic working heat generation is ΔTM = f
(Ho t Hl, To , tV ) ■ The amount of temperature decrease ΔTR due to contact with the roll is ΔT R= f (To
, TR2V tld) However, TW; Water temperature Hl: Output plate thickness V: Rolling speed TR; Roll surface temperature td; From the contact arc length, the temperature drop ΔT in each part of the material is calculated as ΔT-To-ΔTR-ΔT8+ΔTM -ΔTR is calculated.
このようにすれば、複数段の粗圧延機、エンジャにおい
て初段の粗圧延機、エツジヤのみに温度検出装置、計時
装置、回転数計等を設置すればよく、装置が簡素になる
利点がある。This has the advantage that the temperature detection device, timing device, rotation speed meter, etc. can be installed only in the first stage rough rolling mill and edger in a plurality of stages of rough rolling mills and enders, and the equipment can be simplified.
また、よシ的確な圧延材幅制御を行なうためにホットス
トリップミルラインの中間部に幅計を設置し、それによ
って制御結果である圧延材幅を検出し、−制御操作の適
否をチェックし、未圧延部に対しての制御量を修正する
所謂フィードバック制御ならびに、幅計による検出部以
降の制御量を修正するフィードフォワード制御を行なう
こともできる。In addition, in order to more accurately control the width of the rolled material, a width gauge is installed in the middle of the hot strip mill line, and the width of the rolled material is detected as a result of the control, and - the suitability of the control operation is checked. It is also possible to perform so-called feedback control that corrects the control amount for the unrolled portion, and feedforward control that corrects the control amount after the detection section using the width gauge.
この発明は以上述べたように構成しかつ作用させるよう
にしたから、圧延材の温度に起因する圧延製品の幅のバ
ラツキを極めて小さくできるのみならず、ホットチャー
ジ材、ダイレクトローリング材のように圧延材幅方向中
央部とエツジ部の温度差の大きな材料をも幅変動を小さ
く抑えて圧延できるからホットストリップ製品の歩留を
向上させ得る。Since this invention is constructed and operated as described above, it is possible not only to extremely reduce the variation in the width of rolled products caused by the temperature of the rolled material, but also to reduce the variation in the width of rolled products due to the temperature of the rolled material. Since it is possible to roll a material with a large temperature difference between the center part and the edge part in the material width direction while suppressing the width fluctuation to a small extent, the yield of hot strip products can be improved.
第1図は圧延材の温度の変化と幅の変化を圧延材長さ方
向でみた図表、第2図は圧延材の長さ方向における平均
温度と幅の平均値を示す説明図、第3図は圧延材の幅方
向における温度のバラツキを示す図表、第4図は圧延材
の温度と幅拡がり量をエツジ部と幅方向中央部について
示す図表、第5図は圧延材の幅方向中央部とエツジ部の
温度差と幅拡がり量との相関を示す図表、第6図はこの
発明を実施するときの装置を示す説明図、第7図は温度
差ΔTDiと幅拡がり量との関係を示すグラフである。
RE・・・堅ロールスタンド、RM・・・粗圧延機水平
ロール、TC,ETC・・・計時装置、NC,ENC・
・・回転数計、MV、MCE・・・演算装置、RT E
。
RTc・・・温度検出装置、EMV・・・積分器、RE
S・・・ロール開度調整機構。Figure 1 is a chart showing changes in temperature and width of rolled material viewed in the length direction of the rolled material, Figure 2 is an explanatory diagram showing average values of temperature and width in the length direction of rolled material, and Figure 3 4 is a chart showing the temperature variation in the width direction of the rolled material, FIG. A chart showing the correlation between the temperature difference at the edge portion and the amount of width expansion, FIG. 6 is an explanatory diagram showing the apparatus for implementing this invention, and FIG. 7 is a graph showing the relationship between the temperature difference ΔTDi and the amount of width expansion. It is. RE...Rigid roll stand, RM...Roughing mill horizontal roll, TC, ETC...Timekeeping device, NC, ENC/
...Revolution meter, MV, MCE...Arithmetic unit, RT E
. RTc...Temperature detection device, EMV...Integrator, RE
S...Roll opening adjustment mechanism.
Claims (1)
イン中に有する、鋼ストリップを得るためのホットスト
リップミルでスラブを熱間圧延するに際し、前記堅ロー
ルスタンドの入側に設けた材料温度測定装置によって材
料側縁部の温度を検出し、その検出値を演算装置に入力
し、鋼ストリップ長さ方向における最低温度或はそれま
での平均温度と前記検曲直との偏差を求め、該偏差に基
づく鋼ストリップの幅変動量を前記演算装置にて演算算
出せしめ、該幅変動量算出値を消去するに必要な上記堅
ロールスタンドのロール開度変化量を前記演算装置に演
算算出せしめるとともに、前記堅ロールスタンドのロー
ル開度調整機構に信号を発せしめ、該ロール開度を変化
せしめるようにしたことを特徴とする鋼板の幅制御方法
。 2 材料の幅方向に圧延力を適用する堅ロールをそのラ
イン中に有する、鋼ストリップを得るだめのホットスト
リップミルでスラブを熱間圧延するに際し、前記堅ロー
ルスタンドの入側に設けた材料温度測定装置によって材
料側線部ならびに材料幅方向中央部の温度を検出し、そ
れらの検出値を演算装置に入力し、材料側縁部温度の鋼
ストリツプ長手方向における最低温度或は、平均温度と
の偏差ならびに当該測定点における鋼ストリップ(材料
)幅方向中央部と側縁部との温度偏差を求め、各々の温
度偏差に基づく鋼ストリップの幅変動量を前記演算装置
にて演算算出せしめ、該幅変動量算出値を消去するに必
要な上記堅ロールスタンドのロール開度変化量を、前記
演算装置に演算算出せしめるとともに、前記堅ロールス
タンドのロール開度調整機構に信号を発せしめ、該ロー
ル開度を変化せしめるようにしたことを特徴とする鋼板
の幅制御方法。 3 材料の副方向に圧延力を適用する堅ロールを、その
ライン中に有する鋼ストリップを得るだめのホットスト
リップミルでスラブを圧延するに際し、最初の水平ロー
ルスタンド或は堅ロールスタンドの前段で材料側縁部の
温度を検出し、その検出値に基づいて各段階のパスにお
ける材料側線部の温度を予測し、鋼ストリップ長さ方向
における最低温度或は平均温度との偏差を演算装置にて
求め、ソ(7)偏差値に基づいて堅ロールスタンドのロ
ール開度を変化させ制御する特許請求の範囲第1項記載
の鋼板の幅制御方法。[Claims] 1. When hot rolling a slab in a hot strip mill for obtaining steel strip, which has hard rolls in its line that apply a rolling force in the width direction of the material, the input of said hard roll stand The temperature at the side edge of the material is detected by a material temperature measuring device installed on the side, and the detected value is input to a calculation device, and the minimum temperature in the length direction of the steel strip or the average temperature up to that point is calculated from the bending straight line. The calculation device calculates the amount of variation in the width of the steel strip based on the deviation, and calculates the amount of change in the roll opening of the rigid roll stand necessary to erase the calculated width variation amount. A method for controlling the width of a steel plate, characterized in that the width of the steel sheet is controlled by calculating the width of the steel sheet, and also causing a signal to be sent to a roll opening adjustment mechanism of the rigid roll stand to change the roll opening. 2. When hot rolling a slab in a hot strip mill for obtaining steel strip, which has hard rolls in its line that apply rolling force in the width direction of the material, the temperature of the material provided on the entry side of the hard roll stand A measuring device detects the temperature at the side line part of the material and the center part in the width direction of the material, and these detected values are input into a calculation device to calculate the deviation of the temperature at the side edge of the material from the minimum temperature or average temperature in the longitudinal direction of the steel strip. In addition, the temperature deviation between the center part and the side edge part in the width direction of the steel strip (material) at the measurement point is determined, and the amount of width variation of the steel strip based on each temperature deviation is calculated by the calculation device, and the width variation is calculated by using the calculation device. The arithmetic device is caused to calculate the amount of change in the roll opening of the rigid roll stand necessary to erase the calculated value, and a signal is issued to the roll opening adjustment mechanism of the rigid roll stand to determine the roll opening. A method for controlling the width of a steel plate, characterized by changing the width of a steel plate. 3. When rolling a slab in a hot strip mill for obtaining steel strip that has hard rolls in its line that apply rolling force in the secondary direction of the material, the material is rolled in the first horizontal roll stand or before the hard roll stand. Detects the temperature of the side edge, predicts the temperature of the side line of the material at each stage pass based on the detected value, and calculates the deviation from the minimum temperature or average temperature in the length direction of the steel strip using a calculation device. , G (7) The method for controlling the width of a steel plate according to claim 1, wherein the roll opening degree of a rigid roll stand is changed and controlled based on the deviation value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53042375A JPS5920401B2 (en) | 1978-04-11 | 1978-04-11 | Steel plate width control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53042375A JPS5920401B2 (en) | 1978-04-11 | 1978-04-11 | Steel plate width control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54134059A JPS54134059A (en) | 1979-10-18 |
JPS5920401B2 true JPS5920401B2 (en) | 1984-05-12 |
Family
ID=12634294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53042375A Expired JPS5920401B2 (en) | 1978-04-11 | 1978-04-11 | Steel plate width control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5920401B2 (en) |
-
1978
- 1978-04-11 JP JP53042375A patent/JPS5920401B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54134059A (en) | 1979-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6121729B2 (en) | ||
US3604234A (en) | Temperature control system for mill runout table | |
US4294094A (en) | Method for automatically controlling width of slab during hot rough-rolling thereof | |
JPH0566209B2 (en) | ||
JPS5920401B2 (en) | Steel plate width control method | |
JP6252500B2 (en) | Thickness control method in thick plate rolling | |
JPH1110215A (en) | Method for controlling wedge of hot rolled stock | |
JP3351368B2 (en) | Steel rolling method | |
JPH0275409A (en) | Method for controlling winding temperature of hot rolled steel sheet | |
JP3329297B2 (en) | Hot rolling method | |
JP2538785B2 (en) | Work crown control method | |
JPH0615085B2 (en) | Strip width control method for hot continuous rough rolling mill | |
JPS626713A (en) | Temperature control method for rolling stock in outlet side of hot rolling mill | |
JPS6111124B2 (en) | ||
JP3767832B2 (en) | Thickness control method in hot rolling | |
JP2001105016A (en) | Device for controlling temperature of rolled stock | |
JP3692904B2 (en) | How to set up a hot finishing mill | |
US4068511A (en) | Method and apparatus for bar temperature determination in a hot strip mill | |
JP3518504B2 (en) | How to set cooling conditions for steel sheets | |
JPH0698370B2 (en) | Board width control method | |
JP2692544B2 (en) | Method and device for controlling temperature of hot rolling mill | |
JP3118343B2 (en) | Method for reducing skid mark of hot finished rolled material | |
JP3237559B2 (en) | Thickness control method of hot continuous rolling mill | |
JPS5815202B2 (en) | Coiling temperature control method for hot-rolled steel sheets | |
JPS5828006B2 (en) | Method for controlling plate crown of rolled material during hot finish rolling |