JPS59203986A - Fuel assembly of bwr type reactor - Google Patents

Fuel assembly of bwr type reactor

Info

Publication number
JPS59203986A
JPS59203986A JP58078464A JP7846483A JPS59203986A JP S59203986 A JPS59203986 A JP S59203986A JP 58078464 A JP58078464 A JP 58078464A JP 7846483 A JP7846483 A JP 7846483A JP S59203986 A JPS59203986 A JP S59203986A
Authority
JP
Japan
Prior art keywords
fuel
reactor
steam
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58078464A
Other languages
Japanese (ja)
Inventor
律夫 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58078464A priority Critical patent/JPS59203986A/en
Publication of JPS59203986A publication Critical patent/JPS59203986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は沸騰水型原子炉の燃料集合体に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a fuel assembly for a boiling water nuclear reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に沸騰水型原子炉は第1図に示すような構成となっ
ている。図中符号1は原子炉圧力容器を示す。この原子
炉圧力容器1内には複数の燃料集合体2および図示しな
い制御棒よシなる炉心3が設置さnておシ、また冷却水
4が収容さnている。上記炉心3上方には気水分離器5
が設置さnてお9、この気水分離器5上方には蒸気乾線
器6が設置さnている。原子炉圧力容器10周壁土部に
は主蒸気出口ノズル7が接続されておplその上方には
給水入口ノズル8が接続されている。上記主蒸気出口ノ
ズル7には図示しない主蒸気管が接続される構成である
Generally, a boiling water reactor has a configuration as shown in FIG. Reference numeral 1 in the figure indicates a reactor pressure vessel. Inside this reactor pressure vessel 1, a plurality of fuel assemblies 2 and a reactor core 3 including control rods (not shown) are installed, and cooling water 4 is accommodated. Above the reactor core 3 is a steam separator 5.
A steam dryer 6 is installed above the steam/water separator 5. A main steam outlet nozzle 7 is connected to the surrounding wall of the reactor pressure vessel 10, and a water supply inlet nozzle 8 is connected above it. The main steam outlet nozzle 7 is connected to a main steam pipe (not shown).

すなわち前記冷却水4は炉心3を下方から上方に向って
上昇しその際昇温しで水と蒸気の2相流状態となる。2
相流状態となった冷却水4は気水分離器5には水と蒸気
に分離され、蒸気は蒸気乾餘器6に流入し乾燥蒸気とな
シ主蒸気出口ノズル7および主蒸気管を介して図示しな
い発電用駆動タービンに導入さtタービン駆動源として
使用される。タービン全通過した蒸気は図示しない復水
器によシ冷却液化され給水入口ノズル8を介して再度原
子炉圧力容器1内に流入する。−力水はアニーラス部2
0を下降して再度炉心3下方に流入し以下このサイクル
を繰シ返する。
That is, the cooling water 4 rises from the bottom to the top of the reactor core 3, and as it does so, its temperature rises, resulting in a two-phase flow state of water and steam. 2
The cooling water 4 in a phase flow state is separated into water and steam by the steam separator 5, and the steam flows into the steam dryer 6 and becomes dry steam through the main steam outlet nozzle 7 and the main steam pipe. It is introduced into a power generation drive turbine (not shown) and used as a turbine drive source. The steam that has completely passed through the turbine is cooled and liquefied by a condenser (not shown), and then flows into the reactor pressure vessel 1 again through the water supply inlet nozzle 8. - Power water is Annelus part 2
0 and flows into the lower part of the reactor core 3 again, and this cycle is repeated thereafter.

前記燃料集合体2は第2図に示すような構成となってお
シ、図中符号9は角筒状のチャンネルボックスを示す。
The fuel assembly 2 has a structure as shown in FIG. 2, and reference numeral 9 in the figure indicates a rectangular cylindrical channel box.

このチャンネルボックス9内には複数本の燃料棒10が
マトリックス状(例えば第3図に示すように8行×8列
)に配列されておシ、それらの上・下☆j、ケ上甑−タ
イブレート1ノおよび下部タイプレート12によりそれ
ぞn支持されている。こ扛ら上部タイプレート1ノおよ
び下部タイプレート12間には複数箇所にわたってスペ
ーサ13が設けらtておシ、このスペーサ13によシ前
記複数本の燃料棒10相互間の間隔を一定に保持する構
成である。
Inside this channel box 9, a plurality of fuel rods 10 are arranged in a matrix (for example, 8 rows x 8 columns as shown in FIG. 1 and a lower tie plate 12, respectively. Spacers 13 are provided at multiple locations between the upper tie plate 1 and the lower tie plate 12, and the spacers 13 keep the spacing between the plurality of fuel rods 10 constant. It is configured to do this.

前記燃料枠10は第4図に示すような構成となっている
。円筒状の複覆管14内には酸化ウランの粉末をペレッ
ト状に焼結した円柱状ペレット15が軸方向に複数個積
層されておシ、上方からはね16を介して上部端栓17
によシ押圧した構成である。′f、た下端部には下部ん
栓18が装着さnている。
The fuel frame 10 has a structure as shown in FIG. Inside the cylindrical double-covered tube 14, a plurality of cylindrical pellets 15 made by sintering uranium oxide powder into pellets are stacked in the axial direction, and an upper end plug 17 is inserted from above via a spring 16.
This is a configuration that is pressed in place. A lower stopper 18 is attached to the lower end.

一般に原子炉運転時には燃料集合体2上部ではチャンネ
ルボックス9内の冷却水4の内約60係が蒸気である。
Generally, during nuclear reactor operation, about 60 parts of the cooling water 4 in the channel box 9 in the upper part of the fuel assembly 2 is steam.

この為第5図に示すように炉心下部(図中A点)では炉
心中央部(図中B点)および炉心上部(図中C点)に比
べて無限増倍率Kooが大きくなシ、出力分布が下方に
歪み易い傾向にある。したがって原子炉運転時には炉心
3上部の減速を促進させて無限増倍率にωを高めること
によシ下方に歪み易い軸方向出力分布の平担化を図る必
要がある。
For this reason, as shown in Figure 5, the infinite multiplication factor Koo is larger in the lower part of the core (point A in the figure) than in the middle part of the core (point B in the figure) and the upper part of the core (point C in the figure). tends to be distorted downward. Therefore, during reactor operation, it is necessary to flatten the axial power distribution, which tends to be distorted downward, by promoting deceleration in the upper part of the core 3 and increasing ω to an infinite multiplication factor.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは原子炉運転時において炉心
上部の無限増倍率K C1) f高めることにより、軸
方向出力分布の平担化を図ることが可能な沸騰水型原子
炉の燃料集合体を提供することにある。
The object of the present invention is to improve the fuel assembly of a boiling water reactor in which it is possible to flatten the axial power distribution by increasing the infinite multiplication factor K C1) f in the upper part of the core during reactor operation. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明による沸騰水型原子炉の燃料集合体は、チャンネ
ルボックスと、ぞnぞれ燃料を収容し上記チャンネルボ
ックス内に格子状に配列された複数本の燃料棒とをQt
iiえた沸騰水型原子炉の燃料集合体に3いて、上記複
数本の燃料棒の内一部の燃料棒全他の燃料棒よシ短かく
しその燃料棒上方に少なくとも下部の内径が燃料棒の外
径よシ大きい中空状部材を醋酸した構成でるる。
A fuel assembly for a boiling water reactor according to the present invention comprises a channel box and a plurality of fuel rods each containing fuel and arranged in a grid within the channel box.
ii) In the fuel assembly of the boiling water reactor, some of the plurality of fuel rods are made shorter than all the other fuel rods, and above the fuel rods, at least the inner diameter of the lower part is the same as that of the fuel rods. It consists of a hollow member with a diameter larger than the outer diameter.

したがって上部における燃料の量が減少しかつ冷却水の
量カニ増加するので原子炉運転時における水の燃料に対
する比が高くなフ乏・&限増倍率KOOf、1高くする
ことができるので出力分布の平担化を図ることが可能と
なる。
Therefore, the amount of fuel in the upper part decreases and the amount of cooling water increases, so the ratio of water to fuel during reactor operation can be increased by 1. It becomes possible to achieve leveling.

〔発明の実施例〕[Embodiments of the invention]

以下第6図ないし第10図を参照して本発明の一実施例
を説明する。第6図は本発明が適用される沸騰水型原子
炉の概略構成を示す図である。図中符号101は原子炉
圧力容器を示す。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 10. FIG. 6 is a diagram showing a schematic configuration of a boiling water reactor to which the present invention is applied. Reference numeral 101 in the figure indicates a reactor pressure vessel.

この原子炉圧力容器101内には複数の燃料集合体10
2および図示しない制御棒等よシなる炉心103が設置
妊nており址た冷却水104が収容されている。炉心1
03上方には気水分離器105が設置さ扛ており、この
気水分離器105上方には蒸気乾燥器106が設置さn
ている。原子炉圧力容器101の周壁土部には主蒸気出
口ノズル107が接続されておシ、その下方には給水入
口ノズル108が接続されている。上記主蒸気出口ノズ
ル107には図示しない主蒸気管が接続される構成であ
る。すなわち冷却水104は炉心103を下方から上方
に向って上昇しその際昇温して水と蒸気の2相流状態と
なる。2相流状態になった冷却水104は気水分離器1
05にて水と蒸気に分離さ扛、蒸気は蒸気乾燥器106
に流入し乾燥蒸気となり主蒸気出口ノズル107および
主蒸気管を介して発電用駆動タービン(図示せず)に導
入さnタービン以動源として使用される。そしてタービ
ンを通過した蒸気は図示しない復水器によフ冷却液化さ
れ給水入口ノズル108を介して再度原子炉圧力容器1
01内に流入する構成である。−力水はアニーラス部1
09を下降して再度炉心ノ03下方に流入し以下このサ
イクルを繰シ返す構成である。
A plurality of fuel assemblies 10 are contained within this reactor pressure vessel 101.
A reactor core 103 consisting of 2 and control rods (not shown) is installed, and waste cooling water 104 is accommodated therein. Core 1
A steam/water separator 105 is installed above 03, and a steam dryer 106 is installed above this steam/water separator 105.
ing. A main steam outlet nozzle 107 is connected to the peripheral wall of the reactor pressure vessel 101, and a water supply inlet nozzle 108 is connected below it. A main steam pipe (not shown) is connected to the main steam outlet nozzle 107. That is, the cooling water 104 rises from the bottom to the top of the core 103, and as it does so, its temperature rises, resulting in a two-phase flow state of water and steam. The cooling water 104 in a two-phase flow state is passed through the steam-water separator 1
At step 05, water and steam are separated, and the steam is sent to a steam dryer 106.
The dry steam is introduced into a power generation drive turbine (not shown) through the main steam outlet nozzle 107 and the main steam pipe, and is used as a power source for the turbine. The steam that has passed through the turbine is cooled and liquefied by a condenser (not shown), and then passed through the water supply inlet nozzle 108 again to the reactor pressure vessel 1.
01. - Power water is Annelus part 1
09 and flows again into the lower part of the reactor core 03, and this cycle is repeated thereafter.

前記燃料集合体1θ2は第7図に示すような構成となっ
ている。図中符号110は角筒状のチャンネルボックス
を示す。このチャンネルボックス110内には燃料棒1
11がマトリックス状(8行×8列)に配列されている
。この円囲隅部に位置する4本の燃料棒111には他の
燃料棒211とは異なシ第8図に示すような構成となっ
ている。すなわち四隅部に位置する燃料棒111Aは他
の燃料棒1ノ1よシ短い燃料棒121の上方に中空状部
材としての中空管ノ22を接続した構成である。この中
空管122の軸方向長さは従来の燃料棒有効長の10〜
50係であシ特に25%が最適である。上記燃料棒12
1は従来の燃料棒同様被覆管123円に円柱状ベレット
124を複数枝層しはね125を介して上部端栓126
によフ押圧した構成であシ下端部には下部端栓127が
装着さnている。また前記中空管122の上端には上部
端栓128が装着さ牡てお)この上部端栓128および
前記下部端栓127を介して図示しない上部タイプレー
トおよび下部タイプレート間に支持される構成である〇 上記中空管122はその内径が燃料棒12°2の外径よ
シ大きくなっている。そして前記上部端栓126との間
には冷却水流入口129が形成されまた上部端栓128
との間には冷却水流出ロノ30が形成さ扛てお9上昇す
る冷却水104を効率よく導入する構成である。いま各
燃料棒1ノ1間の冷却水の流れを調べてみると箇9図に
示すような状態にある。すなわち最下部りにおいては沸
騰せず、水のみの状態であシ、上昇するにしたがって沸
騰し蒸気泡13ノが発生する。この発生した蒸気泡13
ノは、上昇するにしたがって集合して大きくな多連続し
た巨大な蒸気泡132となって燃料棒111の表面に沿
って上昇する。このとき蒸気泡132と燃料棒111と
の間に液膜相(水の流れ)133が形成される。本実施
例はこの液膜相133を効果的に中空管122内に流入
させる為に前述した如く中空管122の内径を燃料棒1
2ノの外径よシ大きくし上部端栓126との間に冷却水
流入口129を形成している。なお本実施例では中空管
122の外径と燃料棒121の外径との差(冷却水流入
口129の有効径)は約2=である。
The fuel assembly 1θ2 has a configuration as shown in FIG. In the figure, reference numeral 110 indicates a rectangular cylindrical channel box. Inside this channel box 110 is a fuel rod 1.
11 are arranged in a matrix (8 rows x 8 columns). The four fuel rods 111 located at the corners of this circle have a configuration different from that of the other fuel rods 211 as shown in FIG. That is, the fuel rods 111A located at the four corners have a structure in which a hollow tube 22 as a hollow member is connected above the fuel rod 121 which is shorter than the other fuel rods. The axial length of this hollow tube 122 is 10 to 10 times the effective length of the conventional fuel rod.
If the ratio is 50%, especially 25% is optimal. The above fuel rod 12
1 is similar to the conventional fuel rod, in which a plurality of cylindrical pellets 124 are layered around a cladding tube 123 and an upper end plug 126 is attached via a spring 125.
It has a double-pressed configuration, and a lower end plug 127 is attached to the lower end. Further, an upper end plug 128 is attached to the upper end of the hollow tube 122, and is supported between an upper tie plate and a lower tie plate (not shown) via this upper end plug 128 and the lower end plug 127. The inner diameter of the hollow tube 122 is larger than the outer diameter of the fuel rod 12°2. A cooling water inlet 129 is formed between the upper end plug 126 and the upper end plug 128.
A cooling water outflow tube 30 is formed between the two and is configured to efficiently introduce the rising cooling water 104. Now, when we examine the flow of cooling water between each fuel rod, we find that it is as shown in Figure 9. That is, at the bottom, there is no boiling, only water, and as it rises, it boils and steam bubbles 13 are generated. This generated steam bubble 13
As they rise, they gather to form a large number of continuous huge vapor bubbles 132 that rise along the surface of the fuel rod 111. At this time, a liquid film phase (water flow) 133 is formed between the vapor bubbles 132 and the fuel rods 111. In this embodiment, in order to effectively flow the liquid film phase 133 into the hollow tube 122, the inner diameter of the hollow tube 122 is adjusted to the fuel rod 122 as described above.
A cooling water inlet 129 is formed between the upper end plug 126 and the upper end plug 126. In this embodiment, the difference between the outer diameter of the hollow tube 122 and the outer diameter of the fuel rod 121 (the effective diameter of the cooling water inlet 129) is approximately 2=.

次に中空管122、上部端栓126および上部端栓12
8との接続構造について説明する。
Next, the hollow tube 122, the upper end plug 126 and the upper end plug 12
The connection structure with 8 will be explained.

中空管122の下部内周側には第10図に示すような止
め金リング140が溶接さ乳ている。
A retaining ring 140 as shown in FIG. 10 is welded to the inner peripheral side of the lower part of the hollow tube 122.

この止め金リング140の中央部には穴部14ノが形成
されておシ、この穴部141に下方から前記上部端栓1
26が挿通され溶接されている。
A hole 14 is formed in the center of this stop ring 140, and the upper end plug 1 is inserted into this hole 141 from below.
26 is inserted and welded.

上記止め金リング140には冷却水が流通する流通穴1
42が形成されている。一方中空管122の上部円周側
にも同様の止め金リング140が溶接さnておシ、その
中央部に形成された穴部141には上部端栓128が上
方から挿通し溶接されている。
The stop ring 140 has a circulation hole 1 through which cooling water flows.
42 is formed. On the other hand, a similar retaining ring 140 is welded to the upper circumferential side of the hollow tube 122, and an upper end plug 128 is inserted from above and welded into the hole 141 formed in the center thereof. There is.

以上本実施例の沸騰水屋原子炉によると、燃料集合体1
02の四隅部に位置する燃料棒111Aはその上部の燃
料を欠如し、中空管122を設は冷却水104f導入す
る構成となっているので原子炉運転時炉心上部における
水の燃料に対する比を高くし無限増倍率KO)を大きく
することができ、それによって炉心出力分布の平担化を
図ることが可能となる。特に中空管122の内径を燃料
棒121の外径よシ約2g11程度大きく踵燃料棒12
1の上部端栓126との間に冷却水流入口129を形成
しであるので、燃料棒121外周付近に形成さ牡る液膜
相133を効果的に導入することができる。
According to the boiling water reactor of this embodiment, the fuel assembly 1
The fuel rods 111A located at the four corners of the reactor 111A lack fuel in the upper part, and a hollow pipe 122 is installed to introduce the cooling water 104f, so the ratio of water to fuel in the upper part of the core during reactor operation is reduced. It is possible to increase the infinite multiplication factor KO), thereby making it possible to level out the core power distribution. In particular, the inner diameter of the hollow tube 122 is made larger than the outer diameter of the fuel rod 121 by about 2g11.
Since the cooling water inlet 129 is formed between the fuel rod 1 and the upper end plug 126 of the fuel rod 121, the liquid film phase 133 formed near the outer periphery of the fuel rod 121 can be effectively introduced.

なお前記実施例では四隅部の燃料棒111人に中空管1
22を設けた構成としたがこれに限ったことではなく例
えば第7図中中央部に位置する2本の燃料棒111Bあ
るいは4本の燃料棒111B、111Cに中空管122
を設けてもよい。捷だ本数も2ないし4本に限定さnる
ことはない。
In the above embodiment, 111 fuel rods and 1 hollow tube were installed at the four corners.
22, but the present invention is not limited to this. For example, the hollow tubes 122 may be attached to the two fuel rods 111B or the four fuel rods 111B and 111C located in the center in FIG.
may be provided. The number of pieces to be cut is not limited to 2 or 4.

さらに中空状部材としては円管に限ったことではなく断
°面四角形の角管であってもよく、また管の一部例えば
冷却水流入部のみを制御棒の外径よシ大きくした構成で
もよい。
Furthermore, the hollow member is not limited to a circular pipe, but may be a rectangular pipe with a square cross section, or a part of the pipe, for example, only the cooling water inlet may be made larger than the outside diameter of the control rod. good.

〔発明の効果〕〔Effect of the invention〕

本発明による沸騰水型原子炉の燃料集合体は、チャンネ
ルボックスと、そ牡ぞれ燃料を収容し上記チャンネルが
ックス内に格子状に配列された複数本の燃料棒とを備え
た沸騰水型原子炉の燃料集合体において、上記複数本の
燃料棒の内一部の燃料棒を他の燃料棒よシ短かくしその
燃料棒上方に少なくとも下部の内径が燃料棒の外径よシ
大きい中空状部材を配置した構成である。
The fuel assembly for a boiling water nuclear reactor according to the present invention is a boiling water reactor equipped with a channel box and a plurality of fuel rods each containing fuel and the channels arranged in a lattice shape in the box. In a fuel assembly of a nuclear reactor, some of the plurality of fuel rods are made shorter than other fuel rods, and above the fuel rods there is provided a hollow shape in which the inner diameter of at least the lower part is larger than the outer diameter of the fuel rods. This is a configuration in which members are arranged.

したがって上部における燃料の量を減少させまた中空状
部材内に冷却水を効果的に導入することができ、原子炉
運転時の炉心上部における水の燃料に対する比が高くな
シそれによって無限増倍率にωを高くすることができる
ので出力分布の平担化を図ることが可能となる。特に中
空状部材の少なくとも下部の内径を燃料棒の外径よシ大
きくしたので冷却水の導入を効果的に行なうことができ
る。
Therefore, the amount of fuel in the upper part can be reduced and cooling water can be effectively introduced into the hollow member, and the ratio of water to fuel in the upper part of the core during reactor operation is high, thereby achieving an infinite multiplication factor. Since ω can be increased, it is possible to flatten the output distribution. In particular, since the inner diameter of at least the lower part of the hollow member is made larger than the outer diameter of the fuel rod, cooling water can be introduced effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は従来例を示す図で、第1図は沸騰
水型原子炉の縦断面図、第2図は燃料集合体の斜視図、
第3図は燃料集合体の横断面図、第4図は燃料棒の一部
縦断面図、第5図は水/ウラン比と無限増倍率の関係を
示す図、第6図ないし第10図は本発明の一実施例を示
す図で、第6図は沸騰水型原子炉の縦断面図、第7図は
燃料集合体の横断面図、第8図は燃料棒の一部縦断面図
、第9図は燃料棒間の冷却水の流通状態を示す図、第1
0図は止め金リングの斜視図である。 102・・・燃料集合体、104・・・冷却水、110
・・・チャンネルボックス、111・・・燃料棒、11
1人・・・四隅部の燃料棒、122・・・中空状部材。 出願人代理人 弁理士  鈴 江 武 彦第1図 第2図 t<s 3図 第4図 第5図 第6図 第7図 ヱVI8 図 TS9図 第10図
Figures 1 to 4 are diagrams showing conventional examples, in which Figure 1 is a vertical cross-sectional view of a boiling water reactor, Figure 2 is a perspective view of a fuel assembly,
Figure 3 is a cross-sectional view of the fuel assembly, Figure 4 is a partial longitudinal cross-sectional view of a fuel rod, Figure 5 is a diagram showing the relationship between the water/uranium ratio and the infinite multiplication factor, and Figures 6 to 10. 6 is a longitudinal cross-sectional view of a boiling water reactor, FIG. 7 is a cross-sectional view of a fuel assembly, and FIG. 8 is a partial longitudinal cross-sectional view of a fuel rod. , Figure 9 is a diagram showing the state of flow of cooling water between fuel rods, Figure 1
Figure 0 is a perspective view of the clasp ring. 102... Fuel assembly, 104... Cooling water, 110
... Channel box, 111 ... Fuel rod, 11
1 person: Fuel rods at the four corners, 122: Hollow member. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 t<s Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 ヱVI8 Figure TS9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] チャンネルボックスと、それぞ扛燃料を収容し上記チャ
ンネルがックス内に格子状に配列された複数本の燃料棒
とを備えた沸騰水型原子炉の燃料集合体において、上記
複数本の燃料棒の内一部の燃料棒を他の燃料棒よシ短か
くしその燃料棒上方に少なくとも下部の内径が燃料棒の
外径より大きい中空状部材を配置したことを特徴とする
沸騰水型原子炉の燃料集合体。
In a fuel assembly for a boiling water reactor comprising a channel box and a plurality of fuel rods each containing fuel and the channels arranged in a lattice in the box, the plurality of fuel rods are Fuel for a boiling water reactor, characterized in that some fuel rods are made shorter than other fuel rods, and a hollow member is disposed above the fuel rod, the inner diameter of at least the lower part being larger than the outer diameter of the fuel rod. Aggregation.
JP58078464A 1983-05-04 1983-05-04 Fuel assembly of bwr type reactor Pending JPS59203986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078464A JPS59203986A (en) 1983-05-04 1983-05-04 Fuel assembly of bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078464A JPS59203986A (en) 1983-05-04 1983-05-04 Fuel assembly of bwr type reactor

Publications (1)

Publication Number Publication Date
JPS59203986A true JPS59203986A (en) 1984-11-19

Family

ID=13662741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078464A Pending JPS59203986A (en) 1983-05-04 1983-05-04 Fuel assembly of bwr type reactor

Country Status (1)

Country Link
JP (1) JPS59203986A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172092A (en) * 1984-09-26 1986-08-02 ウエスチングハウス エレクトリック コ−ポレ−ション Modelator rod functioning as fuel in combination and modelating method using said rod
DE3824082A1 (en) * 1987-07-18 1989-01-26 Toshiba Kawasaki Kk FUEL ARRANGEMENT FOR CORE REACTORS
US5345485A (en) * 1992-03-13 1994-09-06 Siemens Power Corporation Coolant vent fuel rod for a light water reactor
JP2009250980A (en) * 2008-04-08 2009-10-29 Global Nuclear Fuel Americas Llc Detachable reactor fuel assembly component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172092A (en) * 1984-09-26 1986-08-02 ウエスチングハウス エレクトリック コ−ポレ−ション Modelator rod functioning as fuel in combination and modelating method using said rod
DE3824082A1 (en) * 1987-07-18 1989-01-26 Toshiba Kawasaki Kk FUEL ARRANGEMENT FOR CORE REACTORS
US5345485A (en) * 1992-03-13 1994-09-06 Siemens Power Corporation Coolant vent fuel rod for a light water reactor
US5375153A (en) * 1992-03-13 1994-12-20 Siemens Power Corporation Coolant vent fuel rod and part length fuel rod having a reflex upper end fitting for a light water reactor
US5384815A (en) * 1992-03-13 1995-01-24 Siemens Power Corporation Hydraulic resistance strip for a light water reactor
JP2009250980A (en) * 2008-04-08 2009-10-29 Global Nuclear Fuel Americas Llc Detachable reactor fuel assembly component

Similar Documents

Publication Publication Date Title
US6035011A (en) Reactor core
JPS59203986A (en) Fuel assembly of bwr type reactor
JPH04143694A (en) Fuel assembly
JPH0452911B2 (en)
JP6345481B2 (en) Fuel assembly, core, and method for producing fuel assembly
JPH0437391B2 (en)
JP2021113769A (en) Fuel aggregate
JP3079609B2 (en) Fuel assembly
US4826654A (en) Fuel assembly
JPS58103687A (en) Fuel configuration structure of low-speed reactor
JP7365297B2 (en) Fuel assemblies and boiling water reactors
JPH0519671B2 (en)
JP7437258B2 (en) fuel assembly
JPH0376435B2 (en)
JPS62177486A (en) Fuel aggregate
JPS58129385A (en) Fuel assembly for bwr type reactor
JPH0618689A (en) Fuel aggregate for boiling water type reactor
JP2507408B2 (en) Fuel assembly
JPH05150064A (en) Fuel assembly
JPH0833465B2 (en) Boiling water reactor and its operating method
JP2522501B2 (en) Fuel assembly
JPH0452913B2 (en)
JPH08292280A (en) Fuel assembly and reactor core and operation method
JPS6325593A (en) Boiling water type reactor
JPH0349399B2 (en)