JPS59203931A - Correcting method of fluid thermometer - Google Patents

Correcting method of fluid thermometer

Info

Publication number
JPS59203931A
JPS59203931A JP58078671A JP7867183A JPS59203931A JP S59203931 A JPS59203931 A JP S59203931A JP 58078671 A JP58078671 A JP 58078671A JP 7867183 A JP7867183 A JP 7867183A JP S59203931 A JPS59203931 A JP S59203931A
Authority
JP
Japan
Prior art keywords
fluid
thermometer
value
time constant
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58078671A
Other languages
Japanese (ja)
Inventor
Keiichi Akimoto
秋本 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58078671A priority Critical patent/JPS59203931A/en
Publication of JPS59203931A publication Critical patent/JPS59203931A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To correct exactly the responding delay of an indicating value to presume accurately a fluid temp. by varying a time constant of a fluid thermometer basing on the fluid flow velocity. CONSTITUTION:In correcting the responding delay by using Tf=Tc+taud/dt.Tc with respect to the indicating value Tc of the fluid thermometer 1, the correlation tau=f(Vf) between the time constant tau of the thermometer 1 and a flowing velocity Vf of the fluid 3 is obtained previously. The flow velocity Vf at the time of temp. measurement is measured to obtain the corresponding time constant tau' and the corrected value Tf=Tc+tau'd/dt.Tc is calculated. As the result, the responding delay at the indicating value Tc is corrected exactly, thus the fluid temp. can be presumed accurately.

Description

【発明の詳細な説明】 本発明は、例えば高炉の炉頂ガス等の流体温度を測定す
る際における、 熱電温度計等の流体温度計の補正力法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a correction force method for a fluid thermometer such as a thermocouple thermometer when measuring the temperature of a fluid such as top gas of a blast furnace.

例えば熱電温度計でガス、液体等を測定し、もってその
真の流体温度を推定しようとする際、最も問題になるの
は温度の応答遅れの点である。すなわち、流体温度が急
激に一定量変化した場合、熱電温度計はすぐにこの温度
変化に対応できず、常に固有の応答遅れをもって追従す
るのである。
For example, when measuring a gas, liquid, etc. with a thermocouple thermometer and trying to estimate the true fluid temperature, the biggest problem is the delay in temperature response. That is, when the fluid temperature suddenly changes by a certain amount, the thermocouple cannot immediately respond to this temperature change, and always follows with an inherent response delay.

そしてとの応答遅れは、通常時定数として表現されてい
る。時定数とは、流体温度が急激に一定量だけ変化した
とき(第り図a参照)、熱電温度計の実測した指示値が
、その温度変化の63.2%rc達するまでの時間τ(
第1図す参照)のことである。
The response delay between and is usually expressed as a time constant. The time constant is the time τ(
(See Figure 1).

従って、熱電温度別で実測した指示値の変化が、常に真
の流体温度の変化を示している訳ではなく、上記時定数
を前照してこの指示値t−補正しなければ、真の流体温
度を推定することはできない。
Therefore, changes in the indicated value actually measured for each thermoelectric temperature do not always indicate a change in the true fluid temperature. Temperature cannot be estimated.

この補正のため、通常1次遅れモデルが用いられている
。すなわち、真の流体温度を推定するだめの補正値を’
rf、 m電温度計で実測した指示値をTo% との熱
電温度計の時定数なτとすると、分をあられすラプラス
の演算子である。これよシTf = ’rc (1+τ
B)とカシ、時間領域では’rf= To+τ□Toと
して求められる。
For this correction, a first-order lag model is usually used. In other words, the correction value for estimating the true fluid temperature is '
rf, m If the indicated value actually measured with the thermocouple thermometer is To% and the time constant of the thermocouple thermometer τ, then the minute is the Laplace operator. This is Tf = 'rc (1+τ
B) In the time domain, it is determined as 'rf=To+τ□To.

t さてことにおいて、従来、上記式におけるτは予め選ば
れた一定値として扱われ、これによシ補正値Tf’e計
算し、もって真の流体温度を推定していた。
t In the past, τ in the above equation was treated as a preselected constant value, and the correction value Tf'e was calculated based on this value, thereby estimating the true fluid temperature.

しかしながら、実はこのでは一定値ではなく、流体の流
速に関係して変化する量なのである。そとで、上述の従
来例によって求められた補正値Tfと、真の流体温度と
の間には必然的に大きな誤差が生じることが多々あシ、
問題と力っていた、本発明は、このような実情に鑑み、
上記従来例の問題点を解決すべくなされたものであって
、熱電温度計等の流体温度計の時定数を、一定値とせず
流体の流速によって変化させて扱うことによシ、実測し
た指示値の補正値を求め、もって真の流体温度をよシ一
層正確に推定できるようにした、流体温度計の補正力法
を提案することを目的とする〇以下本発明を、図面に示
すその実施例に基づいて説明する。
However, in reality, this is not a constant value, but an amount that changes in relation to the flow velocity of the fluid. Therefore, a large error often inevitably occurs between the correction value Tf determined by the conventional example described above and the true fluid temperature.
In view of these actual circumstances, the present invention was developed with the aim of solving problems.
This was made to solve the problems of the conventional example described above, and the time constant of a fluid thermometer such as a thermocouple thermometer is not set to a constant value, but is changed depending on the flow velocity of the fluid. It is an object of the present invention to propose a correction force method for a fluid thermometer, which makes it possible to estimate the true fluid temperature more accurately by obtaining a correction value of the value. Let's explain based on an example.

まずその基本構成について説明する。First, its basic configuration will be explained.

この流体温度計の補正方法は、流体温度計によって実測
した指示値T。に対し、Tf=To十τ−T。
The correction method for this fluid thermometer is based on the indicated value T actually measured by the fluid thermometer. For, Tf=To+τ−T.

t であられされる式を用いてその応答遅れを補正し、もっ
て真の流体温度を推定する場合に関する。すなわち、ま
ず予め前記流体温度計の流体流速vfと時定数τとの相
関関係τ=r(Vf)を求めておき、次に温度測定時の
流体温度計の感温部における流体流速vfを流速計2に
よシ測定することによって、その流体流速■fVc対応
する時定数τ′を求め、この時定数τ′を上記式中のτ
に代入して演算することによシ、補正するものである、 次に、この流体温度計例えば熱電温度計の補正方法の詳
細を、第2図を中心に説明する。
This relates to the case where the true fluid temperature is estimated by correcting the response delay using the equation given by t. That is, first, the correlation τ=r(Vf) between the fluid flow velocity vf of the fluid thermometer and the time constant τ is determined in advance, and then the fluid flow velocity vf at the temperature sensing part of the fluid thermometer at the time of temperature measurement is calculated as the flow velocity. By measuring the total 2, the time constant τ' corresponding to the fluid flow velocity fVc is determined, and this time constant τ' is expressed as τ in the above formula.
Next, the details of the correction method for this fluid thermometer, such as a thermocouple thermometer, will be explained with reference to FIG. 2.

lは熱電温度計であシ、その感温部は流体の流れ3中に
位置して配設されている。そして熱電温度計lよ)温度
変換器4を介して指示値Tcが出力され、との指示値T
。VC対し、前記式の演算を実行するため、以下の処理
がなされる。
1 is a thermocouple thermometer, the temperature sensitive part of which is disposed in the fluid flow 3. Then, the thermocouple thermometer 1) outputs the indicated value Tc via the temperature converter 4.
. In order to perform the calculation of the above formula on the VC, the following processing is performed.

すなわち、指示値T0は微分器5および加算器7にそれ
ぞれ入力される。そして微分器よシの出力ことにおいて
指示値T0が加算されることによって、補正値Tfが求
められるに至るのである。
That is, the instruction value T0 is input to the differentiator 5 and the adder 7, respectively. By adding the instruction value T0 to the output of the differentiator, the correction value Tf is determined.

さて本発明にあっては、関数発弦器8に予め熱電温度計
1の流体流速vfと時定数でとの相関関係τ=f(Vf
)を設定しておき(相関関係としては例えば第3図に示
したもの等がある)、次に熱電温度計1の感温部近くに
位置して流体の流れ3中に配設された流速計2によって
、流体流速vfを測定し、仁の流体流速vfが関数発生
器8に入力されて時定数τが算出され、この時定数τが
、前述によシ乗算器6に入力されるのである、従ってと
のようにして得られた補正値Tfは、真の流体温度を推
定するのに最適な値となっているのである。
Now, in the present invention, the function generator 8 is provided with a correlation between the fluid flow velocity vf of the thermocouple thermometer 1 and the time constant τ=f(Vf
) (for example, there is a correlation as shown in Figure 3), and then the flow velocity is 2, the fluid flow velocity vf is measured, and the actual fluid flow velocity vf is input to the function generator 8 to calculate the time constant τ, and this time constant τ is input to the multiplier 6 as described above. Therefore, the correction value Tf obtained in the above manner is the optimum value for estimating the true fluid temperature.

次に本発明の実施例によって得られた結果を、第4図に
よって説明する。
Next, the results obtained by the example of the present invention will be explained with reference to FIG.

すなわち、第4図(a1図は熱電温度計lによって実測
した指示値T。を示し、第4図(b1図は流速計2によ
って測定された流体流速vfを示し、第4図(c1図は
補正後の補正値Tfを示している、これらの図からも、
指示値T0の応答遅れが、この補正値vfにあっては的
確に是正されていることが示されている。
That is, Figure 4 (Figure a1 shows the indicated value T actually measured by the thermocouple thermometer l, Figure 4 (Figure b1 shows the fluid flow velocity vf measured by the current meter 2, Figure 4 (Figure c1) shows the indicated value T. From these figures showing the correction value Tf after correction,
It is shown that the response delay of the instruction value T0 is accurately corrected with this correction value vf.

なお、この第4図の場合、流体2は高炉の炉頂のガス流
とし、流体温度計としてはCAシース熱電対6.4φの
熱電温度計1を用い、流速計2としてはタービン式のも
のを用い、信号の演算は全てデジタル計算機を用いて前
記した式の計算を実行した。
In the case of Fig. 4, the fluid 2 is the gas flow at the top of the blast furnace, the fluid thermometer is a CA sheath thermocouple 6.4φ thermocouple thermometer 1, and the flow meter 2 is a turbine type one. All signal calculations were performed using a digital computer using the equations described above.

なお、流速計2としては、流体が液体であれば超音波流
速計、ボッターメーター等が考えられ、流体が気体であ
ればタービン流速計や熱線式流速計等が考えられる。
The current meter 2 may be an ultrasonic current meter, a Botter meter, etc. if the fluid is a liquid, or a turbine current meter, a hot wire current meter, etc. if the fluid is a gas.

又流体温度計としては、以上説明した実施例にあっては
熱電温度計lを用いたものについて説明したが、これに
限定されるものではなく適宜抵抗温度計、サーミスタ、
その他の温度計を用いてよい。
In addition, as the fluid thermometer, in the above-described embodiments, a thermocouple thermometer is used, but the present invention is not limited to this, and suitable resistance thermometers, thermistors, etc.
Other thermometers may be used.

以上説明したごとく、本発明に係る流体温度計の補正方
法にあっては、熱電温度計等の流体温度計の時定数を、
一定値とせず流体の流速に基づいて変化させて扱うこと
によって、実測した指示値の補正値を求めるので、指示
値における応答遅れが的確に是正され、もって真の流体
温度をより 一層正確に推定出来、従来例に存した問題
点が一掃される等、その有してなる効果は顕著にして大
なるものがある。
As explained above, in the fluid thermometer correction method according to the present invention, the time constant of a fluid thermometer such as a thermocouple thermometer is
By changing the value based on the fluid flow velocity instead of keeping it as a constant value, a correction value is obtained for the actually measured indicated value, so the response delay in the indicated value is accurately corrected, and the true fluid temperature can be estimated more accurately. The effects of this technology are remarkable, such as eliminating the problems that existed in the conventional example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、時定数を説明するためのグラフで、(a1図
は真の流体温度を、(b)図は実測した指示値をそれぞ
れ示す、第2図は、本発明方法の実施に用いられる電気
的なブロック図である。第3図は、時定数と流体流速と
の関係の1例を示すグラフである。第4図は本発明の実
施例の結果を示すグラフであシ、(a)図は実測した指
定値を、(b)図は流体流速を、(C)図は補正値をそ
れぞれ示す。 l・・・・・・・・・・・・熱電温度計2・・・・・・
・・・・・・流速計 3・・・・・・・・・・・・流体の流れ4・・・・・・
・・・・・・温度変換器5・・・・・・・・・・・・微
分器 6・・・・・・・・・・・・乗算器 7・・・・・・・・・・・・加算器
Figure 1 is a graph for explaining the time constant (Figure a1 shows the true fluid temperature, Figure (b) shows the actually measured indicated value, and Figure 2 shows the graph used to implement the method of the present invention. FIG. 3 is a graph showing an example of the relationship between the time constant and the fluid flow rate. FIG. 4 is a graph showing the results of the embodiment of the present invention. Figure a) shows the actually measured specified value, figure B shows the fluid flow velocity, and figure C shows the corrected value. l... Thermocouple thermometer 2... ...
・・・・・・Velocity meter 3・・・・・・・・・Fluid flow 4・・・・・・
...... Temperature converter 5 ...... Differentiator 6 ...... Multiplier 7 ......・Adder

Claims (1)

【特許請求の範囲】 流体温度計の指示値Tc1Il′一対し、下記式を用い
て応答遅れを補正して得られたその補正値’I’fKよ
シ、真の流体温度を推定する場合において、まず予め前
記流体温度計の時定数τと流体流速との相関関係を求め
ておき、 もって温度測定時の流体流速を測定することによって対
応する時定数τlを求め、この時定数τ′を該式中のτ
に代入して演算することによって補正すること、 を特徴とする流体温反計の補正力法、 Tf= To+τ−Tc t
[Claims] When estimating the true fluid temperature based on the corrected value 'I'fK obtained by correcting the response delay using the following formula for the indicated value Tc1Il' of the fluid thermometer, , First, determine the correlation between the time constant τ of the fluid thermometer and the fluid flow velocity, and then determine the corresponding time constant τl by measuring the fluid flow velocity at the time of temperature measurement. τ in the formula
A correction force method for a fluid thermometer, characterized by: correcting by substituting and calculating Tf=To+τ−Tc t
JP58078671A 1983-05-04 1983-05-04 Correcting method of fluid thermometer Pending JPS59203931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078671A JPS59203931A (en) 1983-05-04 1983-05-04 Correcting method of fluid thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078671A JPS59203931A (en) 1983-05-04 1983-05-04 Correcting method of fluid thermometer

Publications (1)

Publication Number Publication Date
JPS59203931A true JPS59203931A (en) 1984-11-19

Family

ID=13668327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078671A Pending JPS59203931A (en) 1983-05-04 1983-05-04 Correcting method of fluid thermometer

Country Status (1)

Country Link
JP (1) JPS59203931A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646873A (en) * 1987-06-30 1989-01-11 Nittan Co Ltd Temperature detecting device
JPH02259528A (en) * 1989-03-31 1990-10-22 Nippon Steel Corp Method for detecting molten metal level in casting mold
WO1996018090A1 (en) * 1994-12-09 1996-06-13 Robert Bosch Gmbh Process for forming a signal for the suction air temperature of an internal combustion engine
US5544639A (en) * 1993-08-31 1996-08-13 Nippondenso Co., Ltd. Temperature predicting system for internal combustion engine and temperature control system including same
EP0826951A1 (en) * 1996-08-26 1998-03-04 Daimler-Benz Aktiengesellschaft Sensor system with first-order-time-constant measuring element
WO1998059226A1 (en) * 1997-06-22 1998-12-30 Rupprecht Gabriel Signaling the cooking state of food cooked in pieces
EP1069416A1 (en) * 1999-07-12 2001-01-17 Heraeus Electro-Nite International N.V. Method for decreasing the response time of a temperature sensor
JP2001091370A (en) * 1999-09-27 2001-04-06 Mitsubishi Motors Corp Fluid temperature estimating device
EP1301014A1 (en) * 2001-10-02 2003-04-09 Nokia Corporation Mobile telephone featuring accelerated ambient temperature measurement module
JP2010216806A (en) * 2009-03-12 2010-09-30 Nikon Corp Temperature measuring method and device, and exposing method and device
DE102010019113A1 (en) * 2010-04-30 2011-11-03 Wilo Se Method for the approximate calculation of the operative temperature of a room
WO2019021762A1 (en) * 2017-07-24 2019-01-31 株式会社デンソー Physical quantity measurement device and measurement control device
JP2019023610A (en) * 2017-07-24 2019-02-14 株式会社デンソー Physical quantity measurement device and measurement control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646873A (en) * 1987-06-30 1989-01-11 Nittan Co Ltd Temperature detecting device
JPH02259528A (en) * 1989-03-31 1990-10-22 Nippon Steel Corp Method for detecting molten metal level in casting mold
US5544639A (en) * 1993-08-31 1996-08-13 Nippondenso Co., Ltd. Temperature predicting system for internal combustion engine and temperature control system including same
DE4430979B4 (en) * 1993-08-31 2006-10-05 Denso Corp., Kariya Motor control for controlling the fuel injection of an internal combustion engine
WO1996018090A1 (en) * 1994-12-09 1996-06-13 Robert Bosch Gmbh Process for forming a signal for the suction air temperature of an internal combustion engine
EP0826951A1 (en) * 1996-08-26 1998-03-04 Daimler-Benz Aktiengesellschaft Sensor system with first-order-time-constant measuring element
US5920617A (en) * 1996-08-26 1999-07-06 Daimler Benz Ag Sensor system with PT1 measuring device
DE19634368C2 (en) * 1996-08-26 2000-11-23 Daimler Chrysler Ag Sensor system with PT1 measuring element
US6591738B2 (en) 1997-06-22 2003-07-15 Rupprecht Gabriel Signaling the cooking state of food cooked in pieces
US6293188B1 (en) 1997-06-22 2001-09-25 Rupprecht Gabriel Signaling the cooking state of food cooked in pieces
WO1998059226A1 (en) * 1997-06-22 1998-12-30 Rupprecht Gabriel Signaling the cooking state of food cooked in pieces
EP1069416A1 (en) * 1999-07-12 2001-01-17 Heraeus Electro-Nite International N.V. Method for decreasing the response time of a temperature sensor
JP2001091370A (en) * 1999-09-27 2001-04-06 Mitsubishi Motors Corp Fluid temperature estimating device
EP1301014A1 (en) * 2001-10-02 2003-04-09 Nokia Corporation Mobile telephone featuring accelerated ambient temperature measurement module
US7027834B2 (en) 2001-10-02 2006-04-11 Nokia Corporation Mobile telephone featuring accelerated ambient temperature measurement module
JP2010216806A (en) * 2009-03-12 2010-09-30 Nikon Corp Temperature measuring method and device, and exposing method and device
DE102010019113A1 (en) * 2010-04-30 2011-11-03 Wilo Se Method for the approximate calculation of the operative temperature of a room
WO2019021762A1 (en) * 2017-07-24 2019-01-31 株式会社デンソー Physical quantity measurement device and measurement control device
JP2019023610A (en) * 2017-07-24 2019-02-14 株式会社デンソー Physical quantity measurement device and measurement control device

Similar Documents

Publication Publication Date Title
JPS59203931A (en) Correcting method of fluid thermometer
US4096575A (en) Delay time compensation incorporating two sensing devices
Al-Khalidy On the solution of parabolic and hyperbolic inverse heat conduction problems
JPS60169729A (en) Calibrating method of temperature sensitive element and temperature measuring method using temperature sensitive element
CN1308225A (en) Fast prediction thermometer based on new temperature measuring principle
JPWO2011040634A1 (en) Heat flux measuring device and heat flux measuring method
Liburdy et al. Structure of a turbulent thermal plume rising along an isothermal wall
Wei et al. Signal processing method with cold junction compensation for thermocouple
US20090132196A1 (en) Virtual Temperature Measuring Point
JPH05107093A (en) Thermal flowmeter
JPS5847229A (en) Temperature measurement by thermocouple and thermometer thereof
JP3139651B2 (en) Measurement value correction mechanism in calorimeter for city gas using density-calorie correlation
SE449035B (en) SET AND DEVICE FOR DETERMINING A METAL BODY ABSOLUTE TEMPERATURE
JPS6129447B2 (en)
WO2020261492A1 (en) Temperature estimation device and temperature estimation method
JPH08132506A (en) Heat transfer coefficient calculating method for injection molding mold
SU1093914A1 (en) Heat flow pickup
JPS6247528A (en) Correcting method for detected temperature of temperature sensor
JP2750720B2 (en) Temperature detector deterioration correction device
Patrascoiu Virtual Tool Used for Testing Temperature Sensors
Boris et al. Optimal approximation parameters of temperature sensor transfer characteristic for implementation in low cost microcontroller systems
SU928041A1 (en) Device for monitoring turbine rotor
JPH085431A (en) Flow meter
JPH05107094A (en) Flow detection method of thermal flowmeter
JPH02123944A (en) Estimation of winding temperature