JPH02123944A - Estimation of winding temperature - Google Patents

Estimation of winding temperature

Info

Publication number
JPH02123944A
JPH02123944A JP63274405A JP27440588A JPH02123944A JP H02123944 A JPH02123944 A JP H02123944A JP 63274405 A JP63274405 A JP 63274405A JP 27440588 A JP27440588 A JP 27440588A JP H02123944 A JPH02123944 A JP H02123944A
Authority
JP
Japan
Prior art keywords
temperature
current
characteristic
motor
order lag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274405A
Other languages
Japanese (ja)
Inventor
Masayoshi Tamura
田村 公良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63274405A priority Critical patent/JPH02123944A/en
Publication of JPH02123944A publication Critical patent/JPH02123944A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the estimation of temperature by obtaining a first order lag temperature characteristic by a winding current value and then by further obtaining the first order lag characteristic by the variations of the winding current value in addition to the said temperature characteristic. CONSTITUTION:Thermal input and temperature output response will be in the first order lag system. Firstly, in the range of time O<=t<a if the motor current I1 is caused to flow, the temperature rise characteristic of a motor winding temperature thetau1 will be obtained. If the motor current is changed to I2 in the range of time a<t<=b, the motor winding temperature thetaD1 will show the falling characteristic of the first order lag in the current difference (I1-I2). Furthermore, when the rising characteristic by the current I2 after the current change is added and overlapped, the temperature falling characteristic is obtained. Moreover, if the motor current I3 is caused to flow in the range of time b<t, the motor winding temperature thetau2 will show the rising characteristic of the first order lag in the current difference I2-I3, which is added and overlapped by the rising characteristic by the current I2 and becomes the temperature rising characteristic.

Description

【発明の詳細な説明】 ^ 産業上の利用分野 本発明はモータ等の機器を熱的に最大限使用するための
巻線温度予測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION ^ Industrial Application Field The present invention relates to a winding temperature prediction method for maximizing the thermal use of equipment such as motors.

B、 発明の概要 ゛本発明は、モータ等巻線電流を加減する機器について
定格以上の過酷な使用状態にも故障なく運転させるべく
、熱エネルギのバランス式すなわち発生熱量から放熱熱
量を引いたものがその機器の温度変化に係り、この式に
おける温度変化は1次遅れ応答を持つことを見出しこれ
を利用することにより、過熱寸前までの使用があっても
焼損や故障とならないようにしたものである。
B. Summary of the Invention ゛The present invention uses a thermal energy balance formula, that is, the amount of heat released minus the amount of heat released, in order to allow equipment that adjusts the winding current, such as motors, to operate without failure even under severe usage conditions exceeding the rating. relates to the temperature change of the device, and by discovering that the temperature change in this equation has a first-order delayed response, we have made use of this to prevent burnout or failure even if the device is used to the point of overheating. be.

C1従来の技術とその課題 従来@線を有する機器、例えばモータにあっては、巻線
温度による巻線保護があり、最も簡単な方策としては最
上上限温度を超えたとき電源をしゃ断するケースがある
。ところが、実際の運転にあってはモータの停止を是非
とも避けなければならばい場合が生じ、例えばマニピュ
レータ運転時モータ負荷を軽減し停止しないで連続運転
したい場合がある。
C1 Conventional technology and its problems Conventionally, for devices with @ wires, such as motors, there is winding protection based on the winding temperature, and the simplest measure is to cut off the power when the upper limit temperature is exceeded. be. However, in actual operation, there may be cases where it is necessary to avoid stopping the motor at all costs; for example, when operating the manipulator, there may be cases where it is desired to reduce the load on the motor and continue the operation without stopping.

このためには、巻線温度の検出ならびに温度変化の予測
が必要であるが、電流値による温度検出は可能であると
しても温度予測は時間〈遅れがあるために困難である。
For this purpose, it is necessary to detect the winding temperature and predict temperature changes, but even if temperature detection based on current values is possible, temperature prediction is difficult due to a time delay.

殊に、モータを定格思上の条件にて用いろ場合、通常使
用とならないのでその温度の予測は極めて困難であった
In particular, when the motor is used under conditions beyond its rated rating, it is extremely difficult to predict the temperature since it is not used normally.

そこで、本発明は上述の課題に鑑み、モータ等の機器の
連続運転時なと又定格以上の使用であってt2Hr度の
予測を行なうようにした巻線温度予測方法を提供する。
In view of the above-mentioned problems, the present invention provides a winding temperature prediction method that predicts t2Hr degree during continuous operation of a device such as a motor, or when the device is used at or above the rated value.

課題を餌遺するための手段 上述の目的を達成する本発明は、1品度変化は一次遅れ
応答になることを見出すことにより、更にこの遅れ応答
は重ねの理に基づき考んられることを応用する乙を基本
とする。
Means for Achieving the Problem The present invention achieves the above-mentioned object by discovering that a one-grade change results in a first-order delayed response, and by applying the fact that this delayed response can be considered based on the principle of superposition. Based on Party B.

作     用 巻線電流値により一次遅れの温度特性が得られ、次に巻
線電流値の変化により前記の温度特性に加えて更に一次
遅れの温度特性が得られ、更に巻線電流値の変化により
前の温度特性が加えられるという手段を採ることにより
、負荷電流の履歴より正確な温度予測が可能となった。
A first-order lag temperature characteristic is obtained by the action winding current value, and then a first-order lag temperature characteristic is obtained by changing the winding current value in addition to the above-mentioned temperature characteristics, and further by a change in the winding current value. By adding the previous temperature characteristics, it became possible to predict the temperature more accurately than the load current history.

実施例 ここで、本発明の実施例を図を参照して説明する。例え
ばモータの熱のバランス式の基本的なものをまず考えろ
。今Qを発生熱量(電機子電流の2乗に比例)、Hを放
熱係数(面積等に比例)、Mを熱容量(形状に関係)、
θを温度とすると、次式が得られる。
Embodiments Here, embodiments of the present invention will be described with reference to the drawings. For example, first consider the basic heat balance equation for a motor. Now Q is the amount of heat generated (proportional to the square of the armature current), H is the heat radiation coefficient (proportional to area, etc.), M is heat capacity (related to shape),
If θ is the temperature, the following equation is obtained.

この式は端的に換言すれば、発生熱1がら放熱熱量を差
引いたものが熱容量Mを持つ機器の温度上昇であること
を現わしている。
In other words, this equation shows that the temperature rise of a device having a heat capacity M is obtained by subtracting the amount of heat released from the heat generated (1).

上式を前提として温度θを得たいのであろが、熱入力(
電流の2乗に比例のジュール損)と温度出力応答を1次
遅れ系になると仮定すると、例えば第1図(al fb
lに示すようにあるモデルにつき計算ができる。すなわ
ち、まず、時間O≦b≦aの範囲にてモータ電流11を
流した場合、モータ巻線温度θulはに、r’、(1−
e−〒)・(1)式で表わされる温度上昇特性を碍る。
Although we would like to obtain the temperature θ based on the above equation, the heat input (
Assuming that the Joule loss proportional to the square of the current and the temperature output response are a first-order lag system, for example, Fig. 1 (al fb
Calculations can be made for a certain model as shown in Figure 1. That is, first, when the motor current 11 is passed in the range of time O≦b≦a, the motor winding temperature θul becomes r', (1-
e-〒)・Improves the temperature rise characteristic expressed by equation (1).

なお、ここでy、、 r”、、はI。が無限時間流れた
ときの温度上昇抵、T1は温度上昇時の特定数である。
Note that here, y,, r'', , is the temperature rise resistance when I flows for an infinite time, and T1 is the specific number at which the temperature rises.

また、時間a (t≦bの範囲にてモータ電流を−に変
化させた場合、モータ巻線温度θ。1(2式 この式では点θ。31.、がら電流差(1,−12)で
の1次遅れの下降特性を示し更に電流変化後の電流I2
による上昇特性を加味して重ね合わせたもので、湿度下
降特性を得る。なおここでに2弓はI、がI。から0に
なったときの温度下降呈、T2は扁度下降時の時定数で
ある。
In addition, when the motor current is changed to - within the range of time a (t≦b), the motor winding temperature θ.1 (2 equations In this equation, the point θ. The current I2 after the current change shows the falling characteristic of the first-order lag at
By adding and superimposing the rising property due to humidity, the humidity falling property is obtained. Note that here the two bows are I and ga I. T2 is the time constant when the temperature decreases from 0 to 0.

更に、時間batの範囲にてモータ電流Iを流した場合
、モータ巻線温度0.2は次式と・・(3式 ここでは、点θulfblから電流差■−■での1次遅
れの上昇特性を示し、しかも電流Iによる上昇特性を加
味して重ね合せたもので、温度上昇特性となっている。
Furthermore, when the motor current I flows in the range of time bat, the motor winding temperature 0.2 is calculated by the following formula... This is a temperature increase characteristic that is superimposed by taking into account the increase characteristic due to the current I.

このようにして、電流変化時の温度と、変化前の電流と
変化後の電流による上昇特性と、変化前後の電流の差分
の上昇又は下降特性とによって、これらを重ね合せ、1
次遅れ特性を組合せて温度を予測できろこととなる。
In this way, the temperature at the time of the current change, the rising characteristics due to the current before and after the change, and the rising or falling characteristics of the difference in the current before and after the change, are superimposed, and 1
This means that the temperature can be predicted by combining the second-order lag characteristics.

次に、上述の(1] (2) (3)式の演算を行なう
に当りその周期を考える。すなわち、温度特性である一
次遅れ系にてそのゲインを考えるにゲインが小さくなる
ことは周波数が大きくなることなので、これは充分減衰
することになる。
Next, consider the period when calculating equations (1), (2), and (3) above.In other words, when considering the gain in a first-order lag system with temperature characteristics, a decrease in gain means that the frequency increases. Since it becomes large, this means that it is sufficiently attenuated.

ここで、 温度特性は1次遅れで次式となる。here, The temperature characteristics are expressed by the following equation with a first-order lag.

すなわち、第2図にて入力熱流と出力温度とは1次遅れ
で、この場合Tばモータにより異なるが、T=10分の
例をとると lGθ。。
That is, in Fig. 2, the input heat flow and the output temperature are first-order lags, and in this case T differs depending on the motor, but in the example where T = 10 minutes, lGθ. .

はそれが□のωとなることを仮に考える。Let's assume that it is ω of □.

この式は10000舛ω俸(2π干10・60)2すな
わち、演算周期は30秒位で良く特性は充分反映される
ことになる。
This formula has 10,000 degrees ω (2π times 10·60) 2, that is, the calculation cycle is only about 30 seconds and the characteristics are sufficiently reflected.

そして、この演算周期内の平均温度は例えば1秒間で全
速となることを考丸れば、第3図(a)の如(500m
sごとに電流を計測して、30秒間の平均にて求める。
Considering that the average temperature within this calculation cycle is, for example, full speed in 1 second, it is as shown in Figure 3 (a) (500 m
The current is measured every s, and the average value is calculated for 30 seconds.

すなわち、瞬時電流10・  でなくこれらの値を次式
の如く演算周期内にて平均化した値■。ie求める。
That is, instead of the instantaneous current 10., the value ■ is obtained by averaging these values within the calculation period as shown in the following equation. ie seek.

■==−巳ユ迭」」4二Lビー二゛侃6)式ここで1は
サンプリング時の電流、Iは平均電流、nはサンプル回
敬である。
■==-Miyu 迭'' 42L B2 供侃6) Equation Here, 1 is the current at the time of sampling, I is the average current, and n is the sample cycle.

第3図(blは第3図(alに示す電流に基づくモータ
巻線温度である。
FIG. 3 (bl is the motor winding temperature based on the current shown in FIG. 3 (al).

以上の如き演算周期により温度上昇又は1度下降の各特
性を得ろことで温度θ。を求めることができる。第4図
は処理フローを示すものである。すなわち、まず上記(
6)式にて■、を求めろ。そして、前回の演算周期の!
。−1と■とを比較する。
The temperature θ can be obtained by obtaining each characteristic of temperature rise or 1 degree fall using the calculation cycle as described above. can be found. FIG. 4 shows the processing flow. That is, first of all, the above (
6) Find ■ using the formula. And of the previous calculation cycle!
. Compare -1 and ■.

T、≧Il’l−1の場合、上昇特性のステップに移り
、また■。<■、、−□の場合、下降特性ステップに移
り、いずれかにてθ。を求めろ。つまり、1、≧1..
−.ではtn−1にて温度θ。−1の条件でに、I’、
−。
If T, ≧Il'l-1, move to the rising characteristic step, and again ■. If <■,, -□, move to the descending characteristic step and θ at any point. Find out. That is, 1, ≧1. ..
−. Then, the temperature θ is at tn-1. -1 condition, I',
−.

のエネルギとに、 (r、、−1,)2エネルギがステ
ップ状に入力され重ね合わされ、I、、<1.、ではに
1■ニー1のエネルギーと−に1(1,、−、−[、)
2のエネルギがステップ状に入力され重ね合わされろ。
(r,,-1,)2 energy is input in a step manner and superimposed on the energy of I,,<1. , then the energy of 1■ knee 1 and -1 (1,, -, -[,)
The energies of 2 are input in steps and superimposed.

次に、得られたθに外部温度T。を加えて温度θ′を求
めろものである。
Next, the external temperature T is added to the obtained θ. Find the temperature θ' by adding .

くシミュレーシヨン〉 ここで、モデルのモータを用い温度上昇実験データをも
とにシミュレーシヨンを行って実測値と比較した。
Simulation> Here, a simulation was performed using a model motor based on temperature rise experimental data and compared with actual measured values.

第5図に示すモデルは拘束状態で定格電流を流したとき
の巻i部の温度上昇を示している。ここでは、2.25
Aにて連続運転を行い168 degになるまで上昇し
く定格電流に対する温度上昇分は148deg)、63
%まで上昇した場合の熱時定数は25.2分であった。
The model shown in FIG. 5 shows the temperature rise in the part of winding i when the rated current is passed in a restrained state. Here, 2.25
During continuous operation at A, the temperature rose until it reached 168 degrees (the temperature increase relative to the rated current was 148 degrees), 63
%, the thermal time constant was 25.2 minutes.

これらの値にて示される1次遅れ系としてモデルを近似
した。
The model was approximated as a first-order lag system represented by these values.

第6図は連続して流すと148 deg相当になる電流
を10分毎に間欠入力した場合で、モータ定格電流2.
25Aに相当する温度上昇実験値とシξユレーシ日ンと
の比較であり、略一定の間隔をおいて動きが非常に近似
する。
Figure 6 shows the case where a current equivalent to 148 deg when applied continuously is intermittently input every 10 minutes, and the motor rated current is 2.
This is a comparison between the experimental temperature rise value corresponding to 25A and the ξ shiureshi date, and the movements are very similar at approximately constant intervals.

第7図は定格電流2.25Aの1.5@の電流3.37
5Aを流して同様な実験を行なったときの実測値とシミ
ュレーション結果との比較であり、333deg相当に
なる電流を10分毎に間欠入力した場合である。ここで
、333 deg= 148 X (1゜5)2から得
られる。この第7図の場合も上下に略一定間隔をおいて
動きが近似する。
Figure 7 shows the current of 1.5 @ 3.37 with a rated current of 2.25 A.
This is a comparison between actual measurements and simulation results obtained when a similar experiment was conducted with 5 A flowing, and where a current equivalent to 333 degrees was intermittently input every 10 minutes. Here, it is obtained from 333 deg=148 x (1°5)2. In the case of FIG. 7 as well, the movements are similar at approximately constant intervals vertically.

第8図、第9図は第6図、第7図のピーク値がシミュレ
ーシ市ンと実測値とで一致するように補正係数を考慮し
て同一のシミコレ−シーンを行ったものである。この結
果、定格及び定格の1.5倍負荷でも同一補正係数を用
い、かなり一致していることがわかる。また第8図、第
9図ともに立ち上り部分に誤差があるのは、実測値の立
ち上り部がシミュレーション条件と多少ちがうことによ
るものと考えられ、同一実験を行えば精度は向上すると
思われる。なお、補正係数はKX (2,2,5)2=
148de(とするとに=29.23となり、このKを
24.0とした。すなわち、24X (2,25)” 
=121.5deg相当の電流に修正しな。
8 and 9 are obtained by performing the same stain correction scenes in consideration of correction coefficients so that the peak values in FIGS. 6 and 7 match the simulated values and the actual values. As a result, it can be seen that even the rated and 1.5 times the rated loads use the same correction coefficient and are in good agreement. Furthermore, the reason that there is an error in the rising portion in both FIGS. 8 and 9 is thought to be due to the rising portion of the actual measured values being somewhat different from the simulation conditions, and it is thought that the accuracy will improve if the same experiment is performed. In addition, the correction coefficient is KX (2, 2, 5) 2=
148de (then = 29.23, and this K was set as 24.0. In other words, 24X (2, 25)"
Correct the current to be equivalent to =121.5deg.

発明の詳細 な説明したように本発明によれば、巻線を有する機器の
温度上昇の予測が行なえ、モータに関していえば使用限
度限界ぎりぎりまで故障なく使用することができる。ま
た、巻線温度計についていないモータの巻線温度予測が
でき、モータ保護のアルゴリズムとして利用できる。
As described in detail, according to the present invention, it is possible to predict the temperature rise of a device having windings, and when it comes to motors, it is possible to use them without failure up to the very limit of their use. It is also possible to predict the winding temperature of motors that do not have a winding thermometer, which can be used as an algorithm for motor protection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はモータ電流に係る1次遅れにのっとったモータ
巻線温度の説明図、第2図はモータの温度(熱)の入出
力説明図、第3図は具体的なモータ電流とモータ巻線温
度の説明図、第4図は処理フローヂャ−1・、第5図は
モデルのモータ巻線温度の実測値を示すグラフ、第6図
は定格モータ電流におけろ実測とシミュレーション結果
を示すグラフ、第7図は定格の1.5倍の電流における
実測シミュレーション結果を示すグラフ、第8図、第9
図はそれぞれ第6図、第7図での補正係数を考慮した実
測値とシミュレーション結果を示すグラフである。 図     中、 θ。1.θ、、2.θ01’ θn−1’θ。は温度特
性、θ′は外部温度を加味した温度特性、 I、、   +2 、   I、、   I、、、  
 I、、fよt=流、Tは温度上昇時の時定数、 Tは温度下降時の時定数である。
Figure 1 is an explanatory diagram of motor winding temperature according to the first-order lag related to motor current, Figure 2 is an explanatory diagram of input/output of motor temperature (heat), and Figure 3 is a diagram of specific motor current and motor winding. Figure 4 is a graph showing the actual measurement of the motor winding temperature of the model. Figure 6 is a graph showing the actual measurement and simulation results at the rated motor current. , Figure 7 is a graph showing actual measured simulation results at a current 1.5 times the rated value, Figures 8 and 9.
The figures are graphs showing actual measured values and simulation results in consideration of the correction coefficients in FIGS. 6 and 7, respectively. In the figure, θ. 1. θ,,2. θ01'θn-1'θ. is the temperature characteristic, θ′ is the temperature characteristic considering the external temperature, I,, +2 , I,, I,,,
I,,f,t=flow, T is the time constant when the temperature rises, T is the time constant when the temperature falls.

Claims (1)

【特許請求の範囲】[Claims] 演算周期内にて巻線電流値を複数回計測してその平均値
を算出し、この平均値と前回の演算周期での平均値との
大小を比較し、今回の平均値の大小いずれの場合にKI
^2なるジュール損と(1−e^−^t^/^T)なる
1次遅れの温度応答とにより温度変化特性を演算し、こ
の特性に更に外部温度を加味したことを特徴とする巻線
温度予測方法。なお、Kは係数、Iは電流値、Tは時定
数、tは時刻である。
Measure the winding current value multiple times within the calculation cycle, calculate the average value, compare this average value with the average value in the previous calculation cycle, and determine whether the current average value is large or small. KI to
A volume characterized in that a temperature change characteristic is calculated based on a Joule loss of ^2 and a temperature response with a first-order lag of (1-e^-^t^/^T), and the external temperature is further taken into account in this characteristic. Line temperature prediction method. Note that K is a coefficient, I is a current value, T is a time constant, and t is a time.
JP63274405A 1988-11-01 1988-11-01 Estimation of winding temperature Pending JPH02123944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274405A JPH02123944A (en) 1988-11-01 1988-11-01 Estimation of winding temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274405A JPH02123944A (en) 1988-11-01 1988-11-01 Estimation of winding temperature

Publications (1)

Publication Number Publication Date
JPH02123944A true JPH02123944A (en) 1990-05-11

Family

ID=17541211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274405A Pending JPH02123944A (en) 1988-11-01 1988-11-01 Estimation of winding temperature

Country Status (1)

Country Link
JP (1) JPH02123944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122004A (en) * 2010-12-17 2011-07-13 北京佳讯飞鸿电气股份有限公司 Railway wind disaster prevention prediction method
JP2017063540A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Motor temperature estimation device
JP2017063539A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Motor temperature estimation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164174A (en) * 1978-06-16 1979-12-27 Mitsubishi Electric Corp Temperature monitor device of generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164174A (en) * 1978-06-16 1979-12-27 Mitsubishi Electric Corp Temperature monitor device of generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122004A (en) * 2010-12-17 2011-07-13 北京佳讯飞鸿电气股份有限公司 Railway wind disaster prevention prediction method
JP2017063540A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Motor temperature estimation device
JP2017063539A (en) * 2015-09-24 2017-03-30 トヨタ自動車株式会社 Motor temperature estimation device

Similar Documents

Publication Publication Date Title
US11248966B2 (en) Health monitoring and failure prognosis of power electronics devices
US10281338B2 (en) Oil-immersed transformer thermal monitoring and prediction system
EP1880457B1 (en) Electronic overload relay for mains-fed induction motors
Aubert et al. Kalman-filter-based indicator for online interturn short circuits detection in permanent-magnet synchronous generators
US7675720B1 (en) Motor protection using accurate slip calculations
US20170030958A1 (en) Transformer parameter estimation using terminal measurements
US10838007B2 (en) Piecewise estimation of negative sequence voltage for fault detection in electrical systems
Andresen et al. Computational light junction temperature estimator for active thermal control
Ayasun et al. Stability analysis of a generator excitation control system with time delays
Regaya et al. A new sliding mode speed observer of electric motor drive based on fuzzy-logic
van der Broeck et al. Thermal monitoring of power electronic modules using device self-sensing
JP2002228730A (en) Residual electric energy estimating device for secondary battery
Meinguet et al. Change‐detection algorithm for short‐circuit fault detection in closed‐loop AC drives
Qi et al. Model order reduction suitable for online linear parameter-varying thermal models of electric motors
Keyhani et al. Composite neural network load models for power system stability analysis
Saheba et al. Virtual thermal sensing for electric machines
Mellah et al. Estimation of speed, armature temperature, and resistance in brushed DC machines using a CFNN based on BFGS BP
JPH02123944A (en) Estimation of winding temperature
Qi et al. Model predictive overload control of an automotive switched reluctance motor for frequent rapid accelerations
Gao Sensorless stator winding temperature estimation for induction machines
US20170219640A1 (en) Apparatus for determination of the frequency of an electrical signal and associated methods
Gonzólez-Cagigal et al. Parameter estimation for hot-spot thermal model of power transformers using unscented Kalman filters
Cao et al. Thermal modeling of power semiconductor devices with heat sink considering ambient temperature dynamics
Mustafa et al. Broken bar fault detection based on set membership identification for three phase induction motors
Baraniuk et al. Thermal and Surge Current Protection Means for Semiconductor Non-Isolated Power Converters