JPS59203930A - Method for measuring temperature - Google Patents

Method for measuring temperature

Info

Publication number
JPS59203930A
JPS59203930A JP58079866A JP7986683A JPS59203930A JP S59203930 A JPS59203930 A JP S59203930A JP 58079866 A JP58079866 A JP 58079866A JP 7986683 A JP7986683 A JP 7986683A JP S59203930 A JPS59203930 A JP S59203930A
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
measuring
temp
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58079866A
Other languages
Japanese (ja)
Inventor
Tsutomu Mitsui
三井 勉
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58079866A priority Critical patent/JPS59203930A/en
Publication of JPS59203930A publication Critical patent/JPS59203930A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/56Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
    • G01K5/62Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
    • G01K5/70Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording
    • G01K5/72Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording with electric transmission means for final indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To make a thick wiring bundle unnecessary and to prevent the erroneous measurement by making a temp. measuring part to the structure capable of giving the deformation according to the temp. variation against an optical fiber by thermo-sensitive member actuating in accordance with the temp. variation. CONSTITUTION:A part for measuring temp. (temp. measuring part) 1 is arranged on the optical fiber positioned at the place where the temp. is to be detected. The optical fiber A is passed through a part 2 for guiding the optical fiber, entered the part 1, passed through a part 3 for guiding the optical fiber and led to an outer part. In the part 1, the fiber A is interposed between two sheets of bimetal 4. If the part 1 is heated in this case, the bimetals 4 are deformed, and the fiber A deforms corresponding to the deformation of the bimetals 4. In such a constitution, the thick wiring bundle is made unnecessary, and the erroneous measurement can be prevented.

Description

【発明の詳細な説明】 発明の分野 この発明は、長い区間にわたって温度検知されるべき場
所を有する部分のその測定点における温度を測定する測
温方法に関するものである。たとえば具体的には、長い
区間にわたっての多点における温度を測定する方法、炭
坑などのトンネル内の温度を測定する方法などに関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a temperature measurement method for measuring the temperature at a measurement point of a part having a location whose temperature is to be detected over a long period of time. For example, specifically, the present invention relates to a method of measuring temperature at multiple points over a long section, a method of measuring temperature inside a tunnel such as a coal mine, and the like.

先行技術の説明 上述されたような温度を測定する際には、従来多くの熱
電対を配線することが必要とされていた。
DESCRIPTION OF THE PRIOR ART Measuring temperatures as described above has traditionally required the wiring of many thermocouples.

特に、長い区間にわたっての多点における温度を測定す
るためには、各点ごとに1対の熱電対(補償導線)が必
要となり、多くの線を束にして長い区間にわたって使用
することが必要とされていた。
In particular, in order to measure the temperature at multiple points over a long section, a pair of thermocouples (compensating conductors) are required for each point, and it is necessary to bundle many wires and use them over a long section. It had been.

ざらに、測定点を増設するためには、新たに長い区間に
わたる熱電対用配線が必要とされた。
In addition, in order to add more measurement points, a new long section of thermocouple wiring was required.

また、熱雷対は電気的な誘導を受けやすく、そのために
電気的な誘導を受けやすい場所での測温の際には誤測定
のおそれが生じていた。ざらに、電気的な影響を受けや
すいという性質上、従来熱電対を用いては通電物の測温
は不可能なものであった。
In addition, thermal lightning pairs are susceptible to electrical induction, and as a result, there is a risk of erroneous measurements when measuring temperatures in locations susceptible to electrical induction. Generally speaking, it has been impossible to measure the temperature of current-carrying objects using conventional thermocouples due to their tendency to be easily influenced by electricity.

発明の目的 この発明は、上述されたような状況を鑑みてなされたも
のであり、その主たる目的は、長い区間にわたる多点に
おける測温の際にも太い配線束を必要とせず、しかも測
定点の新たな増設が容易になされることができ、さらに
電気的な誘導を受けやすい場所での測温の際にも誤測定
が生じ得ないようなms六方法提供することである。
Purpose of the Invention This invention was made in view of the above-mentioned situation, and its main purpose is to eliminate the need for thick wiring bundles even when measuring temperature at multiple points over a long section, and to It is an object of the present invention to provide a ms6 method that allows new additions to be easily made, and that does not cause erroneous measurements even when measuring temperatures in places susceptible to electrical induction.

この発明は、簡単に言えば、温度検知されるべき場所を
通る光ファイバを、用いて温度を測定するl温方法であ
る。
Simply put, this invention is a temperature method that measures temperature using an optical fiber that passes through a location where the temperature is to be detected.

この発明の上述の目的およびその他の目的と特徴は、以
下の詳細な説明から一層明らかとなろう。
The above objects and other objects and features of the invention will become more apparent from the following detailed description.

発明の構成および効果 この発明に従った測温方法は、温度検知されるべき場所
を通る光ファイバを用いて温度を測定するものである。
Structure and Effects of the Invention The temperature measuring method according to the present invention measures temperature using an optical fiber passing through a location where the temperature is to be detected.

そして、温度検知されるべき場所に位置する光フアイバ
上に測温部を配置する。この測温部は、温度の変化に応
じて作動する感温部材によって光ファイバに対して温度
の変化に応じた変形を与え得る構造とされている。こう
して、温度変化に応じた光ファイバの変形によって生ず
る透過光のロスを測定しまたは反射光の変化を測定する
ことによって、測定点における濃度を測定する。
Then, a temperature measuring section is placed on the optical fiber located at the location where the temperature is to be detected. This temperature measuring section is configured to be able to deform the optical fiber in accordance with changes in temperature by means of a temperature sensing member that operates in accordance with changes in temperature. In this way, the concentration at the measurement point is measured by measuring the loss of transmitted light or the change in reflected light caused by the deformation of the optical fiber in response to temperature changes.

以上のようにこの発明によれば、温度変化に応じて光フ
ァイバに対して温度変化に応じた変形を与え得る構造と
された側福部を光フアイバ上に配置し、光ファイバの変
形によって生ずる透過光のロスを測定しまたは反射光の
変化を測定することによって温度を測定する方法である
ので、長い区間にわたって多点での測温が必要とされる
場合であっても、従来のように熱電対用の太い配線束を
必要とすることなく、コンパクトな光フアイバケーブル
を配線するだけでよい。また、測定点を新たに増設する
ことが容易になされ得る。なぜなら、そのような場合に
は、測定されるべき点に位置する光フアイバ上に測温部
を配置するだけでよいからである。さらに、従来の測温
方法のように熱雷対を使用するのではなく光ファイバを
用い1温する方法であるので、電気的な誘導を受けやす
い場所における測温の際にもその誘導を受けず、その結
果従来見られたような誤測定を極力減することが可能と
なる。また、光ファイバは電気的な誘導を受けることが
ないので、従来不可能とされていた通電物の測温か可能
となる。
As described above, according to the present invention, a side baffle portion having a structure capable of deforming an optical fiber in accordance with a temperature change is disposed on the optical fiber, and the side baffle portion is disposed on the optical fiber to prevent deformation caused by deformation of the optical fiber. This method measures temperature by measuring the loss of transmitted light or changes in reflected light, so even when temperature measurement is required at multiple points over a long period, it is not possible to There is no need for thick wiring bundles for thermocouples, just a compact fiber optic cable. Additionally, new measurement points can be easily added. This is because, in such a case, it is only necessary to place the temperature measuring part on the optical fiber located at the point to be measured. Furthermore, since the method uses an optical fiber to obtain one temperature, rather than using a thermal lightning pair as in conventional temperature measurement methods, electrical induction can be easily detected when measuring temperature. As a result, it becomes possible to reduce as much as possible the erroneous measurements that have occurred in the past. Furthermore, since optical fibers are not subjected to electrical guidance, it becomes possible to measure the temperature of current-carrying objects, which was previously considered impossible.

この発明に従った一実施例においては、感温部材の作動
は、形状記憶合金部材の温度変化による形状変化特性を
利用してなされる。そして、好ましくは、感温部材とし
て、形状記憶合金部材とばね材とを組合わせたものが用
いられる。この場合において、形状記憶合金部材の変位
量が温度の変化に応じて連続的に変化するように、形状
記憶合金部材とばね材との組合せが調整されるのが望ま
しい。こうすることによって、測定点における温度測定
がより正確なものとなるからである。
In one embodiment according to the invention, the temperature-sensitive member is operated by utilizing the shape-changing properties of the shape-memory alloy member due to changes in temperature. Preferably, a combination of a shape memory alloy member and a spring material is used as the temperature sensitive member. In this case, it is desirable that the combination of the shape memory alloy member and the spring material be adjusted so that the amount of displacement of the shape memory alloy member changes continuously in response to changes in temperature. This is because by doing so, the temperature measurement at the measurement point becomes more accurate.

この発明を実施する際に用いられる光ファイバとしては
、光ファイバの変形によるロスを敏感に感知するために
、その中心の屈折率最大部と外周の屈折率最小部との屈
折率の差が4%以下のものが選ばれるのが好ましい。
In order to sensitively sense loss due to deformation of the optical fiber, the optical fiber used to carry out this invention has a refractive index difference of 4 between the maximum refractive index part at the center and the minimum refractive index part at the outer periphery. % or less is preferable.

実施例 実施例1 第1図に示されるように、温度検知されるべき場所を通
る光ファイバAを用いて温度を測定する測定系を用意し
た。温度検知されるべき場所に位置する光フアイバ上に
は温度測定部(測温部)1が配置されている。温度測定
部1の構造が第2図に示される。図示されるように、光
ファイバAは、光フアイバ案内部2を通って温度測定部
1内に入リ、光フ戸イバ案内部3を通って外部へ導かれ
る。
Examples Example 1 As shown in FIG. 1, a measurement system was prepared for measuring temperature using an optical fiber A passing through a location where the temperature was to be detected. A temperature measuring section (temperature measuring section) 1 is arranged on the optical fiber located at a place where the temperature is to be detected. The structure of the temperature measuring section 1 is shown in FIG. As shown in the figure, the optical fiber A enters the temperature measuring section 1 through the optical fiber guide section 2, and is guided to the outside through the optical fiber guide section 3.

温度測定部1内では、光ファイバAは、2枚のバイメタ
ル4の間に挾まれている。バイメタル4は、室温では直
線的な形状をしており、したがって2枚のバイメタル4
によって挾まれた光ファイバAは室温では直線的に伸び
た状態となっている。第2図に示されている状態は温度
測定部1が加熱されている状態である。示されるように
、温度測定部1が加熱されるとバイメタル4が変形した
。この変形量は加熱温度が高くなるにしたがって大きく
なった。光ファイバAは、バイメタル4の変形に応じて
変形した。こうして、光ファイバAにロスが生じるよう
になり、このロス率を測定することによって測定点1に
おける温度を測定することが・できた。
Inside the temperature measuring section 1, the optical fiber A is sandwiched between two bimetals 4. Bimetal 4 has a linear shape at room temperature, so two bimetal 4
The optical fiber A sandwiched between the two is in a linearly extended state at room temperature. The state shown in FIG. 2 is a state in which the temperature measuring section 1 is heated. As shown, when the temperature measurement part 1 was heated, the bimetal 4 was deformed. This amount of deformation increased as the heating temperature increased. The optical fiber A was deformed in accordance with the deformation of the bimetal 4. In this way, a loss began to occur in the optical fiber A, and by measuring this loss rate, it was possible to measure the temperature at the measurement point 1.

実施例2 第2因に示された2枚のバイメタル4を、形状記憶銅合
金(Cu−zn −A I−合金)と燐青銅(通常ばね
vI)とを重ね会わせた2枚の部材に置換えた。形状記
憶合金部材の逆変態温度は30℃であり、この部材は高
温側では直角に曲がるように形状記憶処理されている。
Example 2 The two bimetals 4 shown in the second factor were made into two members made by overlapping shape memory copper alloy (Cu-zn-A I-alloy) and phosphor bronze (usually spring vI). Replaced. The reverse transformation temperature of the shape memory alloy member is 30° C., and this member is subjected to shape memory treatment so that it bends at right angles on the high temperature side.

しかし、形状記憶合金部材とばね材とを組合わせた@温
部材は、通常ばね材の存在によって30℃以上の温度の
とき温度の上昇とともに徐々に曲げ角度が大きくなるよ
うに作動した。こうして、実施例1と同様に、30℃〜
90℃の温度範囲を光ファイバのロス率の測定によって
測温することができた。
However, the @temperature member, which is a combination of a shape memory alloy member and a spring material, normally operated so that the bending angle gradually increased as the temperature rose when the temperature was 30° C. or higher due to the presence of the spring material. In this way, as in Example 1, from 30°C to
It was possible to measure the temperature in a temperature range of 90°C by measuring the loss rate of the optical fiber.

実施例3 第3図に示される濃度測定部を作製した。図において、
光ファイバAは、光フアイバ案内部2を通って温度測定
部1内に入り、光フアイバ案内1部3を通って外部へ導
かれる。温度測定部1内に位置する光ファイバAは、感
湿部材Bと固定支持部5とによって変形され得るように
なっている。感温部材Bは、形状記憶台金(Ni Ti
合金)よりなるコイル6とステンレスばね材よりなるコ
イル7とを組合わせたものであり、その先端部に曲げ変
形用の移動点8を有し、さらに微小コイル長調整用ねじ
9を有している。
Example 3 A concentration measuring section shown in FIG. 3 was manufactured. In the figure,
The optical fiber A enters the temperature measuring section 1 through the optical fiber guide section 2 and is guided to the outside through the optical fiber guide section 1 3. The optical fiber A located in the temperature measuring part 1 is adapted to be deformable by the moisture sensitive member B and the fixed support part 5. The temperature-sensitive member B is made of shape memory base metal (Ni Ti
It is a combination of a coil 6 made of a stainless steel spring material and a coil 7 made of a stainless steel spring material, and has a moving point 8 for bending deformation at the tip thereof, and further has a screw 9 for fine coil length adjustment. There is.

形状記憶合金コイル6は、その逆変Il温度がマイナス
50℃に設定してあり、それ以上の温度になると収縮力
が生じるように形状記憶処理されている。ステンレスコ
イルばね7は伸びる方向の力を発生するものであり、こ
のコイルばね7と形状記憶合金コイル6との力のバラン
スは、微小コイル長調整用ねじ9によって調整される。
The shape memory alloy coil 6 has its reverse Il temperature set at minus 50° C., and is subjected to shape memory treatment so that a contractile force is generated when the temperature exceeds this temperature. The stainless steel coil spring 7 generates a force in the direction of extension, and the balance of force between the coil spring 7 and the shape memory alloy coil 6 is adjusted by a minute coil length adjustment screw 9.

こうして、測定点における温度をマイナス50℃〜室温
の範囲で変化させると、感温部材Bの先端部に取付けら
れた曲げ変形用移動点8が光ファイバAr8度の変化に
応じて変形させた。このとき生じる光ファイバのロスを
第1図に示すような測定系で測定することによって、測
定点における温度を測定することができた。
In this way, when the temperature at the measurement point was changed in the range of -50°C to room temperature, the bending deformation moving point 8 attached to the tip of the temperature sensitive member B was deformed in accordance with the change in the optical fiber Ar of 8 degrees. By measuring the loss in the optical fiber that occurs at this time using a measurement system as shown in FIG. 1, it was possible to measure the temperature at the measurement point.

衷1」LL 第4図に示されるような温度測定部1を一定間隔で多数
個同一の光ファイバケーブルA上に配置した。第4図に
おいて、光ファイバAは、温度測定部1内で1回転する
ように曲げられている。曲げ部分10の内部には、保護
丸棒11が配置されている。この保護丸棒11は、曲げ
部分10の曲率が小さくなってそのために光ファイバA
がキンク切れするのを防止する働きをなす。
A large number of temperature measurement units 1 as shown in FIG. 4 were arranged at regular intervals on the same optical fiber cable A. In FIG. 4, the optical fiber A is bent so as to make one rotation within the temperature measuring section 1. In FIG. A protective round bar 11 is arranged inside the bent portion 10. The curvature of the bent portion 10 of this protective round bar 11 is reduced, and therefore the optical fiber A
It works to prevent the kink from breaking.

図示されるように、曲げ部分10の曲率な変化させ得る
ように感温部材Bを配置した。感温部材Bは、形状記憶
合金コイル12と通常ばね材コイル゛13とを組合わせ
たものであり、形状記憶合金コイル12と通常ばね材コ
イル13との力のバランスは調整ねじ14によってなさ
れる。形状記憶合金コイル12としてはCal −7n
 −Al系形状記憶合金が用いられた。感温部材Bは、
100℃以上の温度となったときその長さが伸びるよう
に設定された。こうして、パルス光を光ファイバの一端
から送信し、この反射光を受信することによって温度が
100℃以上になった測定点を求めることができた。
As shown in the figure, the temperature-sensitive member B was arranged so that the curvature of the bent portion 10 could be changed. The temperature-sensitive member B is a combination of a shape memory alloy coil 12 and a normal spring material coil 13, and the force balance between the shape memory alloy coil 12 and the normal spring material coil 13 is achieved by an adjustment screw 14. . The shape memory alloy coil 12 is Cal-7n.
-An Al-based shape memory alloy was used. The temperature sensing member B is
It was set so that its length would increase when the temperature reached 100°C or higher. In this way, by transmitting pulsed light from one end of the optical fiber and receiving the reflected light, it was possible to determine measurement points where the temperature was 100° C. or higher.

なお、形状記憶合金は原則として1点の温度で感応する
が、形状記憶合金の逆変態点よりも高い温度において生
ずる形状記憶合金の回復の力をばね材によって妨げるよ
うな構造にすれば、逆変態点からの潤度上昇に応じて形
状口Ii量を変化させるようにすることができる。
In principle, shape memory alloys are sensitive to temperature at one point, but if the structure is such that a spring material blocks the recovery force of the shape memory alloy that occurs at a temperature higher than the reverse transformation point of the shape memory alloy, the reverse The amount of the shape opening Ii can be changed according to the increase in moisture level from the transformation point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明の詳細な説明するための
図で゛ある。第1図は、温度検知されるべき場所を通る
光ファイバを用いて温度を測定する測温装置の一例を示
す図である。第2図は、光−ファイバ上に配置された湿
度測定部の一例を示す図である。第3図は、光フアイバ
上に配置された温度測定部の他の例を示す図である。第
4図は、光フアイバ上に配置された温度測定部のさらに
他の例を示す図である。 図において、Aは光ファイバ、Bは感温部材、1は温度
測定部、4はバイメタル、6は形状記憶合金コイル、7
はばね材コイルを示す。 特許出願人 住友電気工業株式会社 Z1図
1 to 4 are diagrams for explaining the present invention in detail. FIG. 1 is a diagram showing an example of a temperature measuring device that measures temperature using an optical fiber that passes through a location where the temperature is to be detected. FIG. 2 is a diagram showing an example of a humidity measuring section disposed on an optical fiber. FIG. 3 is a diagram showing another example of a temperature measuring section disposed on an optical fiber. FIG. 4 is a diagram showing still another example of a temperature measuring section disposed on an optical fiber. In the figure, A is an optical fiber, B is a temperature sensitive member, 1 is a temperature measuring part, 4 is a bimetal, 6 is a shape memory alloy coil, 7
Shows a spring material coil. Patent applicant Sumitomo Electric Industries, Ltd. Z1 diagram

Claims (4)

【特許請求の範囲】[Claims] (1) 温度検知されるべき場所を通る光ファイバを用
いて温度を測定する測温方法であって、前記温度検知さ
れるべき場所に位置する光フアイバ上に測温部を配置し
、 前記11部は、温度の変化に応じて作動する感温部材に
よって前記光ファイバに対して温度の変化に応じた変形
を与え得る構造とされており、前記光ファイバの変形に
よって生ずる透過光のロスを測定しまたは反射光の変化
を測定することによって8i度を測定することを特徴と
する、測温方法。
(1) A temperature measurement method that measures temperature using an optical fiber passing through a location where the temperature is to be detected, in which a temperature measurement unit is placed on the optical fiber located at the location where the temperature is to be detected, and 11 above. The section is structured to be able to deform the optical fiber according to the change in temperature by a temperature-sensitive member that operates according to the change in temperature, and measures the loss of transmitted light caused by the deformation of the optical fiber. A method for measuring temperature, characterized in that 8i degrees is measured by measuring changes in reflected light.
(2) 前記感温部材の作動は、形状記憶合金部材の温
度変化による形状変化特性を利用してなされるものであ
ることを特徴とする特許請求の範囲第1項記載の測温方
法。
(2) The temperature measuring method according to claim 1, wherein the temperature sensing member is operated by utilizing the shape change characteristics of the shape memory alloy member due to temperature changes.
(3) 前記形状記憶合金部材は、その変位量が湿度の
変化に応じて連続的に変化するように、ばね材と組合わ
せて設けられることを特徴とする特許請求の範囲第2項
記載の測温方法。
(3) The shape memory alloy member is provided in combination with a spring material so that the amount of displacement thereof changes continuously according to changes in humidity. Temperature measurement method.
(4) 前記光ファイバは、その中心の屈折率最大部と
外周の屈折率最小部との屈折率の差が4%以下であるこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載の111m方法。
(4) The optical fiber has a refractive index difference of 4% or less between the maximum refractive index part at the center and the minimum refractive index part at the outer periphery of the optical fiber. 111m method according to any one of.
JP58079866A 1983-05-06 1983-05-06 Method for measuring temperature Pending JPS59203930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079866A JPS59203930A (en) 1983-05-06 1983-05-06 Method for measuring temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079866A JPS59203930A (en) 1983-05-06 1983-05-06 Method for measuring temperature

Publications (1)

Publication Number Publication Date
JPS59203930A true JPS59203930A (en) 1984-11-19

Family

ID=13702125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079866A Pending JPS59203930A (en) 1983-05-06 1983-05-06 Method for measuring temperature

Country Status (1)

Country Link
JP (1) JPS59203930A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189426A (en) * 1985-02-19 1986-08-23 Toyama Kogyo Koutou Senmon Gatsukouchiyou Layer thickness temperature monitor
JPS6287822A (en) * 1985-10-14 1987-04-22 Furukawa Electric Co Ltd:The Temperature detector
JPS62134042U (en) * 1986-02-18 1987-08-24
JPS62140423U (en) * 1986-02-28 1987-09-04
JPH02131637U (en) * 1989-04-07 1990-11-01
WO2017150339A1 (en) * 2016-03-04 2017-09-08 三菱電機株式会社 Optical fiber temperature sensor and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641389B2 (en) * 1976-11-10 1981-09-28
JPS56158929A (en) * 1980-05-13 1981-12-08 Fuji Electric Co Ltd Temperature detector
JPS5844320A (en) * 1981-09-10 1983-03-15 Mitsubishi Electric Corp Temperature measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641389B2 (en) * 1976-11-10 1981-09-28
JPS56158929A (en) * 1980-05-13 1981-12-08 Fuji Electric Co Ltd Temperature detector
JPS5844320A (en) * 1981-09-10 1983-03-15 Mitsubishi Electric Corp Temperature measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189426A (en) * 1985-02-19 1986-08-23 Toyama Kogyo Koutou Senmon Gatsukouchiyou Layer thickness temperature monitor
JPS6287822A (en) * 1985-10-14 1987-04-22 Furukawa Electric Co Ltd:The Temperature detector
JPS62134042U (en) * 1986-02-18 1987-08-24
JPS62140423U (en) * 1986-02-28 1987-09-04
JPH02131637U (en) * 1989-04-07 1990-11-01
WO2017150339A1 (en) * 2016-03-04 2017-09-08 三菱電機株式会社 Optical fiber temperature sensor and method for manufacturing same
JP6218163B1 (en) * 2016-03-04 2017-10-25 三菱電機株式会社 Optical fiber temperature sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9513111B2 (en) Self-tensed and fully spring jacketed optical fiber sensing structure
CA2844093C (en) Pneumatic sensing apparatus
CA2838572A1 (en) Optical fibre distributed lhd with sma element for discrete alarm
US10620018B2 (en) Method for measuring the displacement profile of buildings and sensor therefor
JPS59203930A (en) Method for measuring temperature
US1837853A (en) Pyrometric device
US5661246A (en) Fiber optic displacement sensor for high temperature environment
US5672008A (en) Reconfigurable multipoint temperature sensor
JPS5866827A (en) Monitor device for temperature
JPH0317157B2 (en)
JPS5921505B2 (en) Trace gas flow detector
JP2786811B2 (en) Temperature measurement method
JP6397369B2 (en) Displacement measuring system and displacement measuring method
JP2001155268A (en) Optical type temperature and fire sensor
EP0626571B1 (en) An integrated temperature measuring unit with thermocouples
JPS5838469Y2 (en) fire alarm system
JP2781269B2 (en) Optical fiber sensor
JPH06267642A (en) Heating unit with built-in optical fiber
JPH03158728A (en) Temperature detecting optical cable
CN209230799U (en) A kind of temperature sensor
JP2001194249A (en) Fiber optic thermometer
Namkung et al. Fiber optic distributed temperature sensor using Raman backscattering
RU2441205C1 (en) Fibre-optic thermal detector
JPH07234166A (en) Optical fiber temperature monitoring device
CN1030152C (en) Hot-pipe type radiation thermograph