JPS5920386B2 - catalyst body - Google Patents

catalyst body

Info

Publication number
JPS5920386B2
JPS5920386B2 JP51139975A JP13997576A JPS5920386B2 JP S5920386 B2 JPS5920386 B2 JP S5920386B2 JP 51139975 A JP51139975 A JP 51139975A JP 13997576 A JP13997576 A JP 13997576A JP S5920386 B2 JPS5920386 B2 JP S5920386B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
carrier
cloth
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51139975A
Other languages
Japanese (ja)
Other versions
JPS5363294A (en
Inventor
順 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51139975A priority Critical patent/JPS5920386B2/en
Publication of JPS5363294A publication Critical patent/JPS5363294A/en
Publication of JPS5920386B2 publication Critical patent/JPS5920386B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は複数の反応を1個の触媒体で対応しうるた給に
、単一担体に複数の種類を異にする(それぞれの反応を
選択的に行う)触媒物質を担持させた触媒体を提供する
ことにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a single carrier with a plurality of different kinds of catalyst materials (selectively performing each reaction) in order to be able to handle multiple reactions with a single catalyst material. An object of the present invention is to provide a catalyst supporting a catalyst.

近年触媒体の用途の拡大は著しく、特に環境公害防止分
野への応用は、従来触媒体の主用途であった合成化学、
石油化学分野での需要をはるかに上まわる需要が考えら
れ、今日すでに自動車排ガス浄化においては、もっとも
確かな方法として触媒体による浄化力法が実用化され、
高い評価を得ている。
In recent years, the applications of catalysts have expanded significantly, especially in the field of environmental pollution prevention.
It is thought that the demand far exceeds the demand in the petrochemical field, and today the purification method using catalysts has already been put into practical use as the most reliable method for purifying automobile exhaust gas.
It has received high praise.

また、脱硝技術にも最有力な方法として触媒還元方法が
一部において実機試験稼動に入り、実用段階において抽
躍的な需要が見込まれている。
In addition, the catalytic reduction method, which is the most promising method for denitrification technology, has entered practical test operation in some areas, and is expected to be in great demand at the practical stage.

この環境公害防止分野においては、多種多様な成分を、
いずれもCO2やN2そしてH2Oなどの無害で安定な
成分へ変換することが必要で、そこでの反応は単に酸化
もしくは還元反応という単一反応のみではなく、酸化と
還元という相反する反応を共に行う必要がしばしば生ず
る。
In this field of environmental pollution prevention, a wide variety of ingredients,
All of them require conversion into harmless and stable components such as CO2, N2, and H2O, and the reactions involved are not just a single reaction of oxidation or reduction, but also contradictory reactions of oxidation and reduction. often occurs.

このようなものの典型は、自動車排ガス中のCOやHC
などをCO□やH2Oに変換する酸化反応と同時にNO
xを還元反応によってN2と02に変換する場合がある
Typical examples of these are CO and HC in automobile exhaust gas.
At the same time as the oxidation reaction that converts CO□ and H2O, NO
x may be converted into N2 and 02 by a reduction reaction.

これに対して現在のところは、触媒体さらに装置共々、
酸化用、還元用のそれぞれ独立したものを用意し、それ
らを連結して、CO,HCそしてNOxの浄化を試みよ
うとしている。
On the other hand, at present, both the catalyst body and the equipment are
We are preparing separate systems for oxidation and reduction, and are attempting to purify CO, HC, and NOx by connecting them.

また、排煙脱硝においてもわずかな硫黄成分が脱硝率を
低下させることから、前段階での脱硫のために、多量の
場合には湿式脱硫が行われるが、少量の場合には吸着脱
硫も効果的であり、吸着装置と脱硝触媒装置を2段に構
えることが考えられる。
In addition, even in flue gas denitrification, a small amount of sulfur component reduces the denitrification rate, so wet desulfurization is performed in the case of a large amount of sulfur in order to desulfurize in the previous stage, but adsorption desulfurization is also effective in the case of a small amount. Therefore, it is conceivable to set up the adsorption device and the denitrification catalyst device in two stages.

このように相反する反応や吸着と反応など複数の作用を
用いて、除去や目的とする反応物を得るためには、従来
からの粒状やペレットを用いた単一集合触媒体において
は、互の反応を独立して行わせるために、それぞれの反
応に適する触媒体を独立した触媒反応装置に装てんして
用いられている。
In order to remove or obtain the desired reactant by using multiple actions such as contradictory reactions or adsorption and reaction, in the conventional single aggregate catalyst using particles or pellets, mutual interaction is required. In order to carry out the reactions independently, catalysts suitable for each reaction are loaded into independent catalytic reaction apparatuses.

本発明はこのような複数の反応を単一担体で行わせしめ
るための触媒体を提供するものである。
The present invention provides a catalyst for carrying out a plurality of such reactions using a single carrier.

本発明の構成について、以下実施例で詳述する。The configuration of the present invention will be described in detail in Examples below.

実施例 l ガラス繊維からなるガラスクロスを強酸にて加熱処理す
ることにより脱アルカリし、シリカ成分の割合を増し耐
熱性を上げたシリカクロスの表面にアルミナを担持させ
たシリカクロス担体を帯状に切断したものの表面を長手
方向に2分割し、その一刀には最終的に担体重量当り0
.4wt%Ptを担持せしめるように調合された塩化白
金酸水溶液を塗布し、必要長さからなる無担持区間を経
て、他力には最終的に担体重量当り0.25 w t%
Ruと0.2wt%Pdを担持せしめるように調合され
た塩化ルテニウムと塩化パラジウム混合溶液を塗布して
のち、120℃で乾燥し、350℃水素気流中で還元し
たのち、空気中500℃で焼成した触媒クロスを調製す
る。
Example 1 A glass cloth made of glass fibers is dealkalized by heat treatment with a strong acid to increase the proportion of silica component and improve heat resistance.A silica cloth carrier in which alumina is supported on the surface of the silica cloth is cut into strips. The surface of the product is divided into two in the longitudinal direction, and each part has a final weight of 0 per carrier weight.
.. A chloroplatinic acid aqueous solution formulated to support 4 wt% Pt is applied, and after passing through a non-supporting section of the required length, the final amount is 0.25 wt% per carrier weight.
After applying a mixed solution of ruthenium chloride and palladium chloride formulated to support Ru and 0.2 wt% Pd, it was dried at 120°C, reduced in a hydrogen stream at 350°C, and then fired at 500°C in air. Prepare a catalyst cloth.

第1図にこの触媒体の構成図を示す。FIG. 1 shows a diagram of the structure of this catalyst.

ここで1はPt担持領域であり、2は無担持領域、3は
Ru+Pd担持領域である。
Here, 1 is a Pt-supported region, 2 is a non-supported region, and 3 is a Ru+Pd-supported region.

この可撓性を有する連続した担体を使用して得た触媒体
4を第2図に示すように、打抜き鋼板からなり、一方の
み閉じられた孔あき円筒体5の周りに、Pt担持領域1
が巻き始めで、Ru+Pd担持領域3が巻き終りとなる
ようにして巻回して触媒層を形成する。
As shown in FIG. 2, the catalyst body 4 obtained using this flexible continuous carrier is placed around a perforated cylindrical body 5 made of a punched steel plate and having a Pt supporting area 1.
is the beginning of winding and the Ru+Pd supporting region 3 is the end of winding to form a catalyst layer.

この触媒層4の外側に空間部分を介在させてケース6を
設けて触媒装置を形成する。
A case 6 is provided outside the catalyst layer 4 with a space interposed therebetween to form a catalyst device.

反応ガスは円筒体5から導入され、その開孔部から半径
方向に触媒層4を通過し、ケース6により一ケ所に集め
られ外部に流出する。
The reaction gas is introduced from the cylindrical body 5, passes through the catalyst layer 4 in the radial direction from the opening thereof, is collected in one place by the case 6, and flows out to the outside.

この装置に約2係濃度のCOとCH4換算100011
1)Ill濃度のHCおよびそれらを完全酸化するに必
要な酸素量、さらにloppmのNoをN2で稀釈した
反応ガスを、空間速度にして50,0OOh−1で供給
したところ、CO浄化率が95%、HC浄化率で85%
、NO浄化率は94%であった。
This device contains CO at a concentration of approximately 2nd factor and CH4 equivalent of 100011
1) When HC of Ill concentration and the amount of oxygen necessary to completely oxidize them, as well as a reaction gas prepared by diluting LOppm of No with N2, were supplied at a space velocity of 50,0OOh-1, the CO purification rate was 95. %, HC purification rate of 85%
, the NO purification rate was 94%.

一方、PtのみまたはRu+Pdのみを担持した触媒体
を同様の装置に同−量装てんしたのち、同一測定条件で
COとHC,NOの浄化率をみたところ、Ptのみでは
CO,HCの浄化率は共に90%以上であったが、NO
についてはマイナスの5%となり、生成されることが判
った。
On the other hand, after loading the same amount of catalyst bodies carrying only Pt or only Ru+Pd into a similar device, we looked at the purification rates of CO, HC, and NO under the same measurement conditions. Both were over 90%, but NO
It was found that the value was minus 5% and that it was generated.

さらにRuとPd混合触媒体のみではCOとHCは高々
40%止りでNOも10%程度の浄化しか示さなかった
Furthermore, using only the Ru and Pd mixed catalyst, CO and HC were only purified by 40% at most, and NO was only purified by about 10%.

実施例 2 第3図に示すように、実施例1と同じシリカクロス基材
の表面にシリカ、アルミナを8wt%担持した担体を帯
状に必要な長さ用意し、その表面の最初の1/3に最終
的に担持重量に対して10wt%となるように調製され
た硫酸銅7を担持し残りの2/3の3/4を担持量が1
0wt%になるように調製された酸化バナジウム8を、
そして残りに担持量がo、swt%のPdと10wt%
の酸化ニッケル9を担持し、それぞれの触媒金属の境は
30〜40crrLの巾で金属担持をしない無十―持部
分10によって分離した。
Example 2 As shown in Fig. 3, a carrier carrying 8 wt% of silica and alumina was prepared in the form of a belt on the surface of the same silica cloth base material as in Example 1, and the first 1/3 of the surface was Copper sulfate 7 prepared to have a final content of 10 wt% based on the supported weight is supported, and 3/4 of the remaining 2/3 is supported in an amount of 1.
Vanadium oxide 8 prepared to be 0 wt%,
And the remaining amount is O, swt% Pd and 10wt%
of nickel oxide 9 was supported, and the boundary between each catalyst metal was separated by a non-supporting portion 10 having a width of 30 to 40 crrL and not carrying any metal.

この触媒クロスを実施例1で用いたのと同様の装置に、
硫酸銅相持部分を巻き始めにし、白金と酸化ニッケル担
持部分を巻き終りになるように巻回して装てんする。
This catalyst cloth was placed in a device similar to that used in Example 1.
The part supporting copper sulfate is wound at the beginning, and the part supporting platinum and nickel oxide is wound at the end.

この装置にNO50Qppm、 NH3700ppH+
、それに5O250ppI11,0O21000ppを
N2で稀釈した反応ガスを流入したとき、NOの浄化率
90%、S02は95係浄化した。
This device has NO50Qppm, NH3700ppH+
When a reaction gas containing 50 ppI of 5O2 and 1000 pp of 0O2 diluted with N2 was introduced into the reactor, NO purification rate was 90%, and S02 was purified by 95%.

また流出ガス中のNH3濃度はほとんどOであった。Moreover, the NH3 concentration in the outflow gas was almost O.

−力、酸化バナジウムのみを担持したシリカクロス担体
触媒体に前記と全く同じ反応ガスを同一条件で測定した
ところNOの浄化率92%に対しS02は40%程度で
ある上に、流出ガス中のN H36度は50ppmTh
す、臭いを伴なっていた。
- When the same reaction gas as above was measured under the same conditions on a silica cross carrier catalyst supporting only vanadium oxide, the purification rate of NO was 92%, while S02 was about 40%. NH36 degrees is 50ppmTh
It was accompanied by a smell.

本発明による効果は先の実施例の中でそれぞれの反応に
ついて述べたとおりであるが、実施例1についてはCO
,HCの酸化反応を酸素雰囲気で行わせしめ、酸素を使
い果したのちNOをRu+Pdで還元することによって
なし得たものであり、先の酸化反応による発熱を利用し
て還元反応を効果的に行うことができるのも、同一触媒
層でそれぞれ専有する触媒物質を配置することが本発明
の触媒体により可能となったことによる。
The effects of the present invention are as described for each reaction in the previous examples, but in Example 1, CO
, This was achieved by allowing the oxidation reaction of HC to occur in an oxygen atmosphere, and then reducing NO with Ru+Pd after the oxygen was used up, and the reduction reaction was effectively carried out using the heat generated by the previous oxidation reaction. This is possible because the catalyst body of the present invention makes it possible to arrange exclusive catalyst materials in the same catalyst layer.

また実施例2ではS02混合ガス中でNH3による選択
的NO還元をまず行わせしめるため、S02を吸着する
か、もしくは被着されない硫酸銅触媒層を通過させたの
ち、さらに酸化バナジウムで残りのNOを選択還元する
In addition, in Example 2, in order to first perform selective NO reduction with NH3 in the S02 mixed gas, S02 is adsorbed or passed through an undeposited copper sulfate catalyst layer, and then the remaining NO is removed with vanadium oxide. Selective reduction.

ここで若干のNH3が残って通常ならば排出されるが、
悪臭成分として好ましくないものであり、最後のPtと
酸化ニッケル触媒物質によって分解もしく01酸化する
ことにより脱臭する。
At this point, some NH3 remains and is normally discharged, but
It is undesirable as a malodorous component, and is deodorized by decomposition or O1 oxidation using the final Pt and nickel oxide catalyst material.

この段階でNH3が再びNoに酸化されることも可能で
あるが、反応前のNOに比べて2オーダ以下であり、全
体としてNo浄化そのものをくつがえすものではない。
Although it is possible for NH3 to be oxidized to No again at this stage, the amount is less than 2 orders of magnitude compared to NO before the reaction, and does not overturn the No purification itself as a whole.

本実施例においては、担体の基材としてシリカクロスを
用いたが、その他の無機繊維織布でもよく、また無機質
繊維よりなるマット状物質でもよい。
In this example, silica cloth was used as the base material of the carrier, but other inorganic fiber woven fabrics or mat-like materials made of inorganic fibers may also be used.

また、それらの基材はクロス、マット状に限らず網目状
であっても、特に排気抵抗が問題となる場合には、この
方がより好ましいともいえる。
Furthermore, the base material is not limited to cloth or mat shape, but may be more preferable especially when exhaust resistance is a problem.

また、和持触媒材のかわりに吸着材を担持して、吸着材
と触媒材を同一担体に担持し、吸着機能と触媒機能を兼
ね備えさせることも本発明の効果を損なうものではない
Further, the effects of the present invention may not be impaired by supporting an adsorbent instead of the supporting catalyst material, by supporting the adsorbent and the catalyst material on the same carrier, and thereby having both the adsorption function and the catalytic function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る触媒体の一実施例を示す触媒クロ
スの構造図、第2図は第1図の触媒クロスを用いた触媒
装置の半断面斜視図、第3図は本発明の他の実施例を示
す触媒クロスの構造図である。 1.3,7,8.9・・・・・・触媒物質、4・・・・
・・触媒体(触媒層)。
FIG. 1 is a structural diagram of a catalyst cloth showing one embodiment of the catalyst body according to the present invention, FIG. 2 is a half-sectional perspective view of a catalyst device using the catalyst cloth of FIG. 1, and FIG. FIG. 7 is a structural diagram of a catalyst cloth showing another example. 1.3,7,8.9... Catalyst material, 4...
... Catalyst body (catalyst layer).

Claims (1)

【特許請求の範囲】 1 可撓性を有する連続した担体の表面に複数の種類を
異にする触媒物質を互に独立して担持させたことを特徴
とする触媒体。 2 担体の基材がシリカクロスであることを特徴とする
特許請求の範囲第1項記載の触媒体。
[Scope of Claims] 1. A catalyst body characterized in that a plurality of different types of catalyst substances are independently supported on the surface of a flexible continuous carrier. 2. The catalyst body according to claim 1, wherein the base material of the carrier is silica cloth.
JP51139975A 1976-11-19 1976-11-19 catalyst body Expired JPS5920386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51139975A JPS5920386B2 (en) 1976-11-19 1976-11-19 catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51139975A JPS5920386B2 (en) 1976-11-19 1976-11-19 catalyst body

Publications (2)

Publication Number Publication Date
JPS5363294A JPS5363294A (en) 1978-06-06
JPS5920386B2 true JPS5920386B2 (en) 1984-05-12

Family

ID=15258016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51139975A Expired JPS5920386B2 (en) 1976-11-19 1976-11-19 catalyst body

Country Status (1)

Country Link
JP (1) JPS5920386B2 (en)

Also Published As

Publication number Publication date
JPS5363294A (en) 1978-06-06

Similar Documents

Publication Publication Date Title
Konsolakis et al. Support mediated promotional effects of rare earth oxides (CeO2 and La2O3) on N2O decomposition and N2O reduction by CO or C3H6 over Pt/Al2O3 structured catalysts
KR20010072662A (en) Process and catalyst/sorber for treating sulfur compound containing effluent
JPS6059004B2 (en) Removal of nitrogen oxides from flue gas
CA2729956A1 (en) Method for treating exhaust gas from co2 recovery apparatus
US6086835A (en) Oxidation catalyst comprising gold and method of oxidation
US3914377A (en) Catalyst reactor for oxidizing carbon monoxide and hydrocarbons in gaseous stream
JP2019505370A (en) Catalyst bed and method for reducing nitric oxide
JP3852969B2 (en) Method for decomposing ammonia in off-gas
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
CA1036794A (en) Removal of nitrogen oxides from exhaust gases and catalyst therefor
EP0525761B1 (en) A catalytic composite for deodorizing odorous gases and a method for preparing the same
US6267941B1 (en) Catalyst system for deodorization of a mixture of sulfur compounds and compounds such as aldehydes, alcohols and/or hydrocarbons
JPS5920386B2 (en) catalyst body
US6077493A (en) Method for removing nitrogen oxides
JP2827627B2 (en) Deodorizing catalyst
JP2806106B2 (en) Oxidation catalyst
JP4103970B2 (en) Pretreatment agent for poisonous exhaust gas with catalytic activity
JP2896912B2 (en) Catalyst regeneration method
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JPH0459054A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JPH04222631A (en) Ozone decomposing catalyst
JP2002159854A (en) Exhaust gas cleaning catalyst and method for cleaning exhaust gas
CN116196920A (en) Preparation method of sulfur-resistant Pt-loaded monolithic catalyst, pt-loaded monolithic catalyst and application
JPH02191529A (en) Purifying device for exhaust gas