JPS59202731A - Photoelectric switch - Google Patents

Photoelectric switch

Info

Publication number
JPS59202731A
JPS59202731A JP58076818A JP7681883A JPS59202731A JP S59202731 A JPS59202731 A JP S59202731A JP 58076818 A JP58076818 A JP 58076818A JP 7681883 A JP7681883 A JP 7681883A JP S59202731 A JPS59202731 A JP S59202731A
Authority
JP
Japan
Prior art keywords
circuit
light
output
logarithmic
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58076818A
Other languages
Japanese (ja)
Other versions
JPH0480566B2 (en
Inventor
Hitoshi Miyashita
宮下 均
Yoshihiko Okuda
善彦 奥田
Aritaka Yorifuji
依藤 有貴
Motoo Igari
素生 井狩
Yoshiaki Kanbe
祥明 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58076818A priority Critical patent/JPS59202731A/en
Publication of JPS59202731A publication Critical patent/JPS59202731A/en
Publication of JPH0480566B2 publication Critical patent/JPH0480566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To correct properly a temperature drift of a logarithmic amplifying circuit, and to make an operating level of a comparing circuit constant by forming a reference voltage generating means by using a circuit being equal to a logarithmic amplifying circuit for an output of a photodetecting circuit. CONSTITUTION:As for logarithmic amplifying circuits 80, 90 for forming a reference voltage generating means of a malfunction preventing means 8 and a surplus display means 9, those which are equal to a logarithmic amplifying circuit 22b of a distance measuring control means 5 are used, and temperature drifts of these logarithmic amplifying circuits 22b, 80 and 90 are equal. Accordingly, even in case when a temperature drift of the logarithmic amplifying circuit 22b is large, the same temperature drift is generated in the logarithmic amplifying circuits 80, 90 of the reference voltage generating means, too, therefore, a relative value of a voltage level applied to both input terminals of a comparing circuit consisting of comparators G8, G10 is not varied, a substantial operating level of the malfunction preventing means 8 and the surplus display means 9 is not varied by a temperature, and a stable operation is executed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光電スイッチに関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a photoelectric switch.

〔背景技術〕[Background technology]

従来、第1図に示すように被検知物体による受光レベル
変化を検出する受光回路1211出力を対数増巾回路−
にて対数増巾し、比較回路□□□にて対故増御するよう
にしたこの種の光電スイ・ンチにおいて、比較回路(至
)の動作レベルを設定する基準電圧V8は電源電圧VC
Of抵抗(Ra)(Rb)にて分圧して形成していた。
In the past, as shown in FIG.
In this type of photoelectric switch, in which the logarithmic amplification is performed by the comparator circuit and the fault-proof amplification is performed by the comparator circuit, the reference voltage V8 that sets the operating level of the comparator circuit (to) is the power supply voltage VC.
It was formed by dividing the voltage using the Of resistors (Ra) (Rb).

ところで、このような従来例において、対数増中回19
 !221の温度ドリフトを補正するために抵抗(Ra
)(Rb)として感温抵抗体を用いて基準電圧vsを対
敗増中回@ツの温度ドリフトに対応して変化させてやる
必要があつ次が、抵抗(Ra)(Rb)に対数増巾回路
−四と同等の温度特性?もたせることは難しく、ま迄、
感熱抵抗体の応答速度が遅い(通常20 sec以上)
ので、対数項中回路ツの温度ドリフト七袖止を適正に行
なうことができな〃・つた。このように対数増巾回路ツ
の温度ドリフトが補正できない場合、この種の比較回V
6tZa+出力にて制御される出力回路、誤動作防止手
段、余裕表示手段などが安定に動作しないという問題が
おった。なお、対欽項中回路固はオペアンプ(G6)と
接合型のタイオード(D)とで形成されており、タイオ
ード(D)の電圧−電流特性を利用して対数増巾特性を
得ている。この場合タイオード(DJの拡散電流Iは1
 = I o  CeXp(’t V / k T )
 −1]似し、q :電気素量、k :ボルッマン定数
となり、順方向では指数関数の項が−1に比べて充分大
きくなるので、 1=Io exp(9V/kT)      ・”tl
)となり、順方向電圧■と電流Iとの間に■■in 1 の関係が成立する。こnf第2図に示す0次に(1)式
を書きなおすと、 V==kT/q[: in (1/lo  ) 〕とナ
リ、T=3000K(、l!7℃)VCオイてkT/q
は26mVであυ、1℃当当駒約03%(1/凸OO)
の温度ドリフトがある。第5図はシリコンタイオートの
j偵電圧VF−周囲温度Taの特性を示している。
By the way, in such a conventional example, the logarithmic increase time 19
! In order to correct the temperature drift of 221, a resistor (Ra
) (Rb), it is necessary to use a temperature-sensitive resistor to change the reference voltage vs in response to the temperature drift of Width circuit - Temperature characteristics equivalent to 4? It is difficult to hold back, until now.
The response speed of the thermal resistor is slow (usually 20 seconds or more)
Therefore, it is not possible to properly control the temperature drift of the circuit in the logarithmic term. If the temperature drift of the logarithmic amplifier circuit cannot be corrected, this type of comparison circuit V
There was a problem that the output circuit controlled by the 6tZa+ output, the malfunction prevention means, the margin display means, etc. did not operate stably. It should be noted that the circuit in the pair is formed of an operational amplifier (G6) and a junction diode (D), and uses the voltage-current characteristics of the diode (D) to obtain logarithmic amplification characteristics. In this case, the diffusion current I of the diode (DJ is 1
= I o CeXp('t V / k T )
-1], q: elementary charge, k: Bormann's constant, and in the forward direction, the term of the exponential function is sufficiently larger than -1, so 1=Io exp (9V/kT) ・”tl
), and a relationship of ■■in 1 is established between the forward voltage ■ and the current I. If we rewrite equation (1) to the 0th order shown in Fig. 2, we get V==kT/q [: in (1/lo)], T=3000K (, l!7℃) VC. kT/q
is 26 mV, υ, 1°C, the winning piece is about 03% (1/convex OO)
There is a temperature drift. FIG. 5 shows the characteristics of the voltage VF and the ambient temperature Ta of the silicon tie auto.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みて為さnたものであジ、対改増
「1]回路の温度ドリフトf )lffl正に補止でき
段′ど0動作が安定な光電スイッチ全提供することを目
的とするものである。
The present invention has been made in view of the above-mentioned points, and has the following objectives: 1) To provide a photoelectric switch that can positively compensate for the temperature drift of the circuit and has stable zero operation. The purpose is to

〔発明の開示〕[Disclosure of the invention]

実施例 第4図乃至第6図は領域反射型光重スイッチの一例を示
すもので、被検知物体CX)に対して光ビーム(P)?
投光する投光手段11)と、投光手段+1)がら所定間
隔△Lをもって配設されa@知物体囚)による光ビーム
(P)の反射光(R) k集光する受光用光学系+21
と、受光用光学系(2)の集光面に配設され集光スポッ
ト(S)の位置に対応した位置信号倉出カする位置検出
手段(4)と、′位は検出手段(4)出力に基いて被検
知物体(X)が所定の検知エリア(DE)内に存在する
かどうかを判別して出力回路(6)を制御する測距制御
手段(5)と塗具備し、三角測量方式によって被検知物
体囚までの距離f’z判別して検知エリア(DE)内に
被検知物体閃が存在すnは出力回路(6)を作動させて
物体検知佃号會出力するようにしたものである。ここに
被検知物体(X)に対してパルス*調光よりなる光ビー
ム(P) k投光する投光手段11ンは投光タイミンク
を設定する同期信’jJr発生する発振回路(lO)と
、ドライブ回路(11)と、発光タイオードあるいはレ
ーザータイオードなどの投光素子(喝と、光ビーム(P
)?形成するコンデンサレ、7ズよりなる投光用光学系
贈とで形成されている。投光手段(1)から所定間隔Δ
Lをもって何方に並置さnた受光手段(2)は、投光手
段rtlおよび被検知物体(x)に対して三角測量的に
配置さ扛ており、この受光手段(2)は被検知物体(X
)による反射光(R)’a−集光するための凸レンズよ
りなる受光用光学系(3)と、受光用光学系(3)の集
光面に配設され、集光スポット(S)の位置に対応した
位置信号を出力する位置検出手段(4)とで構成されて
いる。この位置検出手段(4)は、受光用光学系(3)
の来光面内に配設され集光スポット(S)の移動方向に
連設された2個の受光素子(20a)(20b)にて形
成されている。この受光素子(20a)(20b)とし
てはホトトランジスタ、ホトタイオード、太陽′市電、
cdsなどが用いられる。々お、位置検知手段(4)と
して位置検出手段いわゆるPSDi用いても良い。測距
制御手段+51 u、受光素子(2oa)(2ob)か
らの出力電流IA、IBi信号電圧Vよ、VBに増巾変
換する受光回路(21a )(21b )と、オペアン
プ(G3 )およびタイオート(1)1)よりなる対故
増中回路(22a)(22b)と、対奴増中回路(22
a)出力1 n V Aから対数増rf3回路(22b
)出力1 n V B全減算する減算回路123+と、
減算回路啜出力! n V A/ V Bと検知エリア
設定ポリウム(VR)にて設定さn ン’i:tJ))
作レベルVSと?比較して減算回路因)出力l n V
 A / V Bが基準レベルvs以下のときHレベル
を出力するコンパレータ(G、)よりなる比軟回路(2
4Iと、投光素子(喝からの光ビームtP)の投光タイ
ミンク(発振回路(lO)から出力される同期信号)に
同期して比較回路嘱出力tサンブリーJり(四部検波)
することにより、被検知物体(x)が検知エリア(LI
E)内に存在するかどうが?確夫に判別するようにした
佑号処理回路例と、信号処理回路Q0から所定期間以上
連続してイ日号が出力された場合あるいは出力されない
場合にのみ出力回路(6)の制御信号?出す積分回路(
26)とで形成され、負荷制御用のリレー、負荷制御用
の半導体スイッチ素子などよりなる出力あるいはしゃげ
1時の電源電圧が予め設定さnた電圧以下のときに出力
回路(6)の誤納作?防止する誤動作防止回路である。
Embodiment FIGS. 4 to 6 show an example of an area reflection type optical heavy switch, in which a light beam (P?) is directed against an object to be detected (CX).
The light projecting means 11) for projecting light and the light projecting means +1) are arranged at a predetermined interval ΔL, and the light receiving optical system condenses the reflected light (R) of the light beam (P) by the light projecting means 11) and the light projecting means +1). +21
, a position detection means (4) disposed on the condensing surface of the light-receiving optical system (2) and outputting a position signal corresponding to the position of the condensed spot (S), and position '' is a detection means (4) It is equipped with a distance measurement control means (5) that determines whether the detected object (X) exists within a predetermined detection area (DE) based on the output and controls the output circuit (6), and a coating tool, and performs triangulation. The distance f'z to the object to be detected is determined by the method, and when there is a flash of the object to be detected within the detection area (DE), the output circuit (6) is activated to output the object detection code. It is something. Here, the light emitting means 11 that emits a light beam (P) consisting of pulse * dimming to the object to be detected (X) is connected to an oscillation circuit (lO) that generates a synchronization signal to set the light emitting timing. , a drive circuit (11), a light emitting element such as a light emitting diode or a laser diode, and a light beam (P
)? It is formed by a condenser lens, and a projection optical system consisting of 7 lenses. A predetermined interval Δ from the light projecting means (1)
The light receiving means (2) arranged parallel to each other with L are triangulated with respect to the light projecting means rtl and the object to be detected (x), and this light receiving means (2) is arranged parallel to the object to be detected ( X
) reflected light (R)'a- A light receiving optical system (3) consisting of a convex lens for condensing the light, and a light receiving optical system (3) arranged on the light converging surface of the light receiving optical system (3) to form a condensing spot (S). It is composed of a position detection means (4) that outputs a position signal corresponding to the position. This position detection means (4) includes a light receiving optical system (3)
It is formed by two light-receiving elements (20a) and (20b) disposed in the light incident plane of the light receiving element (20a) and (20b) arranged in series in the moving direction of the condensed spot (S). These light receiving elements (20a) (20b) include phototransistors, photodiodes, solar streetcars,
CDS etc. are used. Alternatively, a so-called PSDi may be used as the position detecting means (4). Distance measurement control means +51u, output current IA from light receiving elements (2oa) (2ob), light receiving circuit (21a) (21b) for amplifying and converting IBi signal voltage V to VB, operational amplifier (G3) and tie auto (1) The anti-fault increasing circuit (22a) (22b) consisting of 1) and the anti-fault increasing circuit (22
a) Logarithmic increase rf3 circuit (22b
) Output 1 n V B full subtraction circuit 123+,
Subtraction circuit output! Set with nVA/VB and detection area setting policy (VR))
Work level VS? Comparison and subtraction circuit cause) Output l n V
A ratio soft circuit (2
4I and the comparison circuit output t sumbly J (four-part detection) in synchronization with the light emission timing (synchronization signal output from the oscillation circuit (lO)) of the light emission element (light beam tP from the light source).
By doing this, the detected object (x) is located in the detection area (LI
E) Does it exist within? An example of a day number processing circuit that is designed to discriminate exactly, and a control signal for the output circuit (6) only when the day number is continuously output for a predetermined period or longer from the signal processing circuit Q0, or when it is not output? Integrating circuit (
26), which is formed by a relay for load control, a semiconductor switch element for load control, etc., or an error in the output circuit (6) when the power supply voltage at 1 is lower than a preset voltage. Delivery? This is a malfunction prevention circuit that prevents

なお、受光回路(21a)(21b)は反転アップ(G
1 )および非反転アンj(Gg)r用いて形成され、
パルス光信号のみ全通し直流光信号をカットしたり、特
定の周波数のみを通すバンドパスフィルタ回路全台むも
のである。また、減算回路123)は差動、アンプ(G
4 )にて形成さnている。(7)は受光回路(21a
)出力を基準電圧Vs1に基いて比軟判別するコンパレ
ータ(G6 )よりなる光量制御手段であり、反射光(
R)の光量レベルに基いて被検知物体医)が萩知エリア
(DE)内に存在するかどうか?判別して物体検知信号
Vx’i出力するようにし、皮検知@体(X、lが鏡面
体である場合であっても誤動作?防止できるようになっ
ている。(8)はオペアンプ(G7 )およびタイオー
ド(D2 )よりなる対数増巾回路(80)?用いて形
成される&I$電圧発生手段と・コシパレータ(Cz)
よジなる比軟回l5llと、アンド回路(AND)とで
構成されノイズによる誤動作を防止する誤動作防止手段
であジ、対数増巾回路(22b)から基準電圧78以上
の伯づ′が得らnているかどうかによって、外部ノイズ
あるいは受光回路(21b)に発生する内部ノイズによ
り誤動作しない受光信号I!n■が得らnているかどう
か?判別し、オア回路((JR)k介して伯号処理回路
外に入力される物体検知佃づVX、vX′をアンド回路
(AND )にて阻止自社にしている。
Note that the light receiving circuits (21a) (21b) are inverted up (G
1) and non-inverted anj(Gg)r,
It includes all bandpass filter circuits that pass only the pulsed optical signal, cut the DC optical signal, or pass only a specific frequency. Further, the subtraction circuit 123) is a differential amplifier (G
4). (7) is the light receiving circuit (21a
) is a light amount control means consisting of a comparator (G6) that discriminates the relative softness of the output based on the reference voltage Vs1, and the reflected light (
Based on the light intensity level of R), does the detected object (D) exist within the Hagichi area (DE)? The object detection signal Vx'i is outputted, and malfunctions can be prevented even when skin detection@body (X and l are specular bodies). (8) is an operational amplifier (G7). and a logarithmic amplification circuit (80) consisting of a diode (D2) and an &I$ voltage generating means and a cosciparator (Cz).
This is a malfunction prevention means that prevents malfunctions due to noise and is composed of a soft ratio circuit (15ll) and an AND circuit (AND). Depending on whether the light receiving circuit (21b) is connected to the light receiving circuit (21b), the light receiving signal I! Whether n ■ is obtained or not? The object detection VX, vX' inputted to the outside of the number processing circuit through the OR circuit ((JR)k) is blocked by the AND circuit (AND).

(9)はオペアンプ(G9)とタイオート(DA)より
なる対数増巾回路(9Q)を用いて形1スさn;)基準
電圧発生手段と、コンパレータ(G、、0)よりなる比
奴回路いり、と、余裕表示部(92)とで形成される余
裕表示手段であり、基に$電比V、は誤動作防止手段(
8)の基′I$電圧v8よりも若干高く設定され、対数
増巾回路(22b)出力1d■が基準電圧V、よりも犬
のとき、余裕表示部(92)が前作して対数増巾回路(
22b)出力!、n vBのレベルが正常動作範囲に対
して余裕のあること?表示する以下、夫施例の1作につ
いて具体的に説明する。いま、被検知物体(X)が第7
図(a)に示すように反射型光電スイッチ(Y) 7>
)ら距pHla、lb、lcの位[a、b、cに存在す
る場合において、集光面内に配設さnた受光系子(20
a)(20b)に対する集光スポット(S)の位置は第
7図(b)のようにな9、被検知物体(X)か光ビーム
(P)の投光方向に移動すると、受光素子(20a)(
20b)に入射する光量の比率が変化することになり、
受光系子(20a)(20b)の出力電流I、、IBは
集光スポット(S)の位置に対応した位置信号となる。
(9) uses a logarithmic amplification circuit (9Q) consisting of an operational amplifier (G9) and a tie-auto (DA), and a logarithmic amplifier consisting of a reference voltage generating means and a comparator (G, 0). It is a margin display means formed by a circuit requirement and a margin display section (92), and $ electric ratio V is based on the malfunction prevention means (
When the base 'I$ voltage v8 of 8) is set slightly higher and the output 1d of the logarithmic amplification circuit (22b) is higher than the reference voltage V, the margin display section (92) indicates the logarithmic amplification circuit (22b). circuit(
22b) Output! , n vB level is within the normal operating range? Hereinafter, one of the works of the husband example will be explained in detail. Now, the detected object (X) is the seventh
As shown in figure (a), a reflective photoelectric switch (Y) 7>
) at distances pHla, lb, lc [a, b, c, n light-receiving elements (20
a) The position of the focused spot (S) with respect to (20b) is as shown in FIG. 20a)(
The ratio of the amount of light incident on 20b) will change,
The output currents I, , IB of the light receiving elements (20a) (20b) become position signals corresponding to the position of the focused spot (S).

測距制御手段(5)では、受光回路(21a)(21b
)にてこの出力電流IA、1Bに比例した電圧VA 、
Vb’i形成し、対数増巾回路(22a)(22b)に
て対奴増[IJシた電圧1nVA、fnVBk減算回路
(洛にて減算することにより減算回路嗅から受光素子(
20a)(2ob)に入射する光量の比率の対数値1 
n V A/ V Bが出力されることになる。この減
算回路鰐j出力1nVア/V。
In the distance measurement control means (5), the light receiving circuits (21a) (21b
), the voltage VA proportional to this output current IA, 1B,
Vb'i is formed, and the logarithmic amplification circuit (22a) (22b) increases the voltage of IJ by 1nVA, and fnVBk subtracts from the subtraction circuit to the light receiving element (
20a) Logarithm value of the ratio of the amount of light incident on (2ob) 1
nVA/VB will be output. This subtraction circuit crocodile j outputs 1nV a/V.

は被検知物体(X)の移動に応じて友化し、反射型光電
スイッチ(Y)から4N検知物体(x)1での距%lに
対する減算回路(ハ)出力1 n V A / V B
は第8図に示すようになる。したがって、比奴回路(麹
の検知エリア設定ボリウム(VR)にて前作レベル(V
B)を適当に設定することにより、正確な検知エリア(
DE)が容易に設定でき、減算回路(ム)出力I!nV
A/■Bが動作レベル以下となったとき比軟回路124
1出力がHレベルとなり% (illi号処理回路12
5+ i弁して出力回路(6)が作切さnる。この場合
、測距制御手段(5)は、受光素子(20a )(20
1))出力のレベル比?演算し、そのレベル比が予め設
定された前作レベルVSのとき出力回路(6)を作切さ
ゼるようになっておp、被検知物体IX)による反射光
tR)のレベルと関係なく検知エリア(DE)か設定さ
れるようになっているので、検知エリア(DE)の後方
に存在する光反射率の大きい物体による誤前作が防止で
きるとともに、被検知物体(X)の光反射率に関係なく
検知エリア(DE)’z段設定き、さらに投、受光用光
学系0413+の汚nの影響を受けることがない。また
、去施例にあっては誤動作防止手段(8)と余裕表示手
段(9)の基準電圧発生手段?形成する対数増巾回路(
81))(9α)は測距制御手段(5)の対数増巾回路
(22b)と同等のものが用いらnでおり、こnらの対
数増巾回路(22Is ) (80) (90)の温度
ドリフトは等しくなっている。したがって、対数増巾回
路(22b)の温度ドリフトが大きい場合にあっても、
基準電圧発生手段の対数増巾回路(80)(90’)に
も同様の温度ドリフトが発生するので、壽チ呻か′〜コ
ンJ3レータ(Gl)(Gl。)よりなる比較回路の面
入力端子に印加さnる電圧レベルの相対値が変化せず、
誤動作防止手段(8)および余裕表示手段(9)のス質
的な動作しベルが温度によって変化することがなく、安
定な動作が行なわnる。ま尺、コンパレータ(Ga  
)(Gl(1)の入力端子から児た入力信号源インピー
タンスも等しくなり、]コンパレータG、)(G1゜)
の入カッへイアスミ流による影9になくすことができる
。すなわち、コン力信号源のインピータンスが等しくな
い場合(従来例の場合)において、入力バイアス′II
i流が温度ドリフトすると、このオフセット電圧の変化
亀が異なることになってコンパレータ(cys)Cax
becomes a friend as the detected object (X) moves, and the subtraction circuit (c) outputs 1 n V A / V B for the distance %l from the reflective photoelectric switch (Y) to the 4N detected object (x) 1.
is as shown in FIG. Therefore, the previous work level (V
By appropriately setting B), accurate detection area (
DE) can be easily set, and the subtraction circuit (MU) output I! nV
When A/■B is below the operating level, the ratio soft circuit 124
1 output becomes H level (illi processing circuit 12
5+ i valve and the output circuit (6) is turned off. In this case, the distance measurement control means (5) controls the light receiving elements (20a) (20
1)) Output level ratio? When the level ratio is the preset previous level VS, the output circuit (6) is turned off, and detection is performed regardless of the level of the reflected light tR) from the detected object IX). Since the area (DE) is set, it is possible to prevent erroneous previous detection due to an object with a large light reflectance that exists behind the detection area (DE), and to adjust the light reflectance of the detected object (X). The detection area (DE) is set in z stages regardless of the detection area (DE), and is not affected by contamination of the optical system 0413+ for projecting and receiving light. Also, in the previous embodiment, the reference voltage generation means for the malfunction prevention means (8) and the margin display means (9)? Logarithmic amplification circuit to form (
81)) (9α) is equivalent to the logarithmic amplification circuit (22b) of the distance measurement control means (5), and these n logarithmic amplification circuits (22Is) (80) (90) The temperature drifts of are equal. Therefore, even if the temperature drift of the logarithmic amplifier circuit (22b) is large,
Similar temperature drift occurs in the logarithmic amplification circuits (80) (90') of the reference voltage generation means, so the surface input of the comparison circuit consisting of the J3 regulator (Gl) (Gl.) The relative value of the voltage level applied to the terminal does not change,
The malfunction prevention means (8) and the margin display means (9) operate stably, and the bells do not change due to temperature, resulting in stable operation. Magnitude, comparator (Ga
)(The input signal source impedances from the input terminal of Gl(1) are also equal,] comparator G,)(G1°)
It can be eliminated by the shadow 9 by Iasumi style. That is, when the impedances of the input signal sources are not equal (in the case of the conventional example), the input bias 'II
When the i current drifts with temperature, the amount of change in this offset voltage will be different, and the comparator (cys) Cax
.

)の動作レベルが変動するという悪影替があった0なお
、コシパレータ(GS)(Gい。)としてNEC社製の
μPC271Ck用いた場合、入力バイアス電流は50
nAであり、その温度ドリフトI/i0〜80℃の間に
おいて40nA程度となる。
) The operation level fluctuated, which was a negative effect.0 Note that when using NEC's μPC271Ck as the cossiparator (GS) (G), the input bias current is 50
nA, and the temperature drift I/i is about 40 nA between 0 and 80°C.

実施例 49図は池の秀施例會示すもので、FJiJ記大施例と
同様の光電スイッチにおいて、余裕表示手段(9)の基
準電圧発成手段を形成する対数増巾回路を誤動作防止手
段(8)の対数増巾回路(8G)t−用いて形成したも
のであり、抵抗(Rs  )(Rs  )の値を適当に
設定することにより、基準電圧V、、V。
Embodiment 49 Figure 49 shows a photoelectric switch similar to the FJiJ example, in which the logarithmic amplification circuit forming the reference voltage generating means of the margin display means (9) is replaced with a malfunction prevention means ( 8) is formed using the logarithmic amplification circuit (8G) t-, and by appropriately setting the values of the resistors (Rs), the reference voltages V, , V can be set.

の関係を所定の関係に設定するようになっている。図中
(R3)〜(R6)は抵抗である。
The relationship is set to a predetermined relationship. In the figure, (R3) to (R6) are resistors.

いま、誤動作防止手段(8)では、対数増巾回路(22
b)から出力さnる受光信号レベルがノイズレベルに比
べである程度大きく、最低弁別レベルよりも大きい場合
にのみ面制御手段(5)(7)から出力さnる物体検知
信eVx、Vx’にて出力回路(6)音制御するように
して、外部ノイズおよび内部ノイズによるfA前作全防
止し、さらに余裕表示手段(9)では、対数増巾回路(
22b)から出力さnる受光信号レベルが誤動作防止手
段(8)の動作しベルよりも予め設定さnた余裕量だけ
大きい場合に余袖表示郡(92)全削作させて光軸の調
整誤差、レンズの汚nなどによる受光量の減少tある程
度(約20%)吸収0]龜であることを表示するように
なっており、この誤動作防止手段(8)および余裕表示
手段(9)の動作レベル(すなわち基準電圧V8、V9
)は別々に設定するときわめて曲伸]な作業となるが、
犬施例2にあっては動作レベル設定用ボリウムにて可変
さnる可変電流源U)によって連動して設定できるので
、動作レベルの設定作業が容易になる。
Now, in the malfunction prevention means (8), the logarithmic amplification circuit (22
Only when the light reception signal level outputted from b) is higher than the noise level to some extent and higher than the lowest discrimination level, the surface control means (5) and (7) output the object detection signals eVx, Vx'. By controlling the sound of the output circuit (6), external noise and internal noise are completely prevented from fA previous work, and the margin display means (9) uses a logarithmic amplification circuit (
When the received light signal level output from 22b) is greater than the malfunction prevention means (8) by a preset amount of margin, the remaining sleeve display group (92) is entirely removed to adjust the optical axis. It is designed to display that the amount of received light has decreased to some extent (approximately 20%) due to errors, lens dirt, etc., and that the malfunction prevention means (8) and margin display means (9) Operating level (i.e. reference voltage V8, V9
) is a very complicated process if you set them separately, but
In the dog embodiment 2, the operation level can be set in conjunction with the variable current source U) which is varied by the operation level setting volume, so the operation level setting work becomes easy.

実施例 第10図はさらに池の犬施例會示すもので、投光手段+
11“から投光さnた拡散光ヂ)の被検知物体医ンによ
る反射光(R)’z受光手段(2)“にて受光し、受光
手段(2)1の受光素子岡出力金受光回路(21)にて
電圧信号に変換するとともに対数増巾回路(2)にて対
数圧縮し、比較回路(至)にて対数増巾回路;24から
出力さnる受光出力VRが予め設定された基#−電圧v
slよりも大きいかどうかを比較判別して出力回路(6
)音制御するようにした拡散反射型の光電スイッチであ
り、被検知物体■)が検知エリア(DE)内に存在する
かどうか七反射光翰)の光量レベルによって判別するよ
うになっており、比軟回路(至)の基準電圧v s#を
対数増巾回路φ0) k用いた基準電圧発生手段にて形
成し、可変電流源U)k変化させることによって検知エ
リア(DE)k設定するようになっている。
Embodiment FIG. 10 further shows a pond dog embodiment, in which the light projecting means +
The reflected light (R) from the object to be detected of the diffused light emitted from the light receiving means (2) is received by the light receiving means (2). The circuit (21) converts it into a voltage signal, the logarithmic amplification circuit (2) logarithmically compresses it, and the comparison circuit (to) logarithmically amplifies it; the received light output VR output from 24 is set in advance. base #-voltage v
It compares and determines whether it is larger than sl and outputs the output circuit (6
) It is a diffuse reflection type photoelectric switch with sound control, and it is designed to determine whether the detected object (■) exists within the detection area (DE) based on the light intensity level of the seven reflected light beams. The reference voltage Vs# of the ratio soft circuit (to) is formed by a reference voltage generating means using a logarithmic amplification circuit φ0)k, and the detection area (DE) k is set by changing the variable current source U)k. It has become.

以下、医施例5の動作について説明する。この種の拡散
型の光電スイッチは反射光@)の受光出力VRが距離l
に対して第11図に変化することを利用し、受光出力■
Rが比較回路例の基準電圧■S′よりも大きくなったと
きに出力回路(6)全動作させるようになっており、一
般に基準電圧■s′が固定化さnていた。したがって、
投光手段fil’から投光される光ビーム(P)の光t
r変化させるか、あるいは受光回路t21+の電流電圧
変換インピータンスを変化させるかによって検知エリア
(DE)’r変えるようになっていた。しかしながら、
前者の方法にあっては検知エリア(DE)T、遠くに設
定した場合において外乱光の影響が大きくなってS/N
が低下するという問題があり、後者にあっても受光回路
シυの変換率を大きくした場合において荻換インヒータ
ンスを呵責するボリウムによる内部ノイズが大さくなっ
てS/N比が低下するという問題があった。夫施例凸に
あっては比較回路例の基準電圧vs′全第11図中点線
で示すように変化させることによって検知エリア(DE
 )’を設定するようになっているので、上述のような
問題点が発生することがない。さらに、前記夫施例1.
2の場合と同様基準電圧発生手段七対奴増中回路喰を用
いて形成することにより、対数増巾回路□□□の湿度ド
リフトを補正することができるようになっているので、
温度変化によって出力回路(6)の前作レベルすなわち
検知エリア(DE)が変動することがなく、動作が安定
な光電スイッチが得らnることになる。
The operation of Medical Example 5 will be described below. This kind of diffused photoelectric switch has a reception output VR of reflected light @) at a distance l.
Taking advantage of the change in Fig. 11, the received light output ■
When R becomes larger than the reference voltage s' of the comparison circuit example, the output circuit (6) is fully operated, and the reference voltage s' is generally fixed. therefore,
Light t of the light beam (P) projected from the light projecting means fil'
The detection area (DE)'r is changed depending on whether the detection area (DE)'r is changed or the current-voltage conversion impedance of the light receiving circuit t21+ is changed. however,
In the former method, when the detection area (DE) T is set far away, the influence of ambient light increases and the S/N decreases.
In the latter case, when the conversion rate of the light receiving circuit υ is increased, the internal noise due to the volume that causes switching inheatance increases, resulting in a decrease in the S/N ratio. there were. In the convex case of the second embodiment, the detection area (DE
)', the above-mentioned problems do not occur. Furthermore, the husband example 1.
As in case 2, by forming the reference voltage generating means using a seven-pair amplification circuit, it is possible to correct the humidity drift of the logarithmic amplification circuit □□□.
The previous level of the output circuit (6), that is, the detection area (DE) does not fluctuate due to temperature changes, and a photoelectric switch with stable operation can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように仮検知物体による支光量変化を検
出する受光回路と、受光回路出力を対数増巾する対数増
巾回路と、対数増巾回路出力の基準電圧に対する大小を
比較判別して出力回路、誤動作防止手段、余裕表示手段
などt制御する比軟回路とt具備した光電スイッチにお
いて、該基準電圧?発生する基準電圧発生手段を上記対
数増巾回路と同等の対数増巾回路を用いて形成したもの
であり、受光回路出力を対故増中する対数増巾回路が温
度ドリフトし7C場合に、比較回路の基準電圧も同様に
温度ドリフトするので、対数増巾回路の温度ドリフトを
適正に補正できて比較回路の動作レベルを一定にでき、
比較回路出力にて制御さnる出力回路、誤動作防止手段
、余裕表示手段などの動作が安定な光電スイッチを提供
することができるという利点がある。
As described above, the present invention includes a light receiving circuit that detects a change in the amount of light received by a temporarily detected object, a logarithmic amplification circuit that logarithmically amplifies the output of the light receiving circuit, and a method that compares and determines the magnitude of the output of the logarithmic amplification circuit with respect to a reference voltage. In a photoelectric switch equipped with a comparative soft circuit that controls output circuits, malfunction prevention means, margin display means, etc., the reference voltage? The reference voltage generating means is formed using a logarithmic amplification circuit equivalent to the above-mentioned logarithmic amplification circuit, and when the logarithm amplification circuit that increases the light receiving circuit output due to a fault has a temperature drift of 7C, a comparison is made. Since the reference voltage of the circuit also drifts with temperature, the temperature drift of the logarithmic amplifier circuit can be properly corrected and the operating level of the comparator circuit can be kept constant.
There is an advantage that it is possible to provide a photoelectric switch in which the operation of the output circuit, malfunction prevention means, margin display means, etc. controlled by the comparison circuit output is stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の要61S回路図、第2凶および第5図
は同上の前作説明図、第4図は本発明−夫施例の構成を
示す図、第5凶は同上の要部ブロック回路図、第6図は
同上の要部共体回路例?示す図、第7図および第8図は
同上の動作説明図、第9図は池の夫施例の要部回路図、
第10図はさらに池の去施例の要部回路図、第11凶は
同上の動作説すJ凶である。 1211(21a)(21b)は受光回路、ツ(22a
)(22b)は対数増巾回路、124+ 18υIll
は比べ回路、!0)■)叩)は対数増巾回路である。 第(図 第3図 第4凶
Fig. 1 is the circuit diagram of the main 61S of the conventional example, Fig. 2 and Fig. 5 are explanatory diagrams of the previous work of the same as above, Fig. 4 is a diagram showing the configuration of the embodiment of the present invention, and Fig. 5 is the main part of the same as above. Is the block circuit diagram, Figure 6, an example of the same main circuit as above? Figures 7 and 8 are explanatory diagrams of the same operation as above, and Figure 9 is a circuit diagram of the main part of the Ikenobu embodiment.
Fig. 10 is a circuit diagram of the main part of Ike's example, and Fig. 11 is a J-section which explains the operation of the same as above. 1211 (21a) (21b) are light receiving circuits,
)(22b) is a logarithmic amplification circuit, 124+18υIll
Compare the circuit,! 0)■)) is a logarithmic amplification circuit. (Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)被検知物体による受光量変化を検出する受光回路
と、受光回路出力全対数項中する対数増中回どt制御す
る比較回路と全具備した光電スイッチにおいて、該基準
電圧を発生する基準電圧発生手段を上記対数増巾回路と
同等の対数増巾回路を用いて形成して成る光電スイッチ
(1) A standard for generating the reference voltage in a photoelectric switch that is fully equipped with a photodetector circuit that detects changes in the amount of light received by the detected object and a comparison circuit that controls the logarithmic increase in the total logarithmic term of the output of the photodetector circuit. A photoelectric switch in which a voltage generating means is formed using a logarithmic amplification circuit equivalent to the above-mentioned logarithm amplification circuit.
JP58076818A 1983-04-30 1983-04-30 Photoelectric switch Granted JPS59202731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076818A JPS59202731A (en) 1983-04-30 1983-04-30 Photoelectric switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076818A JPS59202731A (en) 1983-04-30 1983-04-30 Photoelectric switch

Publications (2)

Publication Number Publication Date
JPS59202731A true JPS59202731A (en) 1984-11-16
JPH0480566B2 JPH0480566B2 (en) 1992-12-18

Family

ID=13616249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076818A Granted JPS59202731A (en) 1983-04-30 1983-04-30 Photoelectric switch

Country Status (1)

Country Link
JP (1) JPS59202731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113088A (en) * 1985-11-12 1987-05-23 Toppan Printing Co Ltd Double charging detector
JPS63267638A (en) * 1987-04-27 1988-11-04 Omron Tateisi Electronics Co Duplication detecting device for printed fixed form paper sheet
GB2423818A (en) * 2005-03-02 2006-09-06 Agilent Technologies Inc Tracking the temperature coefficient of a light source
JP2012147255A (en) * 2011-01-12 2012-08-02 Sharp Corp Sensor device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527941U (en) * 1978-08-10 1980-02-22
JPS5547466A (en) * 1978-07-18 1980-04-03 Matsushita Electric Works Ltd Light beam alarm device
JPS55147827A (en) * 1979-05-08 1980-11-18 Mitsubishi Electric Corp Signal extracting circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547466A (en) * 1978-07-18 1980-04-03 Matsushita Electric Works Ltd Light beam alarm device
JPS5527941U (en) * 1978-08-10 1980-02-22
JPS55147827A (en) * 1979-05-08 1980-11-18 Mitsubishi Electric Corp Signal extracting circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113088A (en) * 1985-11-12 1987-05-23 Toppan Printing Co Ltd Double charging detector
JPS63267638A (en) * 1987-04-27 1988-11-04 Omron Tateisi Electronics Co Duplication detecting device for printed fixed form paper sheet
GB2423818A (en) * 2005-03-02 2006-09-06 Agilent Technologies Inc Tracking the temperature coefficient of a light source
US7250806B2 (en) 2005-03-02 2007-07-31 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Apparatus and method for generating an output signal that tracks the temperature coefficient of a light source
GB2423818B (en) * 2005-03-02 2009-11-11 Agilent Technologies Inc Tracking the temperature coefficient of a light source
JP2012147255A (en) * 2011-01-12 2012-08-02 Sharp Corp Sensor device and electronic apparatus
US8681192B2 (en) 2011-01-12 2014-03-25 Sharp Kabushiki Kaisha Sensor device and electronic apparatus

Also Published As

Publication number Publication date
JPH0480566B2 (en) 1992-12-18

Similar Documents

Publication Publication Date Title
JPH01278120A (en) Photodetecting signal circuit for photoelectric switch
JPH0324636B2 (en)
JPS59202731A (en) Photoelectric switch
US4758082A (en) Distance detection apparatus
US4913546A (en) Range finder
JP3215232B2 (en) Photoelectric distance sensor
JP2003307775A (en) Temperature correcting method for lcd driving voltage display
JP3195656B2 (en) Optical displacement measuring device
JP3117232B2 (en) Distance measuring device
JPH0750569A (en) Photoelectric switch
JPH0642958A (en) Optical displacement measuring apparatus
JPH0326792B2 (en)
JP3117227B2 (en) Distance detection device
JP3187621B2 (en) Active triangulation
JPH0346820A (en) Photoelectric switch
JPS6095318A (en) Optical distance measuring device
JPH0536733B2 (en)
JPS6361112A (en) Object detector
JPH03166534A (en) Range-finding device for camera
JPH0545926Y2 (en)
JPS6222016A (en) Distance detector
JPH0466284B2 (en)
JPS59139520A (en) Reflecting photoelectric switch
JPS61277009A (en) Range finder
JPH01170886A (en) Reflection type photoelectric switch