JPS59202279A - Grouting material for reinforcement of structure - Google Patents

Grouting material for reinforcement of structure

Info

Publication number
JPS59202279A
JPS59202279A JP7807683A JP7807683A JPS59202279A JP S59202279 A JPS59202279 A JP S59202279A JP 7807683 A JP7807683 A JP 7807683A JP 7807683 A JP7807683 A JP 7807683A JP S59202279 A JPS59202279 A JP S59202279A
Authority
JP
Japan
Prior art keywords
cement
polymer
water
graft material
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7807683A
Other languages
Japanese (ja)
Inventor
Takashi Minato
湊 俊
Kanko Ishizaki
石崎 鑑古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7807683A priority Critical patent/JPS59202279A/en
Publication of JPS59202279A publication Critical patent/JPS59202279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To provide the titled material having excellent water-proofness and durability and strong adhesion to inorganic materials, prepared by mixing cement, polymer, aggregate and water. CONSTITUTION:The grouting material for reinforcement of a structure based on polymer cement mortar is prepared by mixing 100pts.wt. cement (e.g. colloid cement or expanding cement), 2-50pts.wt. polymer (e.g. styrene/butadiene rubber or ethylene/vinyl acetate copolymer), 20-300pts.wt. aggregate (e.g. silica sand or fly ash having a particle diameter of about 2mm. or smaller) and 40-70pts.wt. water.

Description

【発明の詳細な説明】 本発明は構造体補強用グラフト材に関し、より詳しくは
、隘道のコンクリート覆工や橋梁のコンクリート製ボッ
クス桁、橋脚及びコンクリート建築物等の構造体内部に
注入されたり、隨道の覆工背面と地山との空隙への注入
等構造体の周辺に柱入されたりしてこれら構造体の止水
や補強に供せられるポリマーセメントtA 、ψり[;
系グラフト材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a graft material for reinforcing structures, and more specifically, the present invention relates to a graft material for reinforcing structures, and more specifically, it is used to inject into structures such as concrete lining of roads, concrete box girders of bridges, bridge piers, and concrete buildings. , Polymer cement tA, ψri [;
Concerning graft materials.

従来、上記構造体特にコンクリート製構造体が注 経年により中性化、劣化した場合の内部法人用グラフト
材としてはセメントモルタルやエポキシ樹脂が用いられ
、又除道の裏込め注入等のグラフト材としてはセメント
モルタルが用いられていた。
Conventionally, cement mortar and epoxy resin have been used as grafting materials for internal corporations when the above-mentioned structures, especially concrete structures, have become neutralized or deteriorated over time, and have also been used as grafting materials for backfilling of roads. Cement mortar was used.

しかし、セメントモルタルは一般に長期に亘る乾燥収縮
等の物理的作用や酸類、塩類等の化学的作用による亀裂
の発生が免れないという欠点がらり、又、エポキシ樹脂
は樹脂自身の硬化強度は充分高めものの、セメントモル
タルとのなじみが悪い為と推察されるが、注入された該
樹脂の周囲のコンクリートに順次亀裂を発生せしめる傾
向があった。
However, cement mortar generally has the disadvantage of being prone to cracking due to long-term physical effects such as drying shrinkage or chemical effects such as acids and salts, and epoxy resins have a sufficiently high curing strength. This is presumably due to poor compatibility with cement mortar, but there was a tendency for cracks to occur in the concrete surrounding the injected resin.

本発明は、上記従来のグラフト材の欠点を解消し耐久性
、防水性の高い構造体補強用グラフト材を提供すること
を目的とするもので、その要旨はセメント100重量部
に対しポリマー5〜50重量部及び@1骨材20〜30
0重量部及び水40〜70重量部が含有されてなること
を特徴とする構造体補強用グラフト材に存する。
The purpose of the present invention is to eliminate the drawbacks of the conventional graft materials mentioned above and provide a highly durable and waterproof graft material for reinforcing structures. 50 parts by weight and @1 aggregate 20-30
0 parts by weight and 40 to 70 parts by weight of water.

本発明に用いられるセメントの具体例としては普通ポル
トランドセメント、早強ポルトランドセメント、コロイ
Fセメント等のポルトランドセメントやフライアッシュ
セメント膨張性セメント等の混合セメント及びアルミナ
セメント等が挙げられ1粒径の小さいフロイFセメント
やセメント硬化時に膨張するかもしくは無収縮の膨張性
セメントが特に好ましく用いられる。膨張性セメントに
混和される膨張材もしくけ収縮等のものが用いられる。
Specific examples of the cement used in the present invention include ordinary Portland cement, early-strength Portland cement, Portland cement such as Colloy F cement, mixed cement such as fly ash cement, expandable cement, and alumina cement. Particularly preferred are Floy F cement and expandable cement that expands or does not shrink when the cement hardens. Expanding materials mixed with expandable cement, shrinkable materials, etc. are used.

本発明に用いられるポリマーは高分子混和材とも呼ばれ
、本発明グラフト材硬化物中にポリマーとして存在しそ
の耐衝撃性や構造体への接着性、防水性等を改善する目
的で混和されるもので、具体例としては天然ゴム、クロ
ロプレンゴム、ゲタジエンゴム、スチレン−ゲタジエン
ゴム、アクリロニトリル−ブタジェンゴム、メチルメタ
クリレート−ゲタジエンゴム等の合成ゴム、ポリ酢酸ビ
ニル、エチレン−酢酸ビニル共重合体、スチレン−アク
リル系共重合体、ポリアクリル酸エステル、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリプロピオン酸ビニル等
が挙げられる。これらは天然ゴムを除いて多くは乳化重
合法により合成され、次いで必要により安定剤、消泡剤
等が添加され、通常はエマルジョンもしくけラテックス
の形態で用いられる。
The polymer used in the present invention is also called a polymer admixture, and is present as a polymer in the cured graft material of the present invention, and is mixed for the purpose of improving its impact resistance, adhesion to structures, waterproofness, etc. Specific examples include synthetic rubbers such as natural rubber, chloroprene rubber, getadiene rubber, styrene-getadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-getadiene rubber, polyvinyl acetate, ethylene-vinyl acetate copolymer, and styrene-acrylic copolymer. Polyvinyl chloride, polyvinylidene chloride, vinyl polypropionate, and the like can be mentioned. Most of these materials, except for natural rubber, are synthesized by emulsion polymerization, and then stabilizers, antifoaming agents, etc. are added as necessary, and they are usually used in the form of emulsions or latexes.

上期ポリマーのうち防水性、セメント系構造体及びレン
ガ等の無機質材料への接着性、可撓性、衝撃強度、経済
性等の面からスチレン−ブタジェンゴム、アタリロニト
リルーグタジェンゴム、エチレン−酢酸ビニル共重合体
、スチレン−アクリル系共重合体等が好ましく、特にス
チレン−ゲタジエンゴム及びエチンンー酢酸ビニル共重
合体が好ましく用いられる。しかしてこれらポリマーは
少な過ぎると上記作用が発現されず多過ぎると硬化後の
グラフト材強度が不充分となるので、セメント100重
量部に対して5〜50重量部好ましくけ7〜20重量部
とされる。
Among the first-generation polymers, styrene-butadiene rubber, atarylonitrile-butadiene rubber, and ethylene-acetic acid are preferred due to their waterproof properties, adhesion to inorganic materials such as cement structures and bricks, flexibility, impact strength, and economic efficiency. Vinyl copolymers, styrene-acrylic copolymers, and the like are preferred, with styrene-getadiene rubber and ethyne-vinyl acetate copolymers being particularly preferred. However, if the amount of these polymers is too small, the above effect will not be achieved, and if it is too large, the strength of the graft material after hardening will be insufficient. be done.

骨材としては、粒径が5%以下のものが85%以上を占
める所謂細骨材−が多用されるが、例えば障道の裏込め
注入用には細骨材と共に粗骨材が使用され得る。細骨材
としては無水ケイ酸を主成分とする粒径2%以下、特に
1%以下のグイ砂が好ましく用いられ、又、軽量膏剤と
してはフライアッシュ等が用いられる。骨材の量が少な
過ぎる七グラクト材の硬化後の強度等が不充分となり多
過ぎると流動性が低下するので、その使用量はセメント
100重量部に対して20〜300重量部、好ましくは
50〜200重量部とされる。亀裂の生じた構造体内部
に注入したり主に止水を目的とする場合は骨材の使用量
を少くして後述する防水性化剤を添加してもよめ。水の
量は多過ぎると硬化したグラフト材の強度が不充分とな
り更に該硬化グラフト材中に水分の蒸発に伴う極めて微
細な空隙を残存せしめて耐久性をも低下せしめ、少な過
ぎるとセメントとの水和反応が不充分となり又流動性も
悪いので、セメント100重量部に対しポリマーラテッ
クスもしくけエマルジョンに含まれている水及び現場で
新たに加える水の合計量で40〜70重量部好オしくけ
50〜70重量部とされる。
As aggregate, so-called fine aggregate, in which 85% or more of the aggregate has a particle size of 5% or less, is often used, but for example, coarse aggregate is used together with fine aggregate for backfilling of barriers. obtain. As the fine aggregate, silica sand containing silicic anhydride as a main component and having a particle size of 2% or less, particularly 1% or less is preferably used, and as the lightweight paste, fly ash or the like is used. If the amount of aggregate is too small, the strength etc. of the gract material after hardening will be insufficient, and if it is too large, the fluidity will decrease, so the amount used is 20 to 300 parts by weight, preferably 50 parts by weight, per 100 parts by weight of cement. ~200 parts by weight. If it is injected into a cracked structure or the main purpose is to stop water, reduce the amount of aggregate used and add a waterproofing agent as described below. If the amount of water is too large, the strength of the hardened graft material will be insufficient and furthermore, extremely fine voids will remain in the hardened graft material due to evaporation of water, reducing durability. Since the hydration reaction will be insufficient and the fluidity will be poor, it is recommended that the total amount of water contained in the polymer latex and the water added at the site be 40 to 70 parts by weight per 100 parts by weight of cement. The amount is 50 to 70 parts by weight.

本発明グラクト材は後述する様に一゛成物「が従来のセ
メントモルタルに比して大きな防水性能を有するが、更
にすぐれた防水性を付与する目的で各種防水性化剤を添
加してもよい。
As will be described later, the gruct material of the present invention has greater waterproofing performance as a single product than conventional cement mortar, but it is also possible to add various waterproofing agents for the purpose of providing even better waterproofing. good.

防水性化剤の好適な例としてけ酸化アルミニクム対二酸
化ケイ素のモル比が1:1〜1:10の非晶質ケイ酸ア
ルミニウムもしくけその水和物が挙げられる。
A suitable example of the waterproofing agent is an amorphous aluminum silicate or a hydrate thereof having a molar ratio of aluminum silicate to silicon dioxide of 1:1 to 1:10.

非晶質ケイ酸アルミニクムとけケイ峻アルミニクムの各
原子の周期的配列即ち結晶格子が殆んど認められないも
のを意味し、このことは、単色X線を用い横軸を回折角
度、縦軸を回折線の強度とする上記ケイ酸アルミニクム
のX線粉末回折スペクトルをとった場合に、緩やかな山
形図形が得られる丈で結晶格子が存在していれば必ず生
ずる特有のピークが表われないことから判断される。
Amorphous aluminum silicate refers to a periodic arrangement of each atom of silicic aluminum, that is, almost no crystal lattice is observed. When taking the X-ray powder diffraction spectrum of the above aluminum silicate, which is used as the intensity of the diffraction line, the characteristic peak that would necessarily occur if a crystal lattice exists at a length that allows a gentle chevron pattern to be obtained does not appear. be judged.

上記非晶質ケイ酸アルミニウムは、例えば、硫酸アルミ
ニウムとケイ酸ナトリウムを夫々適宜量の水に溶解した
後該水溶液を混合し、反応溶液中でPH及び温度等を調
整しながら両者を反応させて得られる。温度等の反応条
件を調整することにより酸化アルミニクム対二酸化ケイ
素のモル比が適宜のものが合成される。アルカリ水溶液
への溶解性が良好な点ではケイ酸アルミニウム中の二酸
化ケイ素が多い程、即ち上記モル比が小さい程好ましい
が、製造の容易さの面も考慮すれば酸化アルミニクム対
二酸化ケイ素のモル比が略1:9のものが最も好ましい
The above-mentioned amorphous aluminum silicate can be produced by, for example, dissolving aluminum sulfate and sodium silicate in appropriate amounts of water, mixing the aqueous solutions, and reacting the two while adjusting the pH, temperature, etc. in the reaction solution. can get. By adjusting reaction conditions such as temperature, a product having an appropriate molar ratio of aluminum oxide to silicon dioxide can be synthesized. In terms of good solubility in aqueous alkaline solutions, the more silicon dioxide in aluminum silicate, that is, the lower the above molar ratio, the better; however, when considering ease of production, the molar ratio of aluminum oxide to silicon dioxide It is most preferable that the ratio is approximately 1:9.

一方上記非晶質ケイ酸アルミニクムは火山灰層の粘土鉱
物中にも水和物として存在し、少量の結晶性部分を含有
した場合を含めてアロフェンと総称されているが、これ
迄アロフェンに明確な結晶格子が存在するとの報告けな
されていない。アロフェン中の酸化アルミニウム対二酸
化ケイ素のモル比は1:1〜1:2であるが同じモル比
の上記合我非晶質ケイ酸アルミニクムとアロフェンとを
比較するとその原因は明確でないがアルカリ分への溶解
性は合成非晶質クイ酸アルミニクムの方が極めて良好で
ある。
On the other hand, the above-mentioned amorphous aluminum silicate also exists as a hydrate in the clay minerals of volcanic ash layers, and is collectively called allophane, including cases where it contains a small amount of crystalline part. Reports that a crystal lattice exists have not been disparaged. The molar ratio of aluminum oxide to silicon dioxide in allophane is 1:1 to 1:2, but when comparing the above-mentioned amorphous aluminum silicate with the same molar ratio and allophane, the reason is not clear, but the alkaline content The solubility of synthetic amorphous aluminum citrate is much better.

本発明においては、通常は上記合成非晶質ケイ酸アルミ
ニクムを用いるが、場合によっては天然の非晶質ケイ酸
アルミニクムを用いてもよい。
In the present invention, the synthetic amorphous aluminum silicate is usually used, but natural amorphous aluminum silicate may be used in some cases.

これらの非晶質ケイ酸アルミニクムの使用量は通常はセ
メント100重量部に対して113〜10重量部、好ま
しくは0.5〜5重量部とされる。
The amount of amorphous aluminum silicate used is usually 113 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of cement.

本発明グラフト材の如きポリマーセメント組成物は、防
水性、コンクリート及びレンガ等の無機質材料に対する
接着性、流動性が従来のセメント組成物よりも優れてい
る点で構造体の補強用もしくは市水用のグラフト材とし
て好ましいものである。
Polymer cement compositions such as the graft material of the present invention are suitable for use in reinforcing structures or municipal water because they have superior waterproof properties, adhesion to inorganic materials such as concrete and bricks, and fluidity compared to conventional cement compositions. It is preferable as a graft material.

即ち、本発明者らの知見によれば、例えばポリマーセメ
ント組成物中のポリマーとしてスチレン−ゲタジエンゴ
ム又はエチレン−酢酸ビニル共重合体を用いた場合、ポ
リマーセメント組成物のレンガに対する引張接着強度は
従来のセメント組成物の強度の約3〜10倍、同じくコ
ンクリートに対する接着強度は約4〜7倍、又JISA
1404に準拠して測定した該組成物の防水性能は約4
0〜60倍である(接着強度、防水性能共にセメントと
して普通ポルトランドセメントを用い、又骨材としては
粒径1fi以下のグイ砂を用い、ポリマーセメント比や
水セメント比及びポリマーの仕様等が通常の使用範囲内
における組成物を比較した値)。
That is, according to the findings of the present inventors, for example, when styrene-getadiene rubber or ethylene-vinyl acetate copolymer is used as the polymer in a polymer cement composition, the tensile adhesive strength of the polymer cement composition to bricks is equal to that of the conventional one. The strength of the cement composition is about 3 to 10 times, and the adhesive strength to concrete is about 4 to 7 times, and the JISA
The waterproof performance of the composition measured in accordance with 1404 is approximately 4
0 to 60 times higher (for both adhesive strength and waterproof performance, ordinary Portland cement is used as the cement, and Gui sand with a particle size of 1 fi or less is used as the aggregate, and the polymer-cement ratio, water-cement ratio, and polymer specifications are normal). Comparison of compositions within the range of use).

更に同様の条件下で縦軸を水セメント比(約α35〜約
(L65)横軸をポリマーセメント比(O〜約0.4)
として等フロー値(A STMC124に準拠して測定
)曲線を描けば、同じフロー値を得る為の水セメント比
はポリマーセメント組成物の場合セメント組成物よりも
約10〜bであればセメント組成物よりもポリマーセメ
ント組成物の方が流動性がよいことが理解される。
Furthermore, under similar conditions, the vertical axis shows the water-cement ratio (about α35 to about (L65)), and the horizontal axis shows the polymer-cement ratio (O to about 0.4).
If we draw an equal flow value (measured according to A STMC 124) curve as, the water-cement ratio to obtain the same flow value is about 10 to It is understood that the polymer cement composition has better fluidity than that of the polymer cement composition.

る。Ru.

脆弱化した既設コンクリート構造体表面に発生している
ひび割t′Lけ幅Q、5%以下の微細なものが多く、か
かる構造体に対してはひび割れに沿って適宜間隔で注入
用パイプを取付け(コンクリート表面を■カットしてパ
イプの宏′端をエポキシ樹脂にて接着固定することが多
い)た後、前記グラフト材をコンプレッサーやプランジ
ャーポンプ等で田送(圧力2〜5即/d程度)しパイプ
を経由してひび割れ中に充填するのである。
Many of the cracks that occur on the surface of weakened existing concrete structures are minute, with a width Q of 5% or less, and injection pipes are installed at appropriate intervals along the cracks in such structures. After installation (often cutting the concrete surface and gluing and fixing the wide end of the pipe with epoxy resin), the graft material is pumped using a compressor or plunger pump (at a pressure of 2 to 5 d/d). It is then filled into the cracks via a pipe.

一方、構造体のひび割れ巾が約0.2〜4%程度ならば
、パイプを取付けずにグラフト材を注入することも可能
である。例えば紙テープをひび割れに対し直角に多数、
間隔を置いて張付けた後、ホットメルト型シール材を薄
く塗布し硬化後テープを剥し取−1て注入口とするので
ある。
On the other hand, if the crack width of the structure is about 0.2 to 4%, it is possible to inject the graft material without attaching the pipe. For example, place many pieces of paper tape at right angles to the crack.
After pasting at intervals, a thin layer of hot-melt sealing material is applied, and after curing, the tape is peeled off to form an injection port.

その後該注入口に機械注入のノズルを当接してグラフト
材を注入する。
Thereafter, a mechanical injection nozzle is brought into contact with the injection port to inject the graft material.

又、隘道のコンクリート覆工背面と他山との聞は事実上
空隙を完全になくすることは困難である。この様な空隙
に注入する所謂裏込め注入の場合は、覆工表面から背面
例匡る貫通孔を穿没し注入用パイプを押入した後、最初
ゆっくりとグラフト材を注入しその後中断することなく
連続して注入(注入圧3〜5 K9 / d程度)して
上記空隙を完全に充填した後注入孔を閉塞して終了する
。上記貫通孔の穿設及びパイプの挿入は予めコンクリー
ト覆工時に行っておいて覆工作業が終了直後にかかる裏
込め注入を行ってもよい。
Furthermore, it is virtually impossible to completely eliminate voids between the back of the concrete lining of the tunnel and other mountains. In the case of so-called backfill injection, which involves injecting into such voids, after drilling a through hole from the lining surface to the back side and pushing in the injection pipe, the graft material is injected slowly at first and then without interruption. After the void is completely filled by continuous injection (injection pressure of about 3 to 5 K9/d), the injection hole is closed to finish. The above-mentioned drilling of the through holes and insertion of the pipes may be performed in advance during concrete lining, and the backfilling may be performed immediately after the lining work is completed.

、更に本発明グラフト材は橋梁のコンクリート製ボック
ス桁やレンガ造り構造体等の補強に用いて好適である。
Furthermore, the graft material of the present invention is suitable for use in reinforcing concrete box girders of bridges, brick structures, and the like.

ボックス桁等に生成される比較的大きな空隙は例えば超
音波診断法によりその存在、位置を確認してからグラフ
ト材を注入する。
The presence and position of a relatively large gap created in a box girder or the like is confirmed by, for example, ultrasonic diagnostics before the graft material is injected.

本発明構造体補強用グラフト材は上述の通りの構成にな
されており、セメント、ポリマー、骨材、水の量が特定
され、従来のセメントモルタルよりも防水性、流動性、
コンクリート等の無れは充分に防水、補強された堅固な
構造体が作業性よく、エポキシsI脂を使用する場合に
比して極めて安価に得られるのである。
The graft material for reinforcing structures of the present invention has the structure described above, and the amount of cement, polymer, aggregate, and water is specified, and it has better waterproofness, fluidity, and fluidity than conventional cement mortar.
Even without concrete, etc., a sufficiently waterproof and reinforced solid structure can be obtained with good workability and at a much lower cost than when using epoxy SI resin.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 人材:  SBRエマルジョン200即(粘度80CP
S以下、固形分4596、水110即)ケイ砂    
         1000即(粒径α5%以下のもの
9096以上)合成非晶質ケイ酸アルミニクム    
  10に9(酸化アルミニウム対二酸化ケイ素の モル比1:9) 上記人材、B材及び水500即を良く混合攪拌して均質
なポリマーセメントモルタルを得た。
Example personnel: SBR emulsion 200 instant (viscosity 80CP
S or less, solid content 4596, water 110) Silica sand
1000 (particle size α5% or less, 9096 or more) synthetic amorphous aluminum silicate
9 to 10 (molar ratio of aluminum oxide to silicon dioxide 1:9) The above personnel, material B, and 500 g of water were well mixed and stirred to obtain a homogeneous polymer cement mortar.

このモルタルの材令7日以降の硬化膨張特性は畏さ変化
率で約0.03〜[104%(JISA1125コンパ
レーター法に準拠して測定)であった。
The curing and expansion characteristics of this mortar after 7 days of age were approximately 0.03 to 104% (measured in accordance with the JISA 1125 comparator method) in terms of rate of change.

一方、建造後約3年を経過したコンクリート床に上記ポ
リマーセメントモルタルを5に9/dの割合で2m”を
塗布し常温気乾養生にで硬化させ、3日後から撒水装置
を使用して該塗布層全面を含む約5TIの面積に区って
昼間60分間及び夜間60分間毎日100//m’、時
間の割合で撒水しこの撒水を1年間継続したが床表面と
ポリマーセメントモルタル層とは剥離せず上記グイ酸ア
ルミニウムの防水化材としての性能が確認された。
On the other hand, 2 m'' of the above polymer cement mortar was applied to a concrete floor that had been constructed for about 3 years at a ratio of 5 to 9/d, cured at room temperature and air-dried, and after 3 days, water was applied using a water spraying device. Water was sprinkled at a rate of 100//m' every day for 60 minutes during the day and 60 minutes at night in an area of approximately 5TI including the entire surface of the coating layer, and this watering was continued for one year, but the floor surface and polymer cement mortar layer were No peeling occurred, confirming the performance of the above-mentioned aluminum guic acid as a waterproofing material.

隘道の天頂部ど覆工背面との間に約α5dの空隙が存在
し他の部分は密にコンクリートが打設された@道に上記
ポリマーセメントモルタルをグラフト材上して用いた。
The above polymer cement mortar was used as a graft material on a @way where a gap of approximately α5d existed between the zenith of the tunnel and the back of the lining, and the other parts were densely concreted.

慢エコンクリートのの漏水が7111属された。7111 cases of water leakage in concrete were classified.

天頂部の覆工表面から背面にσって貫通孔を設は内径3
5%のパイプを挿入し、上記グラフト材を3〜4に9/
cIIの圧力で送給して上記空隙を完全に充填し貫通孔
を閉塞した。漏水は数日後に止まり半年後も同様に良好
な状態を維持していた。
A through hole is set at σ from the lining surface at the top to the back side with an inner diameter of 3
Insert the 5% pipe and add the above graft material to 3-4 to 9/9
It was fed at a pressure of cII to completely fill the gap and close the through hole. The water leakage stopped after a few days, and the condition remained in good condition six months later.

特許出順人 積水化学工業株式会社 代表者藤沼基利Patent issuer Sekisui Chemical Co., Ltd. Representative Mototoshi Fujinuma

Claims (1)

【特許請求の範囲】 L セメント100重量部に対しポリマー5〜50重量
部及び骨材20〜300重量部及び水40〜70重量部
が含有されてなることを特徴とする構造体補強用グラフ
ト材。 2 セメントがコロイFセメントであるI!IJ1項記
載のグラフト材。 入 セメントが膨張性セメントである第1項又は第2項
記載のグラフト材。 生 ポリマーがエチレン−酢酸ビニル共重合体である第
1項〜第3項記載のグラフト材。 5、ハリマーがスチレン−ゲタジエンゴムである@1項
〜@3項記載のグラフト材。
[Claims] L: A graft material for reinforcing a structure, which contains 5 to 50 parts by weight of polymer, 20 to 300 parts by weight of aggregate, and 40 to 70 parts by weight of water per 100 parts by weight of cement. . 2 The cement is Colloy F cement I! The graft material described in Section IJ1. The graft material according to item 1 or 2, wherein the cement is an expandable cement. 3. The graft material according to items 1 to 3, wherein the raw polymer is an ethylene-vinyl acetate copolymer. 5. The graft material according to @1 to @3, wherein the halimer is styrene-getadiene rubber.
JP7807683A 1983-05-02 1983-05-02 Grouting material for reinforcement of structure Pending JPS59202279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7807683A JPS59202279A (en) 1983-05-02 1983-05-02 Grouting material for reinforcement of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7807683A JPS59202279A (en) 1983-05-02 1983-05-02 Grouting material for reinforcement of structure

Publications (1)

Publication Number Publication Date
JPS59202279A true JPS59202279A (en) 1984-11-16

Family

ID=13651746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7807683A Pending JPS59202279A (en) 1983-05-02 1983-05-02 Grouting material for reinforcement of structure

Country Status (1)

Country Link
JP (1) JPS59202279A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722954A (en) * 1985-02-14 1988-02-02 Gerald Hallworth Formation of solid polymeric material comprising a latex and a filler mixture of silica and xanthan gum
US4978402A (en) * 1987-11-06 1990-12-18 The Dow Chemical Company Formation of flexible laminates by bonding a backing to a pre-coated substrate
US5022948A (en) * 1988-06-16 1991-06-11 The Dow Chemical Company Method of bonding layers using discrete areas of adhesive
GB2438072A (en) * 2006-05-09 2007-11-14 Glenn Melvin A dry composition for preparing a flowable mixture for acoustic sound insulation
KR100958381B1 (en) 2009-12-14 2010-05-17 임일형 A silicate waterproofing coating composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160357A (en) * 1980-05-14 1981-12-10 Kowa Chem Ind Ltd Water stopping method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160357A (en) * 1980-05-14 1981-12-10 Kowa Chem Ind Ltd Water stopping method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722954A (en) * 1985-02-14 1988-02-02 Gerald Hallworth Formation of solid polymeric material comprising a latex and a filler mixture of silica and xanthan gum
US4781781A (en) * 1985-02-14 1988-11-01 Gerald Hallworth Formation of solid polymeric material
US4978402A (en) * 1987-11-06 1990-12-18 The Dow Chemical Company Formation of flexible laminates by bonding a backing to a pre-coated substrate
US5022948A (en) * 1988-06-16 1991-06-11 The Dow Chemical Company Method of bonding layers using discrete areas of adhesive
GB2438072A (en) * 2006-05-09 2007-11-14 Glenn Melvin A dry composition for preparing a flowable mixture for acoustic sound insulation
GB2438072B (en) * 2006-05-09 2011-09-07 Glenn Melvin Acoustic coating composition
KR100958381B1 (en) 2009-12-14 2010-05-17 임일형 A silicate waterproofing coating composition

Similar Documents

Publication Publication Date Title
US4455171A (en) Reactivatable set-inhibited cementitious compositions
DE60102765T2 (en) Particle coated bonding systems for casting hydratable cement compositions and methods of forming such bonding systems
CN103951365B (en) Silicate cement-aluminosulfate cement-gypsum-polymer composite water-proof mortar and preparation method thereof
CN108675699A (en) A kind of corrosion-resistant geopolymer filling concrete pile material and preparation method thereof and construction technology
BRPI0611677A2 (en) quick binder compositions containing a calcium salt for concrete components and structures
JP2006528933A (en) Screed containing recycled glass waste
CN108793935B (en) Precast dry material sprayed concrete
BR0313859B1 (en) cement based mortar, and method for laying tiles.
US20150191643A1 (en) Use of catalyst composition for cementing a wellbore and cement slurry for the same
JPS59202279A (en) Grouting material for reinforcement of structure
CN1800291A (en) Water-proofing material for stopping leak
Shah et al. Chemical admixtures: a major role in modern concrete materials and technologies
JP2008024576A (en) Tunnel waterproofing material containing nano-sized inorganic reaction promotor
CN208634539U (en) The waterproof construction of direct-buried pipe through walls afterwards
US6465048B1 (en) Method of improving shotcrete technology
GB2288393A (en) Cementitious coatings
JPH0243880B2 (en)
JPS6215502B2 (en)
Ohama et al. Introducing process technology and applications of polymer-modified mortar and concrete in construction
CN106810172A (en) A kind of metope sealing agent and application method
JP2000072503A (en) Coated fine aggregate, cement composition and production of cement composition
US20180086667A1 (en) Cement Containing Forms with Insulating Properties
JPS61281083A (en) Super thick paint material
CN108643050A (en) A kind of method for blocking in wall-through pull rod hole
Wang et al. Status of research and application of concrete-polymer composites in China