JPS59202075A - Diagnosis of insulation deterioration of power cable - Google Patents

Diagnosis of insulation deterioration of power cable

Info

Publication number
JPS59202075A
JPS59202075A JP58076885A JP7688583A JPS59202075A JP S59202075 A JPS59202075 A JP S59202075A JP 58076885 A JP58076885 A JP 58076885A JP 7688583 A JP7688583 A JP 7688583A JP S59202075 A JPS59202075 A JP S59202075A
Authority
JP
Japan
Prior art keywords
cable
water
component
water treeing
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58076885A
Other languages
Japanese (ja)
Other versions
JPH0376431B2 (en
Inventor
Kenichiro Soma
杣 謙一郎
Makoto Shibata
誠 柴田
Kazuo Kotani
一夫 小谷
Satoru Yamamoto
哲 山本
Teruo Yoshimoto
吉本 照夫
Yorio Ando
安藤 順夫
Tadayoshi Ikeda
池田 忠禧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP58076885A priority Critical patent/JPS59202075A/en
Publication of JPS59202075A publication Critical patent/JPS59202075A/en
Publication of JPH0376431B2 publication Critical patent/JPH0376431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To prevent a dielectric breakdown accident caused by a water treeing of a power cable, by detecting the water treeing generated to the power cable in a hot-line state. CONSTITUTION:A power source transformer 1, an earthing transformer 3 and a cable 4 to be measured are connected to a high voltage matrix line 2 and a DC component measuring apparatus 6 is connected to the earthing wire 5 drawn out from the metal shield layer of the cable 4. AC voltage is applied to the cable 4 while the DC component of the current of the earthing wire 5 is detected and the polarity, the density and the time characteristics thereof are analyzed. By this method, the presence or absence of a water treeing the magnitude and the generating direction of the water treeing in the cable insulator are detected and the propriety in the use continuation of the cable is judged.

Description

【発明の詳細な説明】 本発明は、コノ・・プラスチック絶縁電カケープル、主
として架橋ポリエチレン絶縁型カケープル((Σ\!ケ
ーソノ【)ζ−)絶縁劣化診断法1法に関するものであ
る。。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to insulation deterioration diagnosis method 1 for plastic insulated electrical cables, mainly cross-linked polyethylene insulated cables ((Σ\! KEISONO[)ζ-). .

(−Xり一ノル・の絶縁劣化は、主として水トリーに上
ることか明らかと:なっている。しだが′−)て、(\
“り−−−)・し・の絶佳劣化による絶縁破壊事故を未
、シ(ごIt−、1X)jぐには、・二の水1リ−の発
生を〕、tすることが重要である。
(It is clear that the insulation deterioration of -X Riichinor is mainly due to the water tree.
In order to prevent dielectric breakdown accidents due to severe deterioration of the insulation, it is important to prevent the occurrence of water leakage.

従来、この水トリーの検知手段としては、いわゆる停止
線路から採取したケーブル、すなわち絶縁破壊事故が起
ったケーブル、あるいは充電を停止して絶縁診断し要注
意となったケーブルからケーブル絶縁体の一部を採取し
、煮υ1)あるいは染色して目視あるいは光学顕微鏡下
で観察して始めて水トリーの存在を確認できる方法と、
最近報告された停止線路に直流電圧を印加し、印加停t
lr後ケーブルに蓄積された電荷を測定し、7k l−
’)−の発生を予想する方法の2つがある。しかしなか
ら、両者とも線路停止後に水トリーを検知するものであ
り、活線路の水トリーによる絶縁破壊月1故を確実に防
ぐことはできなかった。
Conventionally, this water tree detection method has been to collect cables taken from so-called stopped lines, that is, cables where an insulation breakdown accident has occurred, or cables whose charging has been stopped and insulation diagnosis has been performed, and one of the cable insulators has been collected from a cable that requires attention. A method in which the presence of water trees can be confirmed only by collecting the parts, boiling them, or staining them and observing them visually or under an optical microscope.
Applying DC voltage to a recently reported stopped line, the application stops t
Measure the charge accumulated on the cable after lr, 7k l-
There are two ways to predict the occurrence of ')-. However, both systems detect water trees after the line has stopped, and cannot reliably prevent insulation breakdown caused by water trees on live lines.

本発明の目的は、前記した従来技術の欠点を解消し、活
線状態(あるいは停止状態)の電カケープルに発生した
水トリーを検知し、電カケープルの水トリーによる絶縁
破壊事故を未然に防はことのできる新規な方法を提供す
ることにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, to detect water trees occurring in live (or stopped) power cables, and to prevent insulation breakdown accidents due to water trees in power cables. The objective is to provide a new method that can

すなわち、本発明の要旨は、活線路で絶縁劣化診断の対
象とする電カケープル(あるいは停止及び撤去ケーブル
)に交流電圧を印加し、その接地線電流の中から直流分
を検出して、その極性、大きさ及び時間特性を解析し、
水トリーの有無大きさ及0・発生方向を検出し、上記ケ
ーブルの使用継続の可否を判定することにある。
In other words, the gist of the present invention is to apply AC voltage to a power cable (or stop and remove cable) that is subject to insulation deterioration diagnosis on a live line, detect the DC component from the grounding line current, and determine its polarity. , analyze the size and time characteristics,
The purpose of this method is to detect the presence, size, and direction of water trees and determine whether or not the cable can be continued to be used.

ところで本発明者らは、水トリー現象について研究して
いる過程で次の新しい事実を発見した。
By the way, the present inventors discovered the following new fact in the process of researching the water tree phenomenon.

J:DI究に用いたケーブルは、6 KV、100−1
150−1250−及び400mACVケーブルで、正
常ケーブル4試料と強制劣化させたケーブル100試刺
である。
J: The cable used for DI research is 6 KV, 100-1
150-1250- and 400mACV cables, 4 samples of normal cables and 100 test runs of forcedly degraded cables.

これらの試別に61A1級Cvケーブルの使用電圧であ
る交流3.8 KVをケーブルの導体側から印加し、ケ
ーブル遮へい層側から直流分を測定し、同−試別で交流
破壊試験を行なった後、水トリーの観察を行なった。な
お、ケーブル有効長は各試別とも10 +++である。
During these trials, AC 3.8 KV, which is the working voltage of 61A1 class Cv cable, was applied from the conductor side of the cable, and the DC component was measured from the cable shielding layer side, and after performing an AC breakdown test in the same trial. , we observed water trees. The effective length of the cable is 10 +++ for each trial.

観察された水トリーのケーブル絶縁体に占める体積(%
)と11n3当りの直流分(導体サイズか異なるため1
 m’ Aりで換算)との関係を第1図に示す。なお、
図中(イ)はケーブルの内部半導電層側より発生する水
’、−1) −1いわゆる内導水トリー、(ロ)はケー
ブルの外部半導電層側より発生する水トリー、いわゆる
外導水トリーの場合を示す線である。これより直流分の
絶対値の大きいり一−ブルはど発生している水トリーの
絶縁体に占める体積が大きいことがわかる。
Volume occupied by cable insulation of observed water trees (%)
) and the DC component per 11n3 (1 due to the difference in conductor size)
Figure 1 shows the relationship between m' (converted by A). In addition,
In the figure, (a) shows the water generated from the inner semiconductive layer side of the cable, -1) -1 so-called inner water guide tree, and (b) shows the water tree generated from the outer semiconductive layer side of the cable, the so-called outer water guide tree. This line shows the case of . It can be seen from this that when the absolute value of the DC component is large, the volume occupied by the insulator of the water tree generated is large.

第2図は、水トリーかケーブル絶縁体に占める体積ど内
・外導水1− リ−の最大長の関係を示す結果である。
Figure 2 shows the relationship between the maximum length of the water tree or cable insulator for guiding water inside and outside the volume.

この結果より、水トリーがケーブル絶縁体に占める体積
か大きいほど水トリーの最犬長か大きいことがわかる。
From this result, it can be seen that the larger the volume occupied by the water tree in the cable insulation, the greater the maximum length of the water tree.

捷だ、第3図は、ケーブルの交流破壊電圧と1m°当り
の直流分の絶対値の関係を示したものである。この結果
から、直流分の大きいケーブルはど交流電圧に対する絶
縁破壊強度が低下していることがわかる。
Figure 3 shows the relationship between the cable's AC breakdown voltage and the absolute value of the DC component per 1 m°. This result shows that the cable with a large DC component has a lower dielectric breakdown strength against AC voltage.

上述したことにより、次のことが言える。Based on the above, the following can be said.

(1)直流分の発生は、水トリーの発生に起因し、内導
水トリーが発生した場合は負極性、外導水トリーか発生
した場合は正極性の直流分が発生する。
(1) The generation of a DC component is due to the generation of water trees; if an internal water tree occurs, a negative polarity DC component is generated, and if an external water tree occurs, a positive polarity DC component is generated.

(2)的流分の絶対値が大きいほど、水トリーがケーブ
ル絶縁体に占める体積が太きい。
(2) The larger the absolute value of the target flow, the larger the volume that the water tree occupies in the cable insulation.

(3)直流分の絶対値か大きいほど、長い水トリが発生
している。
(3) The larger the absolute value of the DC component, the longer the water retention occurs.

以上のことから、直流分の極性及び大きさを検出するこ
とにより、ケーブル中の水1・’J−の有無、大きさ及
び発生方向を知ることかでき、ケーブルの運転中の絶縁
破壊事故を未然に防ぐことができる。
From the above, by detecting the polarity and magnitude of the DC component, it is possible to know the presence, magnitude, and direction of water in the cable, thereby preventing insulation breakdown accidents during cable operation. It can be prevented.

次に、第4図及び第5図により本発明の詳細な説明する
Next, the present invention will be explained in detail with reference to FIGS. 4 and 5.

第4図は、3心一括のCVケーブルを対象とする場合、
第5図は単心形のCvケーブルを対象とする場合の実施
例である。図中1は電源変圧器、2 kl胃1″:、”
H’、’(i圧旬線、3は接地用変圧器、4.4′は被
測定CVケーブル、5.5′はケーブルの金属遮へい層
から引き出された接地線である。6は直流分測定装置て
あり、p波回路、増巾回路、演等回路、べ示装jFi、
を有している8 以上の本実施例は、交流電圧を印加したC■ケーブルの
金属遮へい層側から接地線電流のうちの直流分を検出し
て、水トリーの不無、大きさ、発生方向を検知するもの
であることから、活線状態のケーブルはもちろんのこと
、所定の交流T13)圧を印加することにより何・止線
路のケーブル及び撤去ケーブルの水トリー検知にも適用
できる。
Figure 4 shows that when a three-core CV cable is targeted,
FIG. 5 shows an embodiment in which a single-core Cv cable is targeted. In the figure, 1 is the power transformer, 2 kl stomach 1'':,''
H','(i compression wire, 3 is the grounding transformer, 4.4' is the CV cable to be measured, 5.5' is the grounding wire drawn out from the metal shielding layer of the cable. 6 is the DC component) There are measurement devices, p-wave circuit, amplification circuit, performance circuit, base station jFi,
8 This embodiment described above detects the DC component of the ground line current from the metal shielding layer side of the C cable to which an AC voltage is applied, and determines the presence, size, and occurrence of water trees. Since it detects the direction, it can be applied not only to live cables, but also to water tree detection of cables on stop tracks and removed cables by applying a predetermined AC T13) pressure.

以」−のように、本発明によれば、電カケープルの水ト
リーの発生状況を検出することにより、ケーブルの絶縁
劣化状態を正確に知ることができ、従ってケーブルの破
壊事故を、延いては停電事故を未然に防ぐことかでき、
電力需要家への損害のトリーが絶縁体に占める体積との
関係を示す図、第2図は内・外導水トリーの最大長と水
トリーがケーブル絶縁体に占める体積の関係を示す図、
第3図はケーブル絶縁体1 ++z’当りの直流分の絶
対値とケーブルの交流破壊電圧の関係を示す図、第4図
及び第5図は本発明の詳細な説明図である。
As described above, according to the present invention, by detecting the occurrence of water trees in power cables, it is possible to accurately know the state of insulation deterioration of the cables, thereby preventing cable breakdown accidents. It is possible to prevent power outage accidents,
Figure 2 shows the relationship between the maximum length of the inner and outer water guiding trees and the volume that the water tree occupies in the cable insulation;
FIG. 3 is a diagram showing the relationship between the absolute value of the DC component per cable insulator 1++z' and the AC breakdown voltage of the cable, and FIGS. 4 and 5 are detailed explanatory diagrams of the present invention.

(1電源変圧器) (2高電圧母線) (3接地用変圧器) (4,4′、被測定C〜′ケーブル) (5,5′ 接地線) (6:直流分測定装置) 第2日 7I(トリー力ゝ γ−)lし絶縁4本に占める4本願
  (刈 第1頁の続き ■発 明 者 池田忠嬉 日立市日高町5丁目1番地日立 電線株式会社日高工場内 1事件の表示 昭和 58 年  特  許  願第  76885 
  号2発明の名称 電カケープルの絶縁劣化診断法 3 補正をする者 4 代  理  人〒100 5) 補正の対象 図面中箱4図及び第5図。
(1 power transformer) (2 high voltage bus) (3 grounding transformer) (4, 4', C to ' cable to be measured) (5, 5' grounding wire) (6: DC component measuring device) 2nd Day 7 I (Tree force γ-) 4 insulations (Continued from page 1) Inventor Tadayuki Ikeda Hitachi Cable Co., Ltd. Hidaka Factory 1, 5-1 Hidaka-cho, Hitachi City Case description 1982 Patent Application No. 76885
No. 2 Name of Invention Diagnosis Method for Insulation Deterioration of Electric Capable 3 Person Making Amendment 4 Agent 〒100 5) Boxes 4 and 5 in the drawing to be amended.

(5補正の内容 別紙の通り。(Contents of 5 amendments As per attached sheet.

7  aイhイリを与力1のL)録 袖止後の第4図及び第55図 を記載した図面。        1通以    上7 A) Figures 4 and 55 after cuff closure A drawing showing the. 1 or more copies

Claims (1)

【特許請求の範囲】[Claims] 11i11定対象とする電カケープル交流電圧を印加し
、その接地線電流のうち直流分を検出して、その極性、
大きさ及び時間!Iも性を解析し、もってケーブル絶縁
体中の水1− ’J−の有無、大きさ、発生方向を検知
して、上記ケーブルの使用継続のり否を判定−4−るこ
とを特徴とする電力ケーブルの絶縁劣化診断法。
11i11 Apply AC voltage to the target power cable, detect the DC component of the grounding wire current, and determine its polarity.
Size and time! The present invention is characterized in that it is possible to determine whether or not to continue using the cable by analyzing the water content and detecting the presence, size, and direction of water in the cable insulator. A method for diagnosing insulation deterioration of power cables.
JP58076885A 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable Granted JPS59202075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076885A JPS59202075A (en) 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076885A JPS59202075A (en) 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable

Publications (2)

Publication Number Publication Date
JPS59202075A true JPS59202075A (en) 1984-11-15
JPH0376431B2 JPH0376431B2 (en) 1991-12-05

Family

ID=13618087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076885A Granted JPS59202075A (en) 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable

Country Status (1)

Country Link
JP (1) JPS59202075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980645A (en) * 1988-02-22 1990-12-25 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of a power cable
JPH05209921A (en) * 1991-05-31 1993-08-20 Tokyo Electric Power Co Inc:The Insulation deterioration judging method for three-phase power cable
CN112557842A (en) * 2020-11-24 2021-03-26 西南交通大学 XLPE cable aging state evaluation method based on dielectric constant evaluation factor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980645A (en) * 1988-02-22 1990-12-25 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of a power cable
JPH05209921A (en) * 1991-05-31 1993-08-20 Tokyo Electric Power Co Inc:The Insulation deterioration judging method for three-phase power cable
CN112557842A (en) * 2020-11-24 2021-03-26 西南交通大学 XLPE cable aging state evaluation method based on dielectric constant evaluation factor
CN112557842B (en) * 2020-11-24 2021-09-21 西南交通大学 XLPE cable aging state evaluation method based on dielectric constant evaluation factor

Also Published As

Publication number Publication date
JPH0376431B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
CN109917235B (en) Method for detecting conductivity defect of cable buffer layer
Khan et al. A review of condition monitoring of underground power cables
Lai et al. Investigation of tail pipe breakdown incident for 110 kV cable termination and proposal of fault prevention
Kemari et al. Experimental investigation and signal processing techniques for degradation assessment of XLPE and PVC/B materials under thermal aging
Gu et al. Application of chaos synchronization technique and pattern clustering for diagnosis analysis of partial discharge in power cables
JPS59202075A (en) Diagnosis of insulation deterioration of power cable
CN110658432B (en) Method for evaluating moisture degree of cable terminal of power distribution network
JPH03206976A (en) Diagnosis of insulation
JPS59202077A (en) Diagnosis of insulation deterioration of power cable
JPS6331747B2 (en)
CN106383290A (en) Test method for on-line test of leakage current of direct-current arrester
JPS59202073A (en) Diagnosis of insulation deterioration of power cable
Ebinuma et al. Discussion on measurement method of insulation diagnosis for 22kV XLPE Cable
Wei et al. Study on DC component method for hot-line XLPE cable diagnosis
Bahder et al. In service evaluation of polyethylene and crosslinked polyethylene insulated power cables rated 15 to 35 kV
Wong et al. Investigation of partial discharge severity at XLPE cable without termination
CN213069063U (en) Cable insulation defect partial discharge measuring device applying interference
CN112710935B (en) Power wire and cable protective layer ablation condition pre-alarming system and method
Pradhan Electrical breakdown strength of 5 kV ethylene propylene rubber (EPR) cable under ac voltage
CN214122372U (en) A on-line monitoring device for arrester state
JPS60216276A (en) Diagnosis of insulating deterioration of power cable
JPH04242176A (en) Diagnosis of deterioration in insulation of power cable
JPH0378588B2 (en)
JP2017026491A (en) Deterioration diagnosis method of of cable
JPH0412283A (en) Method for diagnosing degradation in insulation of power cable