JPS59201971A - Method of controlling ignition timing for internal-combustion engine - Google Patents

Method of controlling ignition timing for internal-combustion engine

Info

Publication number
JPS59201971A
JPS59201971A JP58075896A JP7589683A JPS59201971A JP S59201971 A JPS59201971 A JP S59201971A JP 58075896 A JP58075896 A JP 58075896A JP 7589683 A JP7589683 A JP 7589683A JP S59201971 A JPS59201971 A JP S59201971A
Authority
JP
Japan
Prior art keywords
engine
ignition timing
engine speed
value
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58075896A
Other languages
Japanese (ja)
Inventor
Kazuhiko Norota
一彦 野呂田
Toshimitsu Ito
利光 伊藤
Nobuyuki Kobayashi
伸行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58075896A priority Critical patent/JPS59201971A/en
Publication of JPS59201971A publication Critical patent/JPS59201971A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/155Analogue data processing
    • F02P5/1553Analogue data processing by determination of elapsed angle with reference to a particular point on the motor axle, dependent on specific conditions
    • F02P5/1555Analogue data processing by determination of elapsed angle with reference to a particular point on the motor axle, dependent on specific conditions using a continuous control, dependent on speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To promptly eliminate variations in the rotational speed of an engine, by providing such an arrangement that, when the absolute value of variations in the engine rotational speed is above a predetermined value and as well the engine load is constant or decreases, the ignition timing is retarded or advanced in accordance with the negative or positive direction of the variations in the engine rotational speed. CONSTITUTION:Upon engine operation, a control circuit 30 performs the subtraction between the present value and the previous value in accordance with the output of a rotational speed sensor 28 to compute variations in the rotational speed of the engine, and judges whether the averaged value of the variations is above a predetermined value or not. If it is YES, the control circuit 30 then judges whether the pressure of an intake-air pipe detected by an intake-air pipe pressure sensor 10, or the load, is below a predetermined value or not, and, if it is YES, further judges whether a variation in the load is less than a predetermined value or not. If it is judged to be YES, the ignition timing is retarded when the averaged value of variations in the engine rotational speed is positive. However, when it is negative, an ignitor 32 is controlled to advance the ignition timing.

Description

【発明の詳細な説明】 本発明は内燃機関の点火時期制御方法に係り、特に機関
回転数の変化量に応じて点火時期を制御する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition timing control method for an internal combustion engine, and more particularly to a method for controlling ignition timing in accordance with a change in engine speed.

従来より、マイクロコンピュータを用いて点火時期を制
御する燃料噴射式の内燃機関においては、スロットル弁
全閉でかつ機関回転数が所定値以上のときに行なわれる
燃料噴射カット状態から、極短時間アクセルペダルを踏
込んで元に戻した場合(チップイン)、このチップイン
をトリガとして機関回転数が激しく変動することがあっ
た。一方、機関回転数の変動に応じて点火時期を制御す
る方法としては、レーシング後の機関回転数のアンダシ
ュートを防止するために、機関回転数の変化量が所定値
以上でかつスロットル弁が全閉状態のとき機関回転数の
変化量に応じて点火時期を進角側に制御する方法がある
。しかし、この方法では点火時期を進角側にしか制御し
ないため上記のチップイン時の変動に対しては効果が小
さく、またスロットル弁全閉時のみ点火時期が制御され
るため変動を押えることができない、という問題があっ
た。
Conventionally, in fuel-injected internal combustion engines that control ignition timing using a microcomputer, the fuel injection is cut off when the throttle valve is fully closed and the engine speed is above a predetermined value. When the pedal was depressed and then returned to its original position (tip-in), the engine speed could fluctuate violently using this tip-in as a trigger. On the other hand, a method for controlling ignition timing according to fluctuations in engine speed is to prevent engine speed undershoot after racing when the amount of change in engine speed exceeds a predetermined value and when the throttle valve is fully There is a method of controlling the ignition timing to the advanced side according to the amount of change in engine speed when the engine is in the closed state. However, since this method only controls the ignition timing to the advanced side, it has little effect on the above-mentioned fluctuations during tip-in, and since the ignition timing is controlled only when the throttle valve is fully closed, it is difficult to suppress fluctuations. The problem was that it couldn't be done.

本発明は上記問題点を解消すべく成されたもので、望ま
しくない機関回転数の変動を打消すようにした内燃機関
の点火時期制御方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ignition timing control method for an internal combustion engine that cancels undesirable fluctuations in engine speed.

上記目的を達成するために本発明の構成は、機関口転数
の変化量の絶対値が所定値以上かつ機関負荷が一定およ
び減少するとき、機関回転数の変化量が正であればこの
変化量に比例した角度点火時期を遅角させ、機関回転数
の変化量が負であればこの変化量に比例した角度点火時
期を進角させるようにしたものである。この結果、機関
回転数が上昇するように変動するとき点火時期が遅角さ
れ、機関回転数が下降するように変動するとき点火時期
が進角される。
In order to achieve the above object, the configuration of the present invention is such that when the absolute value of the amount of change in the engine speed is equal to or greater than a predetermined value and the engine load is constant or decreasing, if the amount of change in the engine speed is positive, this change will occur. The angular ignition timing is retarded in proportion to the amount of change, and if the amount of change in engine speed is negative, the angular ignition timing is advanced in proportion to this amount of change. As a result, when the engine speed changes to increase, the ignition timing is retarded, and when the engine speed changes to fall, the ignition timing is advanced.

第1図に基いて本発明が適用される内燃機関(エンジン
)の−例を詳細に説明する。エアクリーナ(図示せず)
の下流側には吸入空気の温度を検出して吸気温信号を出
力する吸気温センサ2が取付けられている。吸気温セン
サ2の下流側にはスロットル弁4が配置されている。ス
ロットル弁4の下流側には、サージタンク8が設けられ
、このサージタンク8にスロットル弁下流側の吸気管圧
力を検出して吸気管圧力信号を出力する圧力センサ10
が取付けられている。サージタンク8は、インテークマ
ニホールド12を介してエンジンの燃焼室14に連通さ
れている。このインテークマニホールド12には、燃料
噴射弁16が各気筒毎に取付けられている。エンジンの
燃焼室14はエキゾーストマニホールドを介して三元触
媒を充填した触媒コンバータ(図示せず)に連通されて
いる。また、エンジンブロックには、エンジンの冷却水
温を検出して水温信号を出力する水温センサ20が取付
けられている。エンジンの燃焼室14には、点火プラグ
22の先端が突出され、点火プラグ22はディストリビ
ュータ24+;陸続されている。ディストリビュータ2
4には、ディストリビュータハウジングに固定されたピ
ックアップとディストリビュータシャフトに固定された
シグナルロー夕とで各々構成されだ気筒判別センサ26
およびエンジン回転数センサ28が設けられている。気
筒判別センサ26は例えば720°CA毎に気筒判別信
号をマイクロコンピュータ等で構成された制御回路30
へ出力し、エンジン回転数センサ28は例えば300C
A毎にエンジン回転数信号を制御回路3Q−、出力する
。そして、ディストリビュータ24はイグナイタ32に
接続されている。
An example of an internal combustion engine to which the present invention is applied will be explained in detail with reference to FIG. Air cleaner (not shown)
An intake temperature sensor 2 is installed downstream of the intake air temperature sensor 2 for detecting the temperature of intake air and outputting an intake temperature signal. A throttle valve 4 is arranged downstream of the intake temperature sensor 2. A surge tank 8 is provided downstream of the throttle valve 4, and a pressure sensor 10 is installed in the surge tank 8 to detect the intake pipe pressure downstream of the throttle valve and output an intake pipe pressure signal.
is installed. The surge tank 8 is communicated with a combustion chamber 14 of the engine via an intake manifold 12. A fuel injection valve 16 is attached to the intake manifold 12 for each cylinder. The combustion chamber 14 of the engine is communicated via an exhaust manifold with a catalytic converter (not shown) filled with a three-way catalyst. Further, a water temperature sensor 20 is attached to the engine block to detect the engine cooling water temperature and output a water temperature signal. A tip of a spark plug 22 projects into the combustion chamber 14 of the engine, and the spark plug 22 is connected to a distributor 24+. distributor 2
4 includes a cylinder discrimination sensor 26 each consisting of a pickup fixed to the distributor housing and a signal rotor fixed to the distributor shaft.
and an engine rotation speed sensor 28 are provided. The cylinder discrimination sensor 26 sends a cylinder discrimination signal every 720° CA to a control circuit 30 composed of a microcomputer or the like.
For example, the engine rotation speed sensor 28 is output to 300C.
The control circuit 3Q- outputs an engine rotational speed signal for each A. Further, the distributor 24 is connected to the igniter 32.

制御回路30は第2図に示すように、中央処理装置(C
PU)36、リードオンリメモリ (ROM)38、ラ
ンダムアクセスメモリ (RAM)40、バックアップ
ラム(BU−RAM)42、入出力ポート(■10)4
4、アナログディジタル変換器(ADC)46およびこ
れらを接続するデータバスやコントロールバス等のバス
t 含/v f 構成すれて因る。l1044には、気
筒判別信号、エンジン回転数信号が入力されると共に、
駆動回路を介して燃料噴射弁16の開閉時間を制御する
燃料噴射信号およびイグナイタ32のオンオフ時間を制
御する点火信号が出力される。また、ADC46には、
吸気管圧力信号、吸気温信号および水温信号が入力され
てディジタル信号に変換される。そして、ROM38に
は、エンジン回転数と吸気管圧力とで定まる基本点火進
角θBASFのマツプおよび開側1プログラム等が予め
記憶されている。
As shown in FIG. 2, the control circuit 30 includes a central processing unit (C
PU) 36, read-only memory (ROM) 38, random access memory (RAM) 40, backup RAM (BU-RAM) 42, input/output port (■10) 4
4. An analog/digital converter (ADC) 46 and buses such as a data bus and a control bus connecting these are configured. A cylinder discrimination signal and an engine rotation speed signal are input to l1044, and
A fuel injection signal that controls the opening/closing time of the fuel injection valve 16 and an ignition signal that controls the on/off time of the igniter 32 are outputted via the drive circuit. In addition, in ADC46,
An intake pipe pressure signal, an intake air temperature signal, and a water temperature signal are input and converted into digital signals. The ROM 38 stores in advance a map of the basic ignition advance angle θBASF determined by the engine speed and the intake pipe pressure, an open side 1 program, and the like.

次に上記のようなエンジンを使用して本発明を実施した
場合の処理ルーチンについて第3図を用いて説明する。
Next, a processing routine when the present invention is implemented using the engine as described above will be explained with reference to FIG.

このルーチンは所定時間(例えば32 m 5ec)毎
に実行される割込みルーチンである。
This routine is an interrupt routine that is executed every predetermined time (for example, 32 m5ec).

ステップ51において、エンジン回転数信号より計算さ
れてRAMに記憶されている最新のエンジン回転数NE
iを取込み、ステップ52においてエンジン回転数N 
E iから前回のエンジン回転数NEi−1を減算して
エンジン回転数の変化量ΔNEiを演算する。このエン
ジン回転数の変化量ΔN E 1は、比較的偏差が大き
いためステップ53において前回のエンジン回転数の変
化計ΔNEi−1と今回のエンジン回転数の変化量ΔN
Elとの平均をとってエンジン回転数の変化計の平均値
ΔNEを求める。次のステップ54では、変化量の平均
値の絶体値l、v N E+が所定値(例えば、37、
5 r、p、m 732 m 3ec  )以上か否か
を判断する。変化量の平均値の絶対値II M E+が
所定値以上のとき、すなわちエンジン回転数の変化量が
大きいときは、ステップ55において今回のエンジン回
転数N E iがエンジン回転数の変動が起るであろう
所定範囲(例えば、700≦NEi≦2500)内の値
であるか否かを判断し、エンジン回転数N b hが所
定範囲内の値であるときはステップ56において吸気管
圧力信号に基づいて吸気・α圧力PMが所定値(例えば
、400mrrLHg)以下か否か、すなわち低負荷か
否かを判断する。
In step 51, the latest engine speed NE calculated from the engine speed signal and stored in the RAM
i is taken in, and in step 52, the engine rotation speed N
The previous engine speed NEi-1 is subtracted from Ei to calculate the amount of change ΔNEi in the engine speed. This amount of change ΔN E 1 in the engine speed has a relatively large deviation, so in step 53, the change amount ΔN in the previous engine speed and the current change in engine speed ΔN
The average value ΔNE of the change meter of the engine speed is determined by taking the average with El. In the next step 54, the absolute value l,v N E+ of the average value of the amount of change is set to a predetermined value (for example, 37,
5 r, p, m 732 m 3ec ) or more. When the absolute value II M E+ of the average value of the amount of change is greater than a predetermined value, that is, when the amount of change in the engine speed is large, in step 55, the current engine speed N E i changes to the engine speed. It is determined whether the value is within a predetermined range (for example, 700≦NEi≦2500), and if the engine speed N b h is within a predetermined range, the intake pipe pressure signal is changed in step 56. Based on this, it is determined whether the intake/α pressure PM is below a predetermined value (for example, 400 mrrLHg), that is, whether the load is low.

吸気管圧力PMが所定値以下の場合にはステップ57に
おいて吸気管圧力の変化量ΔPMが所定値(例えば、2
0 mmHg/ 24 m 5ec) 未満か否かを′
F1]断する。この吸気管圧力の変化量ΔPMが19「
定値未満のとき、すなわち、負荷一定(ΔPM=0)お
よび負荷が減少するときは、ステップ58において次式
に基づいて遅角量θTを演算する。
If the intake pipe pressure PM is less than or equal to the predetermined value, the amount of change ΔPM in the intake pipe pressure is set to a predetermined value (for example, 2
0 mmHg/24 m 5ec)
F1] Cut. The amount of change ΔPM in this intake pipe pressure is 19"
When it is less than a fixed value, that is, when the load is constant (ΔPM=0) and the load is decreasing, the retard amount θT is calculated in step 58 based on the following equation.

なお、負荷が減少するときには、吸気管圧力が共振して
ΔPMの値が正になる場合があるので、ステップ57の
所定値は極く小さい正の値に設定されている。
Note that when the load decreases, the intake pipe pressure may resonate and the value of ΔPM may become positive, so the predetermined value in step 57 is set to an extremely small positive value.

θT←−α・ΔN E  ・・・・・・・・・・・・・
・・(1)ただし、αは正の定数である。
θT←−α・ΔN E・・・・・・・・・・・・・・・
...(1) However, α is a positive constant.

この結果、エンジン回転数の変化量の平均値環が正のと
き、すなわちエンジン回転数が上昇するように変化する
とき遅角量19Tは負と々す、変化量の平均値JNEが
負のときす々わちエンジン回転数が下降するように変化
するとき1[)ソ角j14: 0’ Tは正となる。
As a result, when the average value ring of the amount of change in engine speed is positive, that is, when the engine speed changes to increase, the retard amount 19T becomes negative, and when the average value JNE of the amount of change is negative. That is, when the engine speed changes to decrease, the 1[) angle j14: 0' T becomes positive.

一方、絶対値1 ■nlが所定値未清】のとき、エンジ
ン回転数NEiが所定節1ハ1外の値のとき、吸気管圧
力が所定値を越えるとき、吸気付属力の変化量ΔPMが
所定値以上のときは、ステップ59において、遅角量θ
Tの値を0とする。
On the other hand, when the absolute value 1 nl is the predetermined value, when the engine speed NEi is outside the predetermined value, and when the intake pipe pressure exceeds the predetermined value, the amount of change ΔPM in the intake accessory force is When it is equal to or greater than the predetermined value, in step 59, the retard amount θ
Let the value of T be 0.

上記のようにして遅角量OTを求め/ζ後、第4図に示
す点火進角計算ルーチンにおいて点火刈角θが求め゛ら
れる。す々わち、ステップ61においてROMに記憶さ
れているマツプから2次元袖同法により求められた基本
点火進角61 BASEに夕Y角量θTを加算して点火
進角Oを求める。次のステップ62において、点火進角
Oを1吸気館、や冷却水温等に基づいて補正して実行点
火進角を求める。
After determining the retardation amount OT/ζ as described above, the ignition shearing angle θ is determined in the ignition advance angle calculation routine shown in FIG. That is, in step 61, the ignition advance angle O is determined by adding the Y angle amount θT to the basic ignition advance angle 61 BASE determined by the two-dimensional method from the map stored in the ROM. In the next step 62, the ignition advance angle O is corrected based on the intake temperature, cooling water temperature, etc., to determine the effective ignition advance angle.

そして、次の点火時期側@lルーチン(図示せず)にお
いて、実行点火進角で点火されるようにイグナイタがオ
フされる。
Then, in the next ignition timing side @l routine (not shown), the igniter is turned off so that it is ignited at the actual ignition advance angle.

以上の結果、低負荷、定常運転状態、減速のときに、エ
ンジン回転数が上昇するように変イヒすれば点火時期が
遅れるように、またエンジン回転数が下降するように変
化すれば点火時期力よ進むように制御され、エンジン回
転数の変動75:防止される。
As a result of the above, under low load, steady operating conditions, and deceleration, if the engine speed changes to rise, the ignition timing will be delayed, and if the engine speed changes to fall, the ignition timing will change. The engine rotational speed is controlled to move forward, and fluctuations in engine speed 75 are prevented.

第5図に燃料噴射カット状態から極短時[用アクセルペ
ダルを踏込んだときの従来の点火時期のIl制御と本実
施例の点火時期の制御とを比較して示す。
FIG. 5 shows a comparison between the conventional ignition timing Il control and the ignition timing control of this embodiment when the accelerator pedal is depressed for a very short time from the fuel injection cut state.

第5図(B)に示す本実施例の場合では遅角量θTによ
り点火時期が遅進角されるため、第5図■に示す従来例
と比較してエンジン回転数の変動の収束が早くなってい
る。
In the case of this embodiment shown in FIG. 5(B), the ignition timing is retarded and advanced by the retard amount θT, so that fluctuations in engine speed converge more quickly than in the conventional example shown in FIG. 5 (■). It has become.

なお上記では、吸気管圧力とエンジン回転数により基本
点火進角を定めるエンジンについて言見明したが、本発
明はエンジン1回転当りの吸入空気))ケエンジン回転
数とにより基本点火進角を定めるエンジンにも適用する
ことが可能である。
Although the above description has been made regarding an engine in which the basic ignition advance angle is determined based on intake pipe pressure and engine speed, the present invention determines the basic ignition advance angle based on the intake air per engine revolution. It can also be applied to engines.

以上説明したように本発明によれば、エンジン回転数の
変動を速やかに防止すること75Eできると共に、レー
シング後または減速状態からアイドリング状態に移行し
たときのエンジン回転数のアンダーシュートを防止する
ことができる、という効果が得られる。
As explained above, according to the present invention, it is possible to promptly prevent fluctuations in the engine speed 75E, and also to prevent undershoot of the engine speed after racing or when transitioning from a deceleration state to an idling state. You can get the effect that you can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるエンジンの一例を示す概略
図、第2図は第1図の制御回路を示すブロック図、第3
図は遅角量計算ルーチンを示す流れ図、第4図は点火進
角計算ルーチンを示す流れ図、第5図■、(B)は従来
の点火時期制御と本発明の点火時期制御との特性を比較
して示す線図である。 10・・・圧力センサ、  16・・・燃料噴射弁。 28°°°゛工ンジン回転数センサ。 32・・・イグナイタ、  30・・・制御回路。 代理人  鵜 沼 辰 之 (ほか1名) 第3 図 第4図 第51 (A) (B)
FIG. 1 is a schematic diagram showing an example of an engine to which the present invention is applied, FIG. 2 is a block diagram showing the control circuit of FIG. 1, and FIG.
Figure 4 is a flowchart showing the retard amount calculation routine, Figure 4 is a flowchart showing the ignition advance calculation routine, and Figure 5 (B) compares the characteristics of conventional ignition timing control and the ignition timing control of the present invention. FIG. 10... Pressure sensor, 16... Fuel injection valve. 28°°°゛engine rotation speed sensor. 32...Igniter, 30...Control circuit. Agent Tatsuyuki Unuma (and 1 other person) Figure 3 Figure 4 Figure 51 (A) (B)

Claims (1)

【特許請求の範囲】[Claims] (1)機関回転数の変化量に応じて点火時期を制御する
にあたって、機関回転数の変化量の絶対値が所定値以上
かつ機関負荷が所定値以下で、機関負荷が一定および減
少するとき、前記機関回転数の変化量が正であれば該変
化量に比例した角度点火時期を遅角させ、前記機関回転
数の変化量が負であれば該変化量に比例しだ負度点火時
期を進角させることを特徴とする内燃機関の点火時期制
御方法。
(1) When controlling the ignition timing according to the amount of change in engine speed, when the absolute value of the amount of change in engine speed is more than a predetermined value and the engine load is less than a predetermined value, and the engine load is constant or decreasing, If the amount of change in the engine speed is positive, the angle ignition timing is retarded in proportion to the amount of change, and if the amount of change in the engine speed is negative, the angle ignition timing is retarded in proportion to the amount of change. A method for controlling ignition timing for an internal combustion engine, characterized by advancing the ignition timing.
JP58075896A 1983-04-28 1983-04-28 Method of controlling ignition timing for internal-combustion engine Pending JPS59201971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075896A JPS59201971A (en) 1983-04-28 1983-04-28 Method of controlling ignition timing for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075896A JPS59201971A (en) 1983-04-28 1983-04-28 Method of controlling ignition timing for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59201971A true JPS59201971A (en) 1984-11-15

Family

ID=13589539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075896A Pending JPS59201971A (en) 1983-04-28 1983-04-28 Method of controlling ignition timing for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59201971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267258A (en) * 1985-09-20 1987-03-26 Hitachi Ltd Driving control method for internal combustion engine
JPS62276268A (en) * 1986-05-23 1987-12-01 Hitachi Ltd Ignition timing control device of internal combustion engine
JPS63208673A (en) * 1987-02-25 1988-08-30 Yamaha Motor Co Ltd Ignitor for engine for vehicle
JPH01179180U (en) * 1988-06-09 1989-12-22
JPH02102371A (en) * 1988-10-12 1990-04-13 Japan Electron Control Syst Co Ltd Ignition timing control device of internal combustion engine
US4981126A (en) * 1989-01-20 1991-01-01 Fuji Jukogyo Kabushiki Kaisha Ignition timing control system
JP2006328254A (en) * 2005-05-27 2006-12-07 Kaneka Corp Double-emulsified oil and fat composition and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267258A (en) * 1985-09-20 1987-03-26 Hitachi Ltd Driving control method for internal combustion engine
JPH0373745B2 (en) * 1985-09-20 1991-11-22 Hitachi Ltd
JPS62276268A (en) * 1986-05-23 1987-12-01 Hitachi Ltd Ignition timing control device of internal combustion engine
JPS63208673A (en) * 1987-02-25 1988-08-30 Yamaha Motor Co Ltd Ignitor for engine for vehicle
JPH01179180U (en) * 1988-06-09 1989-12-22
JPH02102371A (en) * 1988-10-12 1990-04-13 Japan Electron Control Syst Co Ltd Ignition timing control device of internal combustion engine
US4981126A (en) * 1989-01-20 1991-01-01 Fuji Jukogyo Kabushiki Kaisha Ignition timing control system
JP2006328254A (en) * 2005-05-27 2006-12-07 Kaneka Corp Double-emulsified oil and fat composition and method for producing the same

Similar Documents

Publication Publication Date Title
JP3331789B2 (en) Ignition timing control device for internal combustion engine
US4466413A (en) Fuel cut system for electronic control system
US5664544A (en) Apparatus and method for control of an internal combustion engine
US4563994A (en) Fuel injection control apparatus
JPS59201971A (en) Method of controlling ignition timing for internal-combustion engine
JPH0465227B2 (en)
JPS58176470A (en) Control of revolution number of engine upon idling
JPH0316498B2 (en)
JPS60159372A (en) Ignition-timing control for internal-combustion engine
JPS6019934A (en) Method of controlling rotational speed of internal-combustion engine
JPS59173559A (en) Method for controlling ignition timing of engine
JP2757199B2 (en) Knock control device for internal combustion engine
JP2504020B2 (en) Ignition timing control method immediately after starting of internal combustion engine
JPH0636301Y2 (en) Ignition timing control device for internal combustion engine
JPH0236787B2 (en)
JP2545549B2 (en) Fuel supply control method during acceleration of an internal combustion engine
JP3003468B2 (en) Ignition timing control device
JPH082466Y2 (en) Ignition timing control device for internal combustion engine
JPH0429855B2 (en)
JPH09287525A (en) Combustion controller for internal combustion engine
JPS62261646A (en) Ignition timing control for internal combustion engine
JP3514930B2 (en) Ignition timing control system for lean burn internal combustion engine
JP4058746B2 (en) Vehicle control device
JPH01271659A (en) Device for controlling idling speed of engine
JPS6128731A (en) Fuel supply method for internal-combustion engine