JPS59201381A - Method of automatically detecting resistance current of arrester - Google Patents

Method of automatically detecting resistance current of arrester

Info

Publication number
JPS59201381A
JPS59201381A JP7388783A JP7388783A JPS59201381A JP S59201381 A JPS59201381 A JP S59201381A JP 7388783 A JP7388783 A JP 7388783A JP 7388783 A JP7388783 A JP 7388783A JP S59201381 A JPS59201381 A JP S59201381A
Authority
JP
Japan
Prior art keywords
voltage
current
output
circuit
arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7388783A
Other languages
Japanese (ja)
Other versions
JPH0239074B2 (en
Inventor
横倉 富夫
真一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP7388783A priority Critical patent/JPH0239074B2/en
Publication of JPS59201381A publication Critical patent/JPS59201381A/en
Publication of JPH0239074B2 publication Critical patent/JPH0239074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は酸化亜鉛形避雷器のように漏れ電流に容量分を
含む避雷器の劣化検出、特に漏れ電流中における抵抗分
電流の検出に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to deterioration detection of a lightning arrester such as a zinc oxide type lightning arrester whose leakage current includes a capacitance component, and particularly to detection of a resistance component current in the leakage current.

酸化亜鉛形避雷器その他非直線抵抗素子を利用する避雷
器の劣化は、抵抗素子の非直線特性の変化として現われ
、その具体的な形として定格電圧印加時における避雷器
の漏れ電流波形の変化と、電流の波高値の増大という形
で生ずる。そこで従来からこれらの測定要素を用いて劣
化の判定が行われる。
Deterioration of zinc oxide type lightning arresters and other lightning arresters that use non-linear resistance elements appears as changes in the non-linear characteristics of the resistance element, and concrete examples include changes in the leakage current waveform of the arrester when the rated voltage is applied, and changes in the current waveform. This occurs in the form of an increase in the peak value. Therefore, deterioration has traditionally been determined using these measurement elements.

しかし、この種の避雷器の非直線抵抗素子は容量分をも
ち、等測的にはゾ第1図に示すように非直線抵抗分F(
aと容量分Caの並列回路として表わされる。従って漏
れ電流中には容量分電流を含み、その結果漏れ電流波形
と波高値も、容量分電流により影響されて当然異なるも
のとなる。即ち抵抗分電流iE、は、第2図に示す非直
線特性にもとづいて流れるため、例えば第3図のように
印加電圧を正弦波電圧eとしたとき、図中]aの如き波
形となる。一方容量分電流は非直線性をもたないため、
第3図中に1゜で示すように電圧eより90゜進んだ正
弦波電流となり、漏れ電流]Lはこの容量分電流l。と
、上記抵抗分電流laの和となる。
However, the nonlinear resistance element of this type of lightning arrester has a capacitance, and the nonlinear resistance F(
It is expressed as a parallel circuit of a and a capacitance Ca. Therefore, the leakage current includes a capacitance current, and as a result, the leakage current waveform and peak value are also affected by the capacitance current and naturally differ. That is, since the resistance current iE flows based on the non-linear characteristics shown in FIG. 2, for example, when the applied voltage is a sine wave voltage e as shown in FIG. 3, it has a waveform as shown in [a] in the figure. On the other hand, since the capacitance current has no nonlinearity,
As shown at 1° in FIG. 3, a sine wave current leads the voltage e by 90°, and the leakage current L is the current l corresponding to this capacity. and the sum of the resistance component current la.

従って抵抗分電流laの波形や波高値は本来のものと異
なったものとなるため、信頼度の高い劣化の判定を可能
とするには、容量分電流1゜の消去が重要となる。
Therefore, the waveform and peak value of the resistive current la will be different from the original one, so it is important to erase the capacitive current by 1° in order to make a highly reliable determination of deterioration.

そこで従来においては、例えば避雷器の漏れ電流に比例
する電圧と、避雷器の印加電圧の位相を90進めた電圧
とを作って差動回路によりこれらの差をとるようにする
と同時に、その出力波形が前記非直線特性にもとづく特
有の波形となるように、波形観測装置により90進み電
圧値を手動調節して、容量分電流を消去することが行わ
れている。しかしこの方法は面倒、かつ時間がか\るば
かりか、正確さに欠けるおそれがあり、また最近の要求
即ち発変電所などの制御配電盤室に、避雷器の劣化状態
を数字によって自動表示し、これにより常時監視できる
ようにして保守のml単化と系統保護の万全を特徴とす
る請求には応え得ない。
Therefore, in the past, for example, a voltage proportional to the leakage current of the lightning arrester and a voltage obtained by advancing the phase of the voltage applied to the lightning arrester by 90 are created and the difference between these is taken by a differential circuit, and at the same time, the output waveform is In order to obtain a unique waveform based on non-linear characteristics, the 90-lead voltage value is manually adjusted using a waveform observation device to eliminate the capacitive current. However, this method is not only cumbersome and time-consuming, but also may lack accuracy.In addition, there is a recent demand for automatic numerical display of the deterioration status of lightning arresters in the control switchboard room of power generation and substations. Therefore, we cannot meet the demand for constant monitoring, simple maintenance, and thorough system protection.

本発明は漏れ電流からの容量分電流の正確な消去と、そ
の自動化を実現し」−記のような制御配電盤室における
劣化の常時表示の要求に応えうるようにしたものである
。次に図面を用いてその詳細を説、明する。
The present invention realizes accurate erasure of capacitance current from leakage current and automation thereof, thereby meeting the demand for constant display of deterioration in a control switchboard room. Next, the details will be explained and explained using the drawings.

本発明の特徴とするところは次の点にある。即ち第4図
に示す回路図のように、従来と同様な手段により作られ
た避雷器の印加電圧の位相を90進めた電圧Esを、印
動利得制御回路OCAを介して差動回路DFのH端子に
加える。そして(1)端子に加えられた避雷器の漏れ電
流]Lに比例する電圧Exとの差(EX−Go−ES)
(こ5でG。は利得制御回路(])の初期利得)を求め
る。一方この出力を電圧E8を基準信号とする同期成分
検出回路SDに加えて、その出力に電圧ESと同相の成
分即ち(EX−C)o−E8)のうちの容量成分に比例
する直流電圧EYを検出する。そしてこれにより利得制
御回路GCAの初期利得G。を平衡利得G]に制御して
容量分を打消すに必要どする人力G、ESを差動回路D
Fに加えるネガティーブフィードバック回路を形成して
、差動回路DFの出力側に抵抗分電流に比例する出力が
得られるようにしたこ−昌 − とを特徴とするものである。
The features of the present invention are as follows. That is, as shown in the circuit diagram shown in FIG. 4, the voltage Es obtained by advancing the phase of the voltage applied to the surge arrester by 90 degrees by the same means as the conventional method is applied to the H of the differential circuit DF through the applied gain control circuit OCA. Add to terminal. and (1) the difference between the voltage Ex proportional to the lightning arrester leakage current applied to the terminal]L (EX-Go-ES)
(G in this step 5 is the initial gain of the gain control circuit (])). On the other hand, this output is added to the synchronous component detection circuit SD which uses the voltage E8 as a reference signal, and the output is a DC voltage EY proportional to the capacitance component of the component in phase with the voltage ES, that is, (EX-C)o-E8). Detect. As a result, the initial gain G of the gain control circuit GCA. The human power required to control G and ES to a balanced gain G to cancel out the capacitance is converted into a differential circuit D.
The present invention is characterized in that a negative feedback circuit added to F is formed so that an output proportional to the resistive current can be obtained on the output side of the differential circuit DF.

第5図は以」二の着想にもとづく本発明の一実施例回路
図であって、図においてLは電力線、Arは避雷器、I
Dは漏れ電流ILの検出器、例えば避雷器Arの接続線
を開くことなく電流を検出できるクランプ形電流変成器
、或いは接続線に直列に挿入される検出抵抗が用いられ
、これらは絶縁上の不利を伴わないように避雷器の接地
側に設けられる。八〇は増幅器であって入力インピーダ
ンスの高いものが用いられ、その出力側に漏れ電流11
に比例した電圧EXを得る。FDは避雷器の印加電圧の
検出器、例えば巻線形電圧変成、器、或いは容量形電圧
変成器が用いられる。A2は入力インピーダンスの高い
増幅器、グは移相器であって、増幅器A2の出力電圧の
位相を90進めた容量分消去用の電圧ESを出力する。
FIG. 5 is a circuit diagram of an embodiment of the present invention based on the second idea, in which L is a power line, Ar is a lightning arrester, and I
D is a leakage current IL detector, for example, a clamp-type current transformer that can detect the current without opening the connection wire of the lightning arrester Ar, or a detection resistor inserted in series with the connection wire; It is installed on the grounding side of the lightning arrester to prevent it from occurring. 80 is an amplifier with high input impedance, and there is a leakage current 11 on the output side.
Obtain a voltage EX proportional to . The FD is a detector for the voltage applied to the lightning arrester, such as a winding voltage transformer, a capacitive voltage transformer, or a capacitive voltage transformer. A2 is an amplifier with high input impedance, and G is a phase shifter, which outputs a capacitance erasing voltage ES that advances the phase of the output voltage of the amplifier A2 by 90 degrees.

OCAは利得制御回路例えば増幅器であって電圧Esが
加えられ、その初に比例する電圧EXと、利得制御増幅
器GOAから 4− の電圧G。Esとが加えられ、出力側にこれらの差出力
(Ex−Go−Es)を送出する。SDは同相分検出回
路であって、第5図においては次の各部からなる。ST
(は周知の同期整流器、S Sはその同期信号発生器例
えば零点検出回路であって、移相器2の出力ESの]周
期毎の極性反転点において極性が反転する方形波を作り
、同期信号として同期整流器SRに加えて同期整流作用
を行わせる。MSは平均値化回路例えば積分回路であっ
て、同期整流器SRの出力を平滑して前記差動増幅器D
Fの出力、即ち(EX−Co−ES)のうちのEsと同
相分に比例する直流電圧EYを作る。そして前記利得制
御増幅器GOAは電圧EYによって利得が制御されて平
衡利得G1となり、”xの中の容量分を打消すに必要と
する容量成分G1、ESを作る。
OCA is a gain control circuit, e.g. an amplifier, to which a voltage Es is applied, a voltage EX proportional to its beginning, and a voltage G of 4- from the gain control amplifier GOA. Es is added, and the difference output (Ex-Go-Es) is sent to the output side. SD is a common-mode detection circuit, and in FIG. 5, it consists of the following parts. ST
(S is a well-known synchronous rectifier, S is its synchronizing signal generator, for example, a zero point detection circuit, and S is its synchronizing signal generator, e.g., a zero point detection circuit of the output ES of the phase shifter 2). MS is an averaging circuit, for example, an integrating circuit, which smooths the output of the synchronous rectifier SR and converts it into the differential amplifier D.
A DC voltage EY is created that is proportional to the in-phase portion of the output of F, that is, Es of (EX-Co-ES). The gain of the gain control amplifier GOA is controlled by the voltage EY to provide a balanced gain G1, and generates capacitance components G1 and ES necessary to cancel the capacitance in "x".

このようにすれば差動増幅器DFの出力側には、抵抗分
電流に比例した出力が自動的に出力されるから、例えば
出力波形や図示しない波高値検出器によって検出された
波高値をデジタル処理したのち、数値化して表示するこ
とにより、常時劣化の状態を監視できる。
In this way, an output proportional to the resistance current is automatically output to the output side of the differential amplifier DF, so for example, the output waveform or the peak value detected by a peak value detector (not shown) can be digitally processed. After that, the state of deterioration can be constantly monitored by converting it into numerical values and displaying it.

以上本発明の一実施例について説明したが、この方法で
は同期整流器S’Rの同期信号としそ、同期信号発生器
SSで作られたE8の極性反転点において極性が反転す
る方形波を用いており、この同相成分検出回路はEsの
]点のみをもととして行っている。従って第2図第3図
によって説明した、非直線特性にもとづいて流れる抵抗
分電流のように、高調波骨を含むものでは、実際上大き
な問題とはならないまでも消去の誤差を生じて、正確に
抵抗分電流のみを得ることができにくい。従って劣化判
定の要求の度合に応じて、この誤差を除く必要があるが
、これは次の方法を用いることによって除くことができ
る。
An embodiment of the present invention has been described above. In this method, a square wave whose polarity is reversed at the polarity reversal point of E8 generated by the synchronization signal generator SS is used as the synchronization signal of the synchronous rectifier S'R. This in-phase component detection circuit is based only on point Es. Therefore, in the case of resistive currents that flow based on non-linear characteristics as explained in FIGS. It is difficult to obtain only the resistance current. Therefore, it is necessary to eliminate this error depending on the degree of deterioration determination required, but this can be eliminated by using the following method.

即ち第6図に示す部分回路図のように、同相成分検出回
路SDを、前記した電圧Esと、差動増幅器DFの出力
である(EX−GoEs)の積をとる乗算器MLTと、
平均値化回路MSによって形成する。
That is, as shown in the partial circuit diagram shown in FIG. 6, the common-mode component detection circuit SD is connected to a multiplier MLT that multiplies the voltage Es described above and (EX-GoEs), which is the output of the differential amplifier DF.
It is formed by an averaging circuit MS.

そして乗算器により電圧EXのうちのE8の同相分を電
力として取出したのち、その出力のうちからして、(E
X−G。Es)×Esに比例する直流電圧EYとするこ
とにより、同期整流による消去の誤差を除去することが
できる。
Then, after extracting the in-phase portion of E8 of the voltage EX as electric power using a multiplier, from the output, (E
X-G. By setting the DC voltage EY to be proportional to Es)×Es, it is possible to eliminate errors in erasing due to synchronous rectification.

以−4−の説明から明らかなように、本発明によれば酸
化亜鉛形避雷器や810避雷器など漏れ電流に容量分電
流を含む避雷器の劣化判定に必要とされる抵抗分電流を
、面倒な操作を必要とすることなく自動的に得ることが
できるもので、避雷器の自動劣化検出装置の実現、更に
は常時監視システムの実現に大きな貢献をなすものであ
る。
As is clear from the explanation in -4- below, according to the present invention, the resistance current required for determining the deterioration of lightning arresters, such as zinc oxide type lightning arresters and 810 lightning arresters, which include a capacitive current in the leakage current, can be easily calculated using a troublesome operation. This can be obtained automatically without the need for a deterioration detection system for lightning arresters, and will greatly contribute to the realization of a constant monitoring system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化亜鉛形避雷器など、漏れ電流に容量分を含
む避雷器の等価回路、第2図、第3図は漏れ電流波形の
説明図、第4図は本発明の原理説明用ブロック回路図、
第5図は本発明の一実施例ブロック回路図、第6図は同
相成分検出回路の他の例を示す部分回路図である。  7− L・・・・電力線、 Ar・・・・避雷器、ID・・・
・漏れ電流検出器、 八〇・・・・増幅器、ED・・・
・避雷器の印加電圧検出器、A、・・・・増幅器、 グ
・・・・移相器、GCA・・・・利得制御回路、(増幅
器)DF・・・・差動回路(増幅器)、 SD・・・・同相成分検出回路、 SR・・・・同期整流器、 88・・同期信号発生器、 M L ’r・・・・乗算器、  ′ MS・・・・平均値化回路。 特許出願人  財団法人 電力中央研究所外1名 代理人弁理士 犬 塚   学 外1名  8− 第1 図      第2閃 Y 3 閃       弔4 図
Figure 1 is an equivalent circuit of a lightning arrester, such as a zinc oxide type arrester, in which the leakage current includes a capacity component, Figures 2 and 3 are illustrations of leakage current waveforms, and Figure 4 is a block circuit diagram for explaining the principle of the present invention. ,
FIG. 5 is a block circuit diagram of one embodiment of the present invention, and FIG. 6 is a partial circuit diagram showing another example of the common-mode component detection circuit. 7- L...Power line, Ar...Surge arrester, ID...
・Leakage current detector, 80...Amplifier, ED...
・Applied voltage detector for lightning arrester, A...Amplifier, G...Phase shifter, GCA...Gain control circuit, (amplifier) DF...Differential circuit (amplifier), SD ... Common mode component detection circuit, SR ... Synchronous rectifier, 88 ... Synchronous signal generator, M L'r ... Multiplier, ' MS ... Average value circuit. Patent applicant: 1 person from outside the Central Research Institute of Electric Power Industry Representative patent attorney: Inuzuka 1 person from outside the university 8- Figure 1 Figure 2 Flash Y 3 Flash 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 避雷器の漏れ電流に比例する電圧Exと、避雷器の漏れ
電流中の容量分電流と同相の電圧ESを利得制御回路を
介して差動回路に加えると共に、その出力を上記電圧E
8と同相の成分に比例する直流電圧を検出する回路に加
えて避雷器の容量分電流に比例する出力を得、これによ
り上記利得制御回路を制御して、電圧Exより容量分を
消去して漏れ電流から抵抗分電流出力のみを自動的に分
離検出することを特徴とする避雷器の抵抗分電流自動検
出方法。
A voltage Ex proportional to the leakage current of the lightning arrester and a voltage ES in phase with the capacitance current in the lightning arrester are applied to the differential circuit via a gain control circuit, and the output thereof is applied to the voltage E above.
In addition to the circuit that detects the DC voltage proportional to the component in phase with 8, an output proportional to the capacitance current of the lightning arrester is obtained, and this controls the gain control circuit described above to eliminate the capacitance component from the voltage Ex and prevent leakage. A method for automatically detecting a resistance current in a lightning arrester, which is characterized by automatically separating and detecting only the resistance current output from the current.
JP7388783A 1983-04-28 1983-04-28 HIRAIKINOTEIKOBUNDENRYUJIDOKENSHUTSUHOHO Expired - Lifetime JPH0239074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7388783A JPH0239074B2 (en) 1983-04-28 1983-04-28 HIRAIKINOTEIKOBUNDENRYUJIDOKENSHUTSUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7388783A JPH0239074B2 (en) 1983-04-28 1983-04-28 HIRAIKINOTEIKOBUNDENRYUJIDOKENSHUTSUHOHO

Publications (2)

Publication Number Publication Date
JPS59201381A true JPS59201381A (en) 1984-11-14
JPH0239074B2 JPH0239074B2 (en) 1990-09-04

Family

ID=13531165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7388783A Expired - Lifetime JPH0239074B2 (en) 1983-04-28 1983-04-28 HIRAIKINOTEIKOBUNDENRYUJIDOKENSHUTSUHOHO

Country Status (1)

Country Link
JP (1) JPH0239074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281075A (en) * 1987-05-13 1988-11-17 Shikoku Electric Power Co Inc Measuring instrument for insulation deterioration relation quantity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281075A (en) * 1987-05-13 1988-11-17 Shikoku Electric Power Co Inc Measuring instrument for insulation deterioration relation quantity
JPH0525308B2 (en) * 1987-05-13 1993-04-12 Shikoku Denryoku Kk

Also Published As

Publication number Publication date
JPH0239074B2 (en) 1990-09-04

Similar Documents

Publication Publication Date Title
EP1586910B1 (en) Method of and device for insulation monitoring
US4871971A (en) High impedance fault analyzer in electric power distribution networks
JPS63228914A (en) Solid tripper of multiposition breaker protecting ac source
US10663510B2 (en) Insulation detecting method for electric machine
JPH0440670B2 (en)
US5163172A (en) Procedure and apparatus for the measurement of the currents in a frequency converter
KR20050003804A (en) Method and Device for measuring resistive leakage current by time-delay synthesis method in deciding the deterioration diagnosis of arrester
AU695365B2 (en) Electrical apparatus with wide dynamic range for monitoring and protecting electric power systems
JPS59201381A (en) Method of automatically detecting resistance current of arrester
CN208459476U (en) Current in resistance property detection device and arrester checks system
JPS6256870A (en) Deterioration detecting device for arrester
US9404951B2 (en) Method of discrimination of a device as powerable through a LAN line and device for estimating electric parameters of a LAN line
CN112180265A (en) Battery tester
US4547724A (en) Method and apparatus for detection of non-linear electrical devices
CN114019404A (en) Three-phase alternating current power supply sequence detection method and system
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JP3255817B2 (en) Ion concentration measurement device
JP3100666B2 (en) Evaluation circuit for inductive distance measuring instrument
US4150412A (en) Filter excitation circuitry
JPS58145081A (en) Characteristic deterioration detector for arrester
JPH0657037U (en) Leakage detector for 3-phase 3-wire circuit
JPS607356B2 (en) Lightning arrester deterioration detection device
JPH0435020Y2 (en)
JPS6148669B2 (en)
JPH0367228B2 (en)