JPS59201004A - Laser light projecting device - Google Patents

Laser light projecting device

Info

Publication number
JPS59201004A
JPS59201004A JP7700783A JP7700783A JPS59201004A JP S59201004 A JPS59201004 A JP S59201004A JP 7700783 A JP7700783 A JP 7700783A JP 7700783 A JP7700783 A JP 7700783A JP S59201004 A JPS59201004 A JP S59201004A
Authority
JP
Japan
Prior art keywords
laser
optical axis
semiconductor laser
microlens
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7700783A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yokose
義和 横瀬
Seiichiro Tamai
誠一郎 玉井
Masao Murata
村田 正雄
Keiichi Kobayashi
圭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7700783A priority Critical patent/JPS59201004A/en
Publication of JPS59201004A publication Critical patent/JPS59201004A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To replace a laser projector body without putting an optical axis out of order when it is used as a visual sensor, by providing a distance adjusting mechanism in the optical axis direction between a semiconductor laser and a rod-like microlens, and a position adjusting mechanism of the semiconductor laser. CONSTITUTION:A fixing plate 3 to which a semiconductor laser 1 is fixed is clamped temporarily to a lens fixing part 5 by utilizing a hole 9 by a screw 8 passing through a coil spring 7, the fixing plate 3 is moved within a range of a tolerance of the hole 9 so that the center of a cross line for showing an optical axis on a laser light detecting fluorescent plate 13 placed at a prescribed distance L from a laser projector body 10 coincides with the center of a laser light 12, and a laser position is adjusted on the surface falling at a right angle with an optical axis 11. Also, the optical axis 11 is made to coincide with an optical axis of a rod-like microlens 4. The screw 8 is clamped gradually so that a beam diameter D of the laser light 12 becomes a prescribed size, and a distance between the semiconductor laser 1 and the rod-like microlens 4 is adjusted.

Description

【発明の詳細な説明】 、産業上の利用分野 本発明は、アーク溶接を自動化する装置、例えばアーク
溶接ロボットまたは専用機q視覚センナとして溶接線を
検出する装置や視覚による検査装置等の形状認識センサ
として光学的センサと組−合わせて利用するレーザ光投
光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to devices that automate arc welding, such as arc welding robots or dedicated q-visual sensor devices that detect weld lines, visual inspection devices, etc. The present invention relates to a laser beam projection device used in combination with an optical sensor as a sensor.

従来例の構成とその問題点 従来のレーザ光投光装置の構成は一般市販レンズ(例え
ば顕微鏡対物レンズ)と半導体レーザを組合せたもの、
あるいは高透過率をもつ厚肉のマイクロレンズと半導体
レーザを組合わせたものがある。しかしながら、前者は
安価ではあるが、組合わせレンズであるため、そのレン
ズ界面でのレーザ光の散乱によシ透過率が極めて低く、
ま現口径が大きいため投光部の形状が大きくなる問題点
があシ、また後者は特殊なレンズのため透過効率は優れ
ているがきわめて高価になる問題点があった。
Conventional configuration and its problems The configuration of a conventional laser beam projector is a combination of a commercially available lens (for example, a microscope objective lens) and a semiconductor laser.
Alternatively, there is one that combines a thick microlens with high transmittance and a semiconductor laser. However, although the former is inexpensive, since it is a combination lens, the transmittance is extremely low due to scattering of laser light at the lens interface.
However, since the current aperture is large, there is the problem that the shape of the light projecting section is large, and the latter has the problem of being extremely expensive, although it has excellent transmission efficiency because it is a special lens.

発明の目的 本発明は、前記従来の欠点を解消するものであり、高透
過率を有し、かつ小型、軽量、安価にし、半導体レーザ
とロッド状マイクロレンズとの光軸調整を容易にし、視
覚センサとして使用する時におけるレーザ投光器本体と
軸受部の光軸を狂わすことなくレーザ投光器本体の交換
を可能にすることを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional art, and has high transmittance, is small, lightweight, and inexpensive, and facilitates optical axis adjustment between a semiconductor laser and a rod-shaped microlens. It is an object of the present invention to enable replacement of a laser projector main body without disturbing the optical axis of the laser projector main body and a bearing part when used as a sensor.

発明の構成 この目的を達成するために本発明は、半導体レーザと、
その半導体レーザを取付けるレーザ固定板と、前記半導
体レーザに対向するロッド状マイクロレンズと、そのロ
ッド状マイクロレンズを固定するレンズ固定部と、前記
半導体し〜ザと前記ロッド状マイクロレンズ間の光軸方
向の距離調整機構と、前記光軸に直角な面上において前
記半導体レーザの位置調整機構とを備えたレーザ投光器
本体を投光器枠忙固定したレセプタクルに取付は実施例
の説明 以下、本発明の一実施例について図面の第1図〜第8図
に沿って説明する。
Structure of the Invention To achieve this object, the present invention includes a semiconductor laser,
A laser fixing plate for mounting the semiconductor laser, a rod-shaped microlens facing the semiconductor laser, a lens fixing part for fixing the rod-shaped microlens, and an optical axis between the semiconductor laser and the rod-shaped microlens. A method of attaching a laser projector body equipped with a direction distance adjustment mechanism and a position adjustment mechanism of the semiconductor laser on a plane perpendicular to the optical axis to a receptacle to which the projector frame is fixed will be described below as an example of the present invention. An embodiment will be described with reference to FIGS. 1 to 8 of the drawings.

半導体レーザ1はビス2によってレーザ固定板3に固定
し、ロッド状マイクロレンズ4はレンズ固定部5に接着
剤6によシ固定する。半導体レーザ1が固定されたレー
ザ固定板3はコイルばね7に通した3ケ所のビス8によ
りビス用孔9を利用してレンズ固定部5に締付ける。前
記ビス8を締付けるに際し仮締付けし、第3図〜第5図
に示すように、レーザ投光器本体1oLf)一定距離り
においたレーザ光検出用螢光板13上の光軸を示す十字
線14の中心11(すなわち光軸)とレーザ光12の中
心0が一致するようにビス8の径に対し十分大きいビス
用孔9の公差の範囲においてレーザ固定板3を動かして
、光軸11と直角な面上においてレーザ位置を調整する
。すなわちレーザ光12の光軸11とロッド状マイクロ
レンズ40光軸とを一致させる。つぎにレーザ投光器本
体10から一定距離りの位置のレーザ光検出用螢光板1
3において、レーザ光12のビーム径りが所定の大きさ
となるように3ケ所のビス8を順次締めることKよシ光
軸11方向における半導体レーザ1と・ロッド状マイク
ロレンズ4との距離を調整する。
The semiconductor laser 1 is fixed to a laser fixing plate 3 with screws 2, and the rod-shaped microlens 4 is fixed to a lens fixing part 5 with an adhesive 6. The laser fixing plate 3 to which the semiconductor laser 1 is fixed is fastened to the lens fixing part 5 with three screws 8 passed through the coil spring 7 using the screw holes 9. When tightening the screw 8, temporarily tighten the screw 8, and as shown in FIGS. 11 (that is, the optical axis) and the center 0 of the laser beam 12, move the laser fixing plate 3 within the range of the tolerance of the screw hole 9, which is sufficiently large with respect to the diameter of the screw 8, so that the plane perpendicular to the optical axis 11 is aligned. Adjust the laser position at the top. That is, the optical axis 11 of the laser beam 12 and the optical axis of the rod-shaped microlens 40 are made to coincide. Next, a fluorescent plate 1 for laser light detection is located at a certain distance from the laser projector main body 10.
3, tighten the three screws 8 in sequence so that the beam diameter of the laser beam 12 becomes a predetermined size, and adjust the distance between the semiconductor laser 1 and the rod-shaped microlens 4 in the direction of the optical axis 11. do.

前記ビス8の周囲のコイルばね7によるレーザ固定板3
への反撥力によって半導体レーザ1とロッド状マイクロ
レンズ4との距離の微調整を可能にしている。なお前記
コイルばね7に代えてOリング等の弾性体も使用可能で
ある。
Laser fixing plate 3 with coil spring 7 around the screw 8
The distance between the semiconductor laser 1 and the rod-shaped microlens 4 can be finely adjusted by the repulsive force. Note that an elastic body such as an O-ring can also be used in place of the coil spring 7.

本実施例においては、第6図に示す投光器枠15にレセ
プタクル16をビス17で固定し、レーザ投光器本体1
0を嵌合した後、ビス18によシ前記レーザ投光器本体
1oを固定する構造としている。この構造は以下の理由
により大きな長所を有する。製品としての投光器枠15
、レセプタクル16と全く同じ仕様の夫々を標準治具と
し、これにレーザ投光器本体1oを嵌合した後、前記の
光軸合わせ、ビーム径合わせおよび角度θでの光軸11
と受光軸11′とを調整したレーザ投光器本体10を準
備すれば、半導体レーザ1の故障、劣化など交換を必要
とする場合に、レーザ投光器本体10を抜き替えするこ
とのみでζ光軸11と受光軸11′の狂いやビーム径り
の狂いもレーザ投光器本体10.レセプタクル16およ
び投光器枠15の機械加工精度内であシ、実用上、全く
支障はない。
In this embodiment, the receptacle 16 is fixed to the projector frame 15 shown in FIG. 6 with screws 17, and the laser projector main body 1
0, the laser projector main body 1o is fixed with screws 18. This structure has great advantages for the following reasons. Floodlight frame 15 as a product
, and the receptacle 16 with exactly the same specifications as the standard jig, and after fitting the laser projector main body 1o thereto, align the optical axis, align the beam diameter, and align the optical axis 11 at the angle θ.
By preparing the laser projector main body 10 with the ζ optical axis 11 and the light receiving axis 11' adjusted, when the semiconductor laser 1 needs to be replaced due to failure or deterioration, simply by replacing the laser projector main body 10, the ζ optical axis 11 can be adjusted. Misalignment of the light-receiving axis 11' or beam diameter may also occur in the laser projector body 10. As long as the machining precision of the receptacle 16 and the projector frame 15 is within the range, there is no problem at all in practice.

そして半導体レーザ1とロッド状マイクロレンズ4との
光軸合わせおよびそれら間の距離調整の必要性は半導体
レーザ1のステムとレーザチップとの相対位置誤差があ
るためであり、前記調整を施さなければ全く実用に供さ
ないものである。
The necessity of aligning the optical axes of the semiconductor laser 1 and the rod-shaped microlens 4 and adjusting the distance between them is due to the relative position error between the stem of the semiconductor laser 1 and the laser chip, and if the above adjustment is not performed. This is completely unusable.

つぎに、光軸11と受光軸11′との角度θに−よる投
受光軸調整の必要性を説明する。
Next, the necessity of adjusting the transmitting and receiving light axes based on the angle θ between the optical axis 11 and the light receiving axis 11' will be explained.

本実施例は第6図〜第8図に示すように被溶接物19の
開先形状の認識および溶接線20の検出を目的上する溶
−接逓センシング装置に使用するものであシ、具体的に
はセンサヘッドとしての前記投光器枠15からレーザ光
12を被溶接物19に照射し、照射点21からの受光軸
11′の散乱光を結像レンズ22でセンサ23上に結像
し、センサ出力をコントローラ24において演算しビー
ム照射位置21を投光器枠15からの距離として出力す
る。投光器枠16をX方向に揺動することで照射点21
の連続線として被溶接物19の開先形状25を得て、パ
ターン認識処理後、ギャップ値Gおよびギャップ中心位
置Cを検出する。レーザビーム照射点21を投光器枠1
5からの距離として出力するためには基準距離りが必要
であシ、前記光軸11の調整および光軸11と受光軸1
1′との角度θでの調整が前記基準距離りの設定となる
The present embodiment is used for a welding cross-sensing device for the purpose of recognizing the groove shape of a workpiece 19 and detecting a weld line 20, as shown in FIGS. 6 to 8. Specifically, the workpiece 19 is irradiated with laser light 12 from the projector frame 15 as a sensor head, and the scattered light from the irradiation point 21 on the light receiving axis 11' is imaged on the sensor 23 by the imaging lens 22. The sensor output is calculated by the controller 24 and the beam irradiation position 21 is output as a distance from the projector frame 15. By swinging the projector frame 16 in the X direction, the irradiation point 21
The groove shape 25 of the workpiece 19 is obtained as a continuous line, and after pattern recognition processing, the gap value G and the gap center position C are detected. Place the laser beam irradiation point 21 on the projector frame 1
A reference distance is required in order to output the distance from the optical axis 11 and the optical axis 1.
The adjustment at the angle θ with respect to 1' is the setting of the reference distance.

また基準距離りでのビーム径りの調整はセンシング精度
を左右する因子である。
Adjustment of the beam radius at the reference distance is also a factor that affects sensing accuracy.

発明の効果 本発明によれば、ロッド状マイクロレンズと半導体レー
ザとの組合せによる複雑、精密な工程を要する光軸、三
者間の距離調整を容易にし、レーザ光と受光センサとの
応用における投光器交換時の投受光軸調整を不要にし、
ロッド状マイクロレンズの適用を可能とすることで高透
過率(従来の顕微鏡対物レンズの2倍強、高透過率厚肉
レンズと同等)を実現するとともに従来に比し大巾な小
形、軽量化およびコストダウンを実現できる優れた効果
を奏するものである。
Effects of the Invention According to the present invention, it is possible to easily adjust the distance between the optical axis and the three, which requires a complicated and precise process by combining a rod-shaped microlens and a semiconductor laser, and to provide a light projector for application to a laser beam and a light receiving sensor. Eliminates the need to adjust the transmitting and receiving optical axes when replacing.
By making it possible to apply rod-shaped microlenses, we have achieved high transmittance (more than twice that of conventional microscope objective lenses, equivalent to high-transmittance thick lenses), while also being significantly smaller and lighter than conventional microscope lenses. Moreover, it has an excellent effect of realizing cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるレーザ光投光装置に
使用するレーザ投光器本体の断面図、第2図は同側面図
、第3図、第4図、第5図は光軸調整およびビーム径調
整を説明する説明図、第6図はレーザ投光器本体を取付
ける投光器枠の断面図、第7図、第8図はレーザ投光装
置の適用を説明する説明図である。 1・・・・・・半導体レーザ、3・・・・・・レーザ固
定板、4・・・・・・ロッド状マイクロレンズ、6・・
・・・・レンズ固定部、7・・・・・・弾性体(コイル
ばね)、8・・・・・・ビス、9・・・・・・ビス用孔
、1o・・・・・・レーザ投光器本体、11・・・・・
・光軸、15・・・・・・投光器枠、16・・・・・・
レセプタクル。
FIG. 1 is a cross-sectional view of a laser projector main body used in a laser beam projector according to an embodiment of the present invention, FIG. 2 is a side view of the same, and FIGS. 3, 4, and 5 show optical axis adjustment and FIG. 6 is a sectional view of the projector frame to which the laser projector main body is attached, and FIGS. 7 and 8 are explanatory views explaining the application of the laser projector. 1...Semiconductor laser, 3...Laser fixing plate, 4...Rod-shaped microlens, 6...
... Lens fixing part, 7 ... Elastic body (coil spring), 8 ... Screw, 9 ... Hole for screw, 1o ... Laser Floodlight body, 11...
・Optical axis, 15... Emitter frame, 16...
receptacle.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体レーザと、その半導体レーザを取付けるレ
ーザ固定板と、前記半導体レーザに対向するロンド状マ
イクロレンズと、そのロンド状マイクロレンズを固定す
るレンズ固定部と、前記半導体レーザど前記ロンド状マ
イクロレンズ間の光軸方向の距離調整機構と、前記光軸
に直角な面上において前記半導体レーザの位置調整機構
とを備えたレーザ投光器本体を投光器枠に固定したレセ
プタクルに取付けたレーザ光投光装置。
(1) A semiconductor laser, a laser fixing plate for mounting the semiconductor laser, a rond-shaped microlens facing the semiconductor laser, a lens fixing part for fixing the rond-shaped microlens, and a rond-shaped microlens for fixing the rond-shaped microlens for the semiconductor laser. A laser beam projector in which a laser projector main body, which is equipped with a distance adjustment mechanism between lenses in the optical axis direction and a position adjustment mechanism for the semiconductor laser on a plane perpendicular to the optical axis, is attached to a receptacle fixed to a projector frame. .
(2)光軸方向の距離調整機構として、レーザ固定囲第
(1)項記載のレーザ光投光装置。
(2) A laser beam projecting device according to item (1) of the laser fixed enclosure as a distance adjustment mechanism in the optical axis direction.
(3)光軸に竜直角な面上における半導体レーザの位置
調整機構として、レーザ固定板のビス用孔の径をビスの
径に対し大きくシ、前記レーザ固定板の摺動調整を可能
にした特許請求の範囲第(1)項記載のレーザ光投光装
置。
(3) As a position adjustment mechanism for the semiconductor laser on a plane perpendicular to the optical axis, the diameter of the screw hole in the laser fixing plate is made larger than the diameter of the screw, making it possible to adjust the sliding movement of the laser fixing plate. A laser beam projection device according to claim (1).
JP7700783A 1983-04-30 1983-04-30 Laser light projecting device Pending JPS59201004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7700783A JPS59201004A (en) 1983-04-30 1983-04-30 Laser light projecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7700783A JPS59201004A (en) 1983-04-30 1983-04-30 Laser light projecting device

Publications (1)

Publication Number Publication Date
JPS59201004A true JPS59201004A (en) 1984-11-14

Family

ID=13621700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7700783A Pending JPS59201004A (en) 1983-04-30 1983-04-30 Laser light projecting device

Country Status (1)

Country Link
JP (1) JPS59201004A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319235B2 (en) * 1973-02-26 1978-06-20
JPS55161208A (en) * 1979-06-04 1980-12-15 Canon Inc Light source device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319235B2 (en) * 1973-02-26 1978-06-20
JPS55161208A (en) * 1979-06-04 1980-12-15 Canon Inc Light source device

Similar Documents

Publication Publication Date Title
JPH043008A (en) Method and device for detecting image plane
JP6765607B2 (en) Exposure device, exposure method
US10557800B2 (en) Calibrating inspection devices
JPS59201004A (en) Laser light projecting device
JP2012084713A (en) Exposure device
JP6422819B2 (en) Image recognition apparatus and image recognition method
JPS62232184A (en) Mathod and apparatus for machining reference surface of laser diode assembly
JPH0622193B2 (en) Exposure equipment
JPH02150399A (en) Image drawn surface control mechanism of scanning type image drawing device
JPS6213Y2 (en)
US6832517B1 (en) Optical level detector
US20030007153A1 (en) Alignment system of semiconductor exposure apparatus and diaphragm unit of the alignment system
JPH01181488A (en) Semiconductor laser device
JPH0219810A (en) Device for assembling parts of optical circuit
JP2004279802A (en) Method and device for assembling optical module
JPH03259691A (en) Solid-state image pickup element
JPS6368287A (en) Laser beam machining device
JPS62182686A (en) Optical sensor
JP3340199B2 (en) Aspherical lens eccentricity measuring device
CN114296251A (en) Method for adjusting consistency of optical axes of multi-light-path lens
JP2005516385A (en) Method for constructing an optical beam guiding system in an atmosphere without contamination and universal optical module for the construction
JPH035704A (en) Optical axis aligning device for cemented lens
JPH0714189A (en) Objective lens driving device
JPH0576039U (en) Laser light source device
JPS61132803A (en) Position detector