JPS59201003A - Semiconductor thin film lens - Google Patents

Semiconductor thin film lens

Info

Publication number
JPS59201003A
JPS59201003A JP7583283A JP7583283A JPS59201003A JP S59201003 A JPS59201003 A JP S59201003A JP 7583283 A JP7583283 A JP 7583283A JP 7583283 A JP7583283 A JP 7583283A JP S59201003 A JPS59201003 A JP S59201003A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
lens
film lens
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7583283A
Other languages
Japanese (ja)
Inventor
Hideaki Nojiri
英章 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7583283A priority Critical patent/JPS59201003A/en
Priority to US06/603,757 priority patent/US4640585A/en
Priority to DE19843415576 priority patent/DE3415576A1/en
Publication of JPS59201003A publication Critical patent/JPS59201003A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make a precise optical axis matching unnecessary and to simplify an adjustment of a mutual position to other optical element such as a light source, etc. by laminating two kinds of semiconductors and forming a titled lens. CONSTITUTION:A semiconductor thin film lens 10 is formed by laminating alternately a GaAs layer 12 and a Ga0.7Al0.3As layer 13 on a GaAs substrate 11. A forbidden band width, a refractive index and a thickness EgA, nA and dA, and EgB, nB and dB of the layers 12, 13 satisfy a condition of EgA<EgB, nA>nB, and the thicknesses dA, dB are made sufficiently thinner than a wavelength corresponding to the forbidden band width. Impurities of a different quantity are mixed in each semiconductor layer so that the refractive index becomes high in the center part in the direction (z), and becomes low in the substrate and the upper layer side. A light of energy being below a forbidden band width Eg of the thin film lens 10, which advances in the direction (y) is focused at some position so as to draw a sine curve in the direction (z), and an asymmetrical beam emitted from a semiconductor laser 15 can be fetched as a circular symmetrical beam 16.

Description

【発明の詳細な説明】 本発明紘、特に半導体レーザ等から発するレーザ光の集
光に適した薄膜レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film lens, particularly suitable for condensing laser light emitted from a semiconductor laser or the like.

一般に、半導体レーザから発する光拡接合面に垂直な方
向で30°〜60°、同じく1平行な方向で4゜〜10
0の非対称で大きな広がり角を持つ楕円ビームとなって
いる。この為、例えば半導体レーザをラノ光ヒームを先
導波路或いは光ファイバー等ニ直接接合する場合に結合
効率が著しく低下する。
Generally, the angle is 30° to 60° in the direction perpendicular to the light diffusing junction surface emitted from the semiconductor laser, and 4° to 10° in the parallel direction.
It is an elliptical beam with an asymmetrical angle of 0 and a large divergence angle. For this reason, for example, when a semiconductor laser is directly coupled to a rano optical beam to a leading waveguide or an optical fiber, the coupling efficiency is significantly reduced.

そζで従来第1図(a) 、 (b)に示すような結合
系が用いられた。第1図(a)は結合系の略断面図、同
じく(粉は平面図を誉す。ここで半導体レーザ1から射
出した非対称ビーム4は微小径円柱レンズ2により対称
ビーム4′にされ、光ファイバー3に導入される。また
5はヒートシンク、6恍支え治具を示す。このような結
合系において、十分な結合効率ヲ得る為にはレンズおよ
び光ファイバーの光軸が、光ビームに対して正確に合致
していなければならない。
Therefore, a coupling system as shown in FIGS. 1(a) and 1(b) has conventionally been used. FIG. 1(a) is a schematic cross-sectional view of the coupling system (the powder is shown as a plan view). Here, the asymmetric beam 4 emitted from the semiconductor laser 1 is converted into a symmetric beam 4' by the small diameter cylindrical lens 2, and the optical fiber In addition, 5 indicates a heat sink, and 6 indicates a supporting jig. In such a coupling system, in order to obtain sufficient coupling efficiency, the optical axis of the lens and optical fiber must be aligned accurately with respect to the light beam. Must match.

しかしながら前述の微小径円柱レンズ拡直径が0.2〜
0.3 mmと極めて小さく、光軸ずれに対して結合効
率が著しく低下する為に、位置調整が非常に難かしいと
いう欠点があった。
However, the diameter of the aforementioned micro-diameter cylindrical lens is 0.2~
It is extremely small at 0.3 mm, and the coupling efficiency significantly decreases with respect to optical axis misalignment, so it has the disadvantage that position adjustment is extremely difficult.

本発明の目的は、上記欠点に鑑み高精度の光軸合せが必
要なく、レンズ等信の光学素子との相互の位置調整が簡
単な半導体薄膜レンズを提供する事にある。
SUMMARY OF THE INVENTION In view of the above drawbacks, an object of the present invention is to provide a semiconductor thin film lens that does not require highly accurate optical axis alignment and that allows easy mutual positional adjustment with optical elements such as lenses.

本発明は、Eg^を半導体Aの禁制帯幅、ル^を同じく
屈折率、F’g8を半導体Bの禁制帯幅、nBを同じく
屈折率とすると、 ”A > rLs jEgA< Egsなる条件を満足
する半導体Aと半導体Bを交互に積層して成る半導体薄
膜レンズによって上記目的を達成するものである。
In the present invention, if Eg^ is the forbidden band width of semiconductor A, L^ is the same refractive index, F'g8 is the forbidden band width of semiconductor B, and nB is the same refractive index, the following condition is established: "A > rLs jEgA<Egs" The above object is achieved by a semiconductor thin film lens formed by alternately laminating semiconductors A and B that meet the above requirements.

以下、本発明を図面を用いて説明する。Hereinafter, the present invention will be explained using the drawings.

第4図(a)および(’b)は本発明の実施例の構成を
示す概略図で、第4図(a)は側面図、同じ<(b)は
正面図である。GaAa基板11上にGaAs層12を
厚さioo^で形成し、その上にGa O−7Al(1
,3A s層16を厚さ60′Aで形成する。更にその
上に次々にG4A s層12および(ErB、o、v 
AA’ o、a As層13を夫々前記と同様の厚さで
交互に積層し、全体として数μ扉〜十数μmの厚さの半
導体薄膜レンズ10を形成する。ここでG a A s
層12および(rao7Alo−aAs層16は公知の
分子線エピタキシャル(MBE)法、気相エピタキシャ
ル(cvD)法等を用いて薄膜結晶成長させる。これら
半導体層の禁制帯幅、屈折率、厚さを表1にまとめて示
す。
FIGS. 4(a) and ('b) are schematic diagrams showing the configuration of an embodiment of the present invention, with FIG. 4(a) being a side view and FIG. 4(b) being a front view. A GaAs layer 12 with a thickness of ioo^ is formed on a GaAa substrate 11, and GaO-7Al (1
, 3A s layer 16 is formed to a thickness of 60'A. Furthermore, on top of that, G4A s layer 12 and (ErB, o, v
The AA' o and a As layers 13 are alternately laminated to have the same thickness as described above to form a semiconductor thin film lens 10 having a total thickness of several μm to more than ten μm. Here G a A s
The layer 12 and the (rao7Alo-aAs layer 16) are grown as thin film crystals using the known molecular beam epitaxial (MBE) method, vapor phase epitaxial (CVD) method, etc. The forbidden band width, refractive index, and thickness of these semiconductor layers are They are summarized in Table 1.

表  1 GaAs層12の禁制帯幅、屈折率および厚さを夫々E
gA、rLA、dAとしGao、y7v!o、3A6層
16の禁制帯幅、屈折率および厚さを夫々EgB+ r
L9. dBとすると、 EgA< Egs z ′rLp、 > rLsの条件
を満たす。又、各層の厚さcLA + dBはそれぞれ
禁制帯幅に対応する波長λA (= 1.24/EgA
、単位μす、′λs (= 1.24/Egs、単位μ
77L)に対して数10分の1から数100分の1の値
を持つ。このようにdA、dBはλAより十分薄くなく
てはならない。これらの層が積層されて形成された半導
体薄膜レンズ10の禁制帯幅Egおよび屈折率iは近似
的に、 Eg= 1.464(eV)、7l−=3.5
8と求められる。従ってこれらの禁制帯幅および屈折率
には以下の関係が成立する。
Table 1 The forbidden band width, refractive index, and thickness of the GaAs layer 12 are expressed as E
gA, rLA, dA and Gao, y7v! o, the forbidden band width, refractive index and thickness of the 3A6 layer 16 are respectively EgB+ r
L9. dB, the following conditions are satisfied: EgA<Egs z'rLp, >rLs. Moreover, the thickness cLA + dB of each layer is the wavelength λA (= 1.24/EgA
, unit μs, ′λs (= 1.24/Egs, unit μ
77L), it has a value of several tenths to several hundredths. In this way, dA and dB must be sufficiently thinner than λA. The forbidden band width Eg and refractive index i of the semiconductor thin film lens 10 formed by laminating these layers are approximately as follows: Eg = 1.464 (eV), 7l- = 3.5
8 is required. Therefore, the following relationship holds true between these forbidden band widths and refractive indices.

EgA< Eg < Egs 、 nA> n > a
sこの時、Eg以下のエネルギーをもつ光は、半導体薄
膜レンズ10に吸収されにくくなり、透過してしまう。
EgA<Eg<Egs, nA>n>a
s At this time, light with energy below Eg is difficult to be absorbed by the semiconductor thin film lens 10 and is transmitted.

また第2図(a) 、 (1))においてy方向に進行
するEg以下のエネルギーの光はX方向でサイン(si
n)カーブを描くようにある位置で集束する0従って、
第6図に示すように半導体レーザ15から射出した非対
称ビームを本発明の半導体薄膜レンズ10を通すことに
よって成形し、円形の対称ビーム16として取り出す事
ができる0また光ビームと半導体薄膜レンズとの高精度
な光軸合せは必要なく、半導体レーザ15と半導体薄膜
レンズ10との相互の位置調整が簡単である。その為、
この半導体薄膜レンズ10からの光ビームを光ファイバ
ー或いは薄膜光導波路に導くことにより、高効率の光結
合も可能である。
In addition, in Figure 2 (a) and (1)), light with energy less than Eg traveling in the y direction has a sine (si) in the x direction.
n) 0 that focuses at a certain position so as to draw a curve. Therefore,
As shown in FIG. 6, an asymmetrical beam emitted from a semiconductor laser 15 is shaped by passing it through the semiconductor thin film lens 10 of the present invention, and is extracted as a circular symmetrical beam 16. There is no need for highly accurate optical axis alignment, and mutual positional adjustment of the semiconductor laser 15 and the semiconductor thin film lens 10 is easy. For that reason,
By guiding the light beam from this semiconductor thin film lens 10 to an optical fiber or a thin film optical waveguide, highly efficient optical coupling is also possible.

前記実施例の半導体薄膜レンズ10においては、X方向
にもレンズ作用をもたせる為に、レンズの両側端にグレ
ーティング14を設けているが、2方向のみのレンズ作
用で十分な場合には、グレーティング14は必ずしも必
要ではない。
In the semiconductor thin film lens 10 of the above embodiment, gratings 14 are provided at both ends of the lens in order to have a lens action in the X direction as well, but if a lens action in only two directions is sufficient, the gratings 14 is not necessarily necessary.

また前記実施例では各半導体層の成長中、故意に不純物
を混入させておらず、不純物による屈折率の分布はつい
ていない。しかし成長中に半導体薄膜レンズの2方向に
第4図(alに示すような分布を持つ不純物のドーピン
グを行なうと、同じく(b)K示すように屈折率が中心
部で高く、基板および上部層側で低くなる。この場合に
は前記実施例より2方向のレーザ元の変化が著しくなり
、レンズ長lの短い、より小さな半導体薄膜レンズが作
製できる。尚、第4図(a) 、 (b)で厚さとは半
導体薄膜レンズの2方向の厚さをDとした任意尺度で示
し、(旬に示されるSは基板部分を指す。
Further, in the above embodiment, impurities were not intentionally mixed during the growth of each semiconductor layer, and no refractive index distribution was caused by the impurities. However, if the semiconductor thin film lens is doped with impurities having the distribution shown in FIG. 4(a) in two directions during growth, the refractive index is high in the center as shown in FIG. In this case, the change in the laser source in the two directions becomes more remarkable than in the previous example, and a smaller semiconductor thin film lens with a shorter lens length l can be manufactured. ), the thickness is expressed as an arbitrary scale where D is the thickness of the semiconductor thin film lens in two directions, and (S in the figure indicates the substrate portion.

更に、本発明の半導体薄膜レンズでは半導体レーザと七
ノリシックに構成することができる。例えば第5図のよ
うにG a A 3基板21上にまず、マスク技術等を
用いて通常のGaAs −GaA# As  系の半導
体レーザ25を作製し、次に同一基板上rGaAs層2
2 、 Gao、7A10.aAsAs層上6互に積層
して半導体薄膜レンズ20を形成する。本実施例では半
導体レーザ25と半導体薄膜レンズ20の相互の位置調
整が不要であり、コンパクトで、対称ビームを発する光
源系が構成される。更に本実施例では同一基板上に光導
波路等を・・イブリッドに形成する事により集積化され
た光複合素子等に応用できる。
Furthermore, the semiconductor thin film lens of the present invention can be constructed seven-dimensionally with a semiconductor laser. For example, as shown in FIG. 5, a normal GaAs-GaA# As semiconductor laser 25 is first fabricated on a GaA 3 substrate 21 using a mask technique, and then an rGaAs layer 2 is fabricated on the same substrate.
2, Gao, 7A10. A semiconductor thin film lens 20 is formed by stacking six layers on the aAsAs layer. In this embodiment, there is no need to adjust the positions of the semiconductor laser 25 and the semiconductor thin film lens 20, and a compact light source system that emits a symmetrical beam is constructed. Furthermore, this embodiment can be applied to integrated optical composite devices etc. by forming optical waveguides etc. in an hybrid manner on the same substrate.

前記実施例では半導体としてGaAsおよびGaAlA
sを用いたが、他の■−■族半尋体の多元混晶、或いは
I−Vl族半導体等を用いても本発明を構成することが
可能である。
In the above embodiment, GaAs and GaAlA are used as semiconductors.
Although S is used, it is also possible to construct the present invention using other ■-■ group semiconducting multi-component mixed crystals, I-Vl group semiconductors, etc.

以上説明したように本発明は2種の半導体の積層により
半導体薄膜レンズを形成したので、N密な光軸合せが不
要で、光源等信の光学素子との相互位置の*iが簡単に
なった。
As explained above, in the present invention, a semiconductor thin film lens is formed by laminating two types of semiconductors, so there is no need for N-tight optical axis alignment, and the mutual position *i with the optical element of the light source etc. can be easily adjusted. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) B各々従来の微小径円柱レ
ンズを用いた結合系を示す図、第2図(a) 、 (1
))は各々本発明の実施例の構成を示す概略図、第6図
は、本発明の実施例を半導体レーザのビーム整形に用い
た場合を示す斜視図、第4図(a) 、 (IJは各々
本発明の半導体薄膜レンズに不純物を混入した場合のド
ーピング量および屈折率の分布を示す図、第5図れ本発
明の他の実施例を示す概略図。 10.20・・・・・半導体薄膜レンズ、11.21・
・・・・GaAf3基板、12 、22 *”ee G
aAs層、13 、23 e・・ll11Gao、yA
Jo、sAs層、14・・・−・グレーティング、 15.25・・・・・半導体レーザ。 /L     ’J 第4M 第5聞 手続補正書(自発) 昭和59年4月25日 特許庁長官 若 杉和夫  殿 1、事件の表示 昭和58年 特許願  第 75832    号2、
発明の名称 半導体薄膜レンズ 3、補正をする者 事件との関係       特許出願人性 所 東京都
大田区下丸子3−30−2名称 (+00)キャノン株
式会社 二゛・・。 凸、補正の対象 明細書 6、補正の内容 明細書全文を別紙の通)補正する。 訂正明細書 り発明の名称 半導体薄膜レンズ 2特許請求の範囲 (1) 12人を半導体Aの禁制帯幅、−を同じく屈折
弘〉ルB  、  EgA<BgB 3、発明の詳細な説明 本発明は、特に半導体レーザ等から発するレーザ光の集
光に適した薄膜レンズに関する。 一般に、半導体レーザから発する光は接合面に垂直な方
向で60°〜60°、同じく平行な方向で4゜〜10°
の非対称で大きな広がり角を持つ楕円ビームとなってい
る。この為、例えば半導体レーザからの光ビームを光導
波路或いは光ファイバー等に直接接合する場合に結合効
率が著しく低下する。 そこで従来第1図(a) 、 (b)に示すような結合
系が用いられた。第1図(a) kA結合系の略断面図
、同じく(b) 11平面図を示す。ここで半導体レー
ザ1から射出した非対称ビーム4は微小径円柱レンズ2
によシ対称ビーム4′にされ、光ファイバー3に導入さ
れる。また5はヒートシンク、6は支え治具を示す。こ
のような結合系において、十分な結合効率ヲ得る為には
レンズおよび光ファイバーの光軸が〜光ビームに対して
正確に合致していなければならない。 しかじな力fら前述の微小径円柱レンズは直径が0.2
〜0.3rrKnと極めて小さく、光軸ずれに対して結
合効率が著しく低下する為に、位置調整が非常に難かし
いという欠点があった。 本発明の目的は、上記欠点に鑑み半導体レーザ等信の素
子との相互の位置調整が簡単な半導体薄膜レンズを提供
する事にある。 本発明は、12人を半導体Aの禁制帯幅、−を同じく屈
折率、1g13を半導体Bの禁制帯幅、nBを同じく屈
折率とすると、 3A > nB  、  EgA< BgBなる条件を
満足する半導体Aと半導体Bを交互に積層して成り、各
半導体層には異なる量の不純物が混入されてレンズ作用
を生ずる屈折率分布を有する半導体薄膜レンズによって
上記目的を達成す′るものである。 以下、本発明を図面を用いて説明する。 第2図(a)および(b)は本発明の実施例の構成を示
す概略図で、第2図(a)は側面図、同じ< (b) 
if正面図である。QaAs基板11上にGaAs層1
2を厚さ100Aで形成し、その上にGa□、7AA’
g 、5hs 層16を厚さ30Aで形成する。更にそ
の上に次々にGaAs層12および偽o、7 AJ□、
5hs層13を夫々前記と同様の厚さで交互に積層し、
全体として数μm〜士数μmの厚さの半導体薄膜レンズ
10を形成する。ここでGaAs層12およびGao、
7 AJO,3AS層16は公知の分子線エピタキシャ
ル(MBE)法、気相エピタキシャルCCVD)法等を
用いて薄膜高成長させる0これら半導体層の禁制帯幅、
屈折ハ 率、厚さを表1にまとめて示す。 表   1゜ GaAs層12の禁制帯幅、屈折−および厚さを夫々E
gA、 BA 、 dAとしGac7AA!o、3AS
層16の禁制帯幅、屈折率および厚さを夫々EgB 、
 nB 、 dBとすると、 Bg人’ < ′BgB  t  na > nBの条
件を満たす。又、各層の厚さdA、 dBfJそれぞれ
禁制帯幅に対応する波長λA (−1,24/Eg人−
。 単位μm)、λB (−1,24/ EgBs、)単位
μm)に対して数10分の1から数100分の1の値を
持つ。このようにdA、 dBはλAよシ十分薄くな(
てはならない。これらの層が積層されて形成された半導
体薄膜レンズ10の禁制帯幅Egおよび屈折率ルは近似
的に、Eg−1,464(e V )、s=3.58 
と求められるO従ってこれらの禁制帯幅および屈折率に
は以下の関係が成立する。 EgA< Eg < EgB  、  %A > n 
> rLBこの時、8g以下のエネルギーをもつ光は、
半導体薄膜レンズ10に吸収されにくくなり島透過して
しまう。ここで、成長中に各半導体層に異なる量の不純
物(例えば8i)を混入し、半導体薄膜レンズの2方向
に第4図(a)に示すような分布を持つドーピングを行
なうと、同じ<(b)に示すように屈折率が中心部で高
く、基板および上部層側で低(なる0その為、第2図(
a) 、 (b)においてX方向に進行する8g以下の
エネルギーの光は2方向でサイン(sin )カーブを
描くよ5にある位置で集束する。 従って、第6図に示すように半導体レーザ15から射出
した非対称ビー・ムを適当なレンズ長lに形成された本
発明の半導体薄膜レンズ10を通すことによって成形し
、円形の対称ビーム16として取り出す事ができる0ま
た光ビームと半導体薄膜レンズとの高精度な光軸合せが
可能で、半導体レーザ15と半導体薄膜レンズ10との
相互の位置調整が簡単である。その為、この半導体薄膜
レン免 ズ10からの交ビームを光ファイバー或いは薄膜光導波
路に導(ことにより、高効率の光結合も可能である。 前記実施例の半導体薄膜レンズ10においては、X方向
にもレンズ作用をもたせる為に、レンズの両側端にグレ
ーティング14を設けているが、2方向のみのレンズ作
用で十分な場合には、グレーティング14は必ずしも必
要ではない。 尚X第4図(a) 、 (b)で厚さとは半導体薄膜レ
ンズの2方向の厚さをDとした任意尺度で示し、(b)
に示されるSは基板部分を指す。 更に、本発明の半導体薄膜レンズでは半導体レーザとモ
ノリシックに構成することができる。例えば第5図のよ
うにGaAs基板21上にまず、マスク技術等を用いて
通常のGaAs −GaAfflAs系の半導体レーザ
25を作製し、次に同一基板上にGaAs層22 、 
Ga□、7AJ□、3As層26を交互に積層して半導
体薄膜レンズ20を形成する。本実施例では半導体レー
ザ25と半導体薄膜レンズ20の相互の位置調整が簡単
であり、コンパクトで、対称ビームを発する光源系が構
成される。更に本実施例では同一基板上に光導波路等を
ハイブリッドに形成する事によシ集積化された光複合素
子等に応用できる。 前記実施例では半導体としてGaAsおよびGaklA
sを用いたが、他の■−■族半導体の多元混晶、或いは
■−■族半導体等を用いても本発明を構成することが可
能である。また不純物としては、Be等を用いても良い
。 以上説明したように本発明は2種の半導体の積層により
半導体薄膜レンズを形成したので、精密な光軸合せが不
要で、光源等信の光学素子との相互位置の調整が簡単に
なった。 4、図面の簡単な説明 第1図体) e (b)は各々に従来の微小径円柱レン
ズを用いた結合系を示す図、第2図(a) 、 (b)
は各々本発明の実施例の構成を示す概略図、第6図は本
発明の実施例を半導体レーザのビーム整形に用いた場合
を示す斜視図、第4図(a) 、 (b)は各々実施例
の半導体薄膜レンズに混入した不純物のト°−ピング量
および屈折率の分布を示す図、第5図は本発明の他の実
施例を示す概略図0 10.20・・・・・半導体薄膜レンズ、11 、21
 ”−GaAs基板、 12 、22 ”・GaAs層、 13 、23 ”・Ga□、7A70.3As層、14
、。・・、グレーティング、 1・5,25・・・・・半導体レーザ。
Figure 1 (a), (b) B is a diagram showing a coupling system using a conventional micro-diameter cylindrical lens, and Figure 2 (a), (1
)) are schematic diagrams showing the configuration of the embodiments of the present invention, FIG. 6 is a perspective view showing the case where the embodiments of the present invention are used for beam shaping of a semiconductor laser, and FIGS. 4(a) and (IJ 10.20...Semiconductor Thin film lens, 11.21・
...GaAf3 substrate, 12, 22 *”ee G
aAs layer, 13, 23 e...ll11Gao, yA
Jo, sAs layer, 14... grating, 15.25... semiconductor laser. /L'J No. 4M Written amendment to the 5th hearing (voluntary) April 25, 1980 Director of the Japan Patent Office Kazuo Wakasugi 1, Indication of the case 1989 Patent Application No. 75832 2,
Title of the invention: Semiconductor thin film lens 3, relation to the case of the corrector Patent applicant Location: 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (+00) Canon Co., Ltd. 2... Convex, the specification to be amended 6, the full text of the specification to be amended is attached as a separate document). Amended Description Name of the Invention Semiconductor Thin Film Lens 2 Claims (1) 12 The forbidden band width of the semiconductor A, - is also the refraction angle B, EgA<BgB 3. Detailed Description of the Invention The present invention is In particular, the present invention relates to a thin film lens suitable for focusing laser light emitted from a semiconductor laser or the like. Generally, the light emitted from a semiconductor laser is 60° to 60° in the direction perpendicular to the junction surface, and 4° to 10° in the parallel direction.
It is an asymmetrical elliptical beam with a large divergence angle. For this reason, for example, when a light beam from a semiconductor laser is directly coupled to an optical waveguide or an optical fiber, the coupling efficiency is significantly reduced. Therefore, conventionally, a coupling system as shown in FIGS. 1(a) and 1(b) has been used. FIG. 1(a) is a schematic sectional view of the kA coupling system, and FIG. 1(b) is a plan view of the same. Here, the asymmetric beam 4 emitted from the semiconductor laser 1 is
The beam is made into a symmetrical beam 4' and introduced into the optical fiber 3. Further, 5 indicates a heat sink, and 6 indicates a support jig. In such a coupling system, in order to obtain sufficient coupling efficiency, the optical axes of the lens and the optical fiber must precisely align with the light beam. The above-mentioned small diameter cylindrical lens has a diameter of 0.2 due to the force f.
Since the coupling efficiency is extremely small at ~0.3rrKn and the optical axis misalignment decreases significantly, there is a drawback that position adjustment is extremely difficult. SUMMARY OF THE INVENTION In view of the above drawbacks, it is an object of the present invention to provide a semiconductor thin film lens that can be easily adjusted in position with respect to a semiconductor laser or other communication element. The present invention is a semiconductor that satisfies the following conditions: 3A>nB, EgA<BgB, where 12 is the forbidden band width of semiconductor A, - is the same refractive index, 1g13 is the forbidden band width of semiconductor B, and nB is the same refractive index. The above object is achieved by a semiconductor thin film lens which is made by alternately laminating semiconductors A and B, and each semiconductor layer is mixed with a different amount of impurity, and has a refractive index distribution that produces a lens effect. Hereinafter, the present invention will be explained using the drawings. 2(a) and 2(b) are schematic diagrams showing the configuration of an embodiment of the present invention, FIG. 2(a) is a side view, and the same <(b)
IF is a front view. GaAs layer 1 on QaAs substrate 11
2 with a thickness of 100A, and Ga□, 7AA'
g, 5hs Layer 16 is formed with a thickness of 30A. Furthermore, GaAs layers 12 and false o, 7 AJ□,
5hs layers 13 are alternately laminated with the same thickness as above,
A semiconductor thin film lens 10 having a total thickness of several μm to several μm is formed. Here, the GaAs layer 12 and Gao,
7 The AJO and 3AS layers 16 are grown as thin films using known molecular beam epitaxial (MBE) method, vapor phase epitaxial CCVD) method, etc. 0 The forbidden band width of these semiconductor layers,
The refractive index and thickness are summarized in Table 1. Table 1: The forbidden band width, refraction and thickness of the GaAs layer 12 are expressed as E
As gA, BA, dA, Gac7AA! o, 3AS
Let the forbidden band width, refractive index and thickness of layer 16 be EgB, respectively.
When nB and dB, the condition of Bg person'<'BgB t na > nB is satisfied. In addition, the thickness dA of each layer and the wavelength λA (-1, 24/Eg person-) corresponding to the forbidden band width, respectively, are dBfJ.
. (unit: μm), λB (-1,24/EgBs,) unit: μm), has a value of several tenths to several hundredths. In this way, dA and dB are much thinner than λA (
must not. The forbidden band width Eg and refractive index of the semiconductor thin film lens 10 formed by stacking these layers are approximately Eg-1,464 (e V ), s=3.58
Therefore, the following relationship holds true for these forbidden band widths and refractive indexes. EgA<Eg<EgB, %A>n
> rLB At this time, light with energy less than 8g is
It becomes difficult to be absorbed by the semiconductor thin film lens 10 and is transmitted through islands. Here, if different amounts of impurities (for example, 8i) are mixed into each semiconductor layer during growth and doping is performed in two directions of the semiconductor thin film lens with a distribution as shown in FIG. 4(a), the same <( As shown in b), the refractive index is high at the center and low at the substrate and upper layer sides.
In a) and (b), light with an energy of 8 g or less traveling in the X direction is focused at a position 5 so as to draw a sine curve in two directions. Therefore, as shown in FIG. 6, the asymmetrical beam emitted from the semiconductor laser 15 is shaped by passing it through the semiconductor thin film lens 10 of the present invention formed to have an appropriate lens length l, and is taken out as a circular symmetrical beam 16. Furthermore, highly accurate optical axis alignment between the light beam and the semiconductor thin film lens is possible, and mutual positional adjustment between the semiconductor laser 15 and the semiconductor thin film lens 10 is easy. Therefore, the crossed beams from this semiconductor thin film lens 10 are guided to an optical fiber or a thin film optical waveguide (thereby, highly efficient optical coupling is possible. In order to provide lens action, gratings 14 are provided at both ends of the lens, but if lens action in only two directions is sufficient, the gratings 14 are not necessarily necessary. , In (b), the thickness is expressed as an arbitrary scale where D is the thickness of the semiconductor thin film lens in two directions, and (b)
The symbol S shown in the figure refers to the substrate portion. Furthermore, the semiconductor thin film lens of the present invention can be constructed monolithically with a semiconductor laser. For example, as shown in FIG. 5, a normal GaAs-GaAfflAs semiconductor laser 25 is first fabricated on a GaAs substrate 21 using a mask technique or the like, and then a GaAs layer 22,
A semiconductor thin film lens 20 is formed by alternately stacking Ga□, 7AJ□, and 3As layers 26. In this embodiment, the mutual position adjustment of the semiconductor laser 25 and the semiconductor thin film lens 20 is easy, and a light source system that is compact and emits a symmetrical beam is constructed. Furthermore, this embodiment can be applied to integrated optical composite devices by forming optical waveguides and the like in a hybrid manner on the same substrate. In the above embodiment, GaAs and GaklA are used as semiconductors.
Although s is used, it is also possible to construct the present invention using other multi-component mixed crystals of group semiconductors or group semiconductors. Furthermore, Be or the like may be used as the impurity. As explained above, in the present invention, a semiconductor thin film lens is formed by laminating two types of semiconductors, so precise alignment of the optical axis is not required, and mutual position adjustment with optical elements such as a light source is simplified. 4. Brief explanation of the drawings Figure 1) e (b) is a diagram showing a coupling system using a conventional micro-diameter cylindrical lens, Figures 2 (a) and (b)
6 is a schematic diagram showing the configuration of an embodiment of the present invention, FIG. 6 is a perspective view showing the case where the embodiment of the present invention is used for beam shaping of a semiconductor laser, and FIGS. 4(a) and (b) are respectively A diagram showing the toping amount of impurities mixed in the semiconductor thin film lens of the example and the distribution of the refractive index, FIG. 5 is a schematic diagram showing another example of the present invention 0 10.20...Semiconductor Thin film lens, 11, 21
"-GaAs substrate, 12, 22"・GaAs layer, 13, 23"・Ga□, 7A70.3As layer, 14
,. ..., grating, 1, 5, 25... semiconductor laser.

Claims (1)

【特許請求の範囲】[Claims] (1) ]lCg^を半導体Aの禁制帯幅、シを同じく
屈折率、EgBを半導体Bの禁制帯幅、相を同じく屈折
率とすると、 nA> as * Kg^< Ega なる条件を満足する半導体Aと半導体Bを、半導体Aの
禁制帯幅に対応する波長より十分薄い7さで交互に積層
して成る半導体薄膜レンズ。
(1) If ]lCg^ is the forbidden band width of semiconductor A, C is the same refractive index, EgB is the forbidden band width of semiconductor B, and the phase is the same refractive index, then the following condition is satisfied: nA> as * Kg^< Ega A semiconductor thin film lens made by alternately laminating semiconductors A and B at a thickness of 7 which is sufficiently thinner than the wavelength corresponding to the forbidden band width of semiconductor A.
JP7583283A 1983-04-28 1983-04-28 Semiconductor thin film lens Pending JPS59201003A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7583283A JPS59201003A (en) 1983-04-28 1983-04-28 Semiconductor thin film lens
US06/603,757 US4640585A (en) 1983-04-28 1984-04-25 Semiconductor thin film lens
DE19843415576 DE3415576A1 (en) 1983-04-28 1984-04-26 SEMICONDUCTOR THIN-LAYER LENS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7583283A JPS59201003A (en) 1983-04-28 1983-04-28 Semiconductor thin film lens

Publications (1)

Publication Number Publication Date
JPS59201003A true JPS59201003A (en) 1984-11-14

Family

ID=13587552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7583283A Pending JPS59201003A (en) 1983-04-28 1983-04-28 Semiconductor thin film lens

Country Status (1)

Country Link
JP (1) JPS59201003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028673A (en) * 2019-08-09 2021-02-25 浜松ホトニクス株式会社 Optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269643A (en) * 1975-12-08 1977-06-09 Toshiba Corp Optical lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269643A (en) * 1975-12-08 1977-06-09 Toshiba Corp Optical lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028673A (en) * 2019-08-09 2021-02-25 浜松ホトニクス株式会社 Optical element

Similar Documents

Publication Publication Date Title
US5267077A (en) Spherical multicomponent optical isolator
US5848203A (en) Polarization-independent optical isolator
US6483969B1 (en) Apparatus, assembly, and method for making micro-fixtured lensed assembly for optoelectronic devices and optical fibers
US4213677A (en) Light coupling and branching device using light focusing transmission body
US4640585A (en) Semiconductor thin film lens
US4557566A (en) Spherical lens for spherically symmetrical graded refractive index distribution provided with rod clad
US7013056B2 (en) Bi-directional transceiver module based on silicon optic bench
JPH02222589A (en) Semiconductor laser device
US6438291B1 (en) Coupling of light into a monolithic waveguide device
Huang et al. High coupling optical design for laser diodes with large aspect ratio
JPS59201003A (en) Semiconductor thin film lens
US7010190B2 (en) Silicon optic based wavelength division multiplexing device
CN102109645B (en) Coupling device for semiconductor stripe laser diode (LD) and single mode fiber (SMF)
JPS59200211A (en) Optical multibranching device
CN104377550A (en) High-power semiconductor laser device based on optical fiber light transmission beams
JPS60216301A (en) Seniconductor thin film lens
US6853767B1 (en) Methods for manufacturing optical coupling elements
US20230236348A1 (en) Focal polarization beam displacer
Kawano et al. Coupling characteristics of laser diode to multimode fiber using separate lens methods
JP2002026370A (en) Semiconductor light receiving device
JPH02185070A (en) Photodetector and manufacture thereof
JPH04116507A (en) Array laser module
JPS5917523A (en) Optical device
JP2002328259A (en) Optical element
CN114325930A (en) Laser multiplexing device of triangle-arranged grating magneto-optical trap