JPS59200777A - Method for electrolyzing salt - Google Patents

Method for electrolyzing salt

Info

Publication number
JPS59200777A
JPS59200777A JP7534683A JP7534683A JPS59200777A JP S59200777 A JPS59200777 A JP S59200777A JP 7534683 A JP7534683 A JP 7534683A JP 7534683 A JP7534683 A JP 7534683A JP S59200777 A JPS59200777 A JP S59200777A
Authority
JP
Japan
Prior art keywords
ion exchange
membrane
exchange membrane
beta
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7534683A
Other languages
Japanese (ja)
Inventor
Mitsutaka Watanabe
渡辺 光崇
Isao Ishigaki
功 石垣
Jiro Okamoto
次郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP7534683A priority Critical patent/JPS59200777A/en
Publication of JPS59200777A publication Critical patent/JPS59200777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To manufacture sodium hydroxide contg. little sodium chloride with high current efficiency by using an ion exchange membrane formed by introducing carboxylic acid into a film of an alternate multicomponent copolymer consisting of tetrafluoroethylene, alpha,beta,beta-trifluoro-acrylate and alpha-olefin. CONSTITUTION:An alternate multicomponent copolymer consisting of CF2=CF2, one or more kinds of alpha,beta,beta-trifluoroacylate represented by formula I (where n is >=1) and one or more kinds of alpha-olefins represented by formula II (where each of l and m is an integer of 0-11) is prepd. The copolymer is molded into a transparent film by hot pressing or other method, and carboxylic acid groups are introduced into the film to form an ion exchange membrane. This membrane has low electric resistance and high cation permeability as well as high chemical stability at high temp., superior mechanical strength and durability. An electrolytic cell is divided into cathode and anode chambers with the membrane, and brine is fed to the anode chamber and electrolyzed. Sodium hydroxide contg. little sodium chloride can be manufactured with high current efficiency.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は塩の電解方法に関する。より詳しく述べると、
本発明はテトラフルオロエチレン(以下”TFE”と略
記する場合がある)、α、β、β−トリフルオロアクリ
レート(以下@TFA”と略記する場合がある)および
α−オレフィンから成る含フツ素モノマーとα−オレフ
ィンの交互多元共重合体にカルボン酸基を導入して成る
イオン交換膜を隔膜として使用することを特徴とする世
の電解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for electrolyzing salts. To be more specific,
The present invention is a fluorinated monomer consisting of tetrafluoroethylene (hereinafter sometimes abbreviated as "TFE"), α, β, β-trifluoroacrylate (hereinafter sometimes abbreviated as @TFA), and α-olefin. The present invention relates to an electrolytic method characterized in that an ion exchange membrane formed by introducing a carboxylic acid group into an alternating multi-component copolymer of and α-olefin is used as a diaphragm.

従来技術の説1明 従来、食塩電解による苛性ソーダ、塩素の製造は、主と
して水銀法とアスベスト隔膜法で行われてきたが、昭和
51年までに水銀法の約60%が隔膜法に転換された。
Explanation of the prior art 1 In the past, the production of caustic soda and chlorine through salt electrolysis was mainly carried out using the mercury method and the asbestos diaphragm method, but by 1976, approximately 60% of the mercury method had been converted to the diaphragm method. .

しかし、隔膜法の苛性ソーダは品質が悪く、コストも高
いので、新技術として登場したイオン交換膜法が注目さ
れろようになり現在イオン交換膜法への移行が徐々に進
んでいる。
However, the quality of the caustic soda produced by the diaphragm method is poor and the cost is high, so the ion exchange membrane method, which has appeared as a new technology, is attracting attention, and the transition to the ion exchange membrane method is currently progressing gradually.

塩電解に使用されるイオン交換膜は、電気抵抗が低くか
つイオンの、′7!′択透鍋件が大きいこと、高温でも
耐アルカリ性剛塩素性等化学的安定性が大きいこと、機
械的強度、耐久性が優れていることなど数多くの条件を
満亀するものでなくてはt(らない。従−来使用されて
いたハイドゝロカーボン系の膜はこの様な諸苧件な売足
することが出来ず、最近ではもっばらフルオロカーボン
系膜が実用膜として使用されている。フルオロカーボン
系膜の代表例としてはDu、Pont社が40年代に開
発した含フツ素系高分子にスルホン酸基を導入したパー
フルオロスルホン酸膜(商標名”Nafion’)  
又はその変性膜がある。然しなから、スルホン酸基は親
水性が極めてギhいので水酸イオンが陰極室から陽極室
へ逆移IFすし易く電流効率が低いという欠点があった
。こ八に対して、最近では、交4QI鱒t;をカルボキ
シル基とした會フッ素系高分子から成るイオン交換膜な
と種々の含フツ素のイオン交換膜が開発されている。い
ずれの膜もテトラフルオロエチレンと官能基をイタする
パーフルオロビニルエーテルとの共重合体であり、官能
基を除く分子内に水素腫、子は含まれておらずそのため
熱的にも化学的にも槓めて安定である。従って、パーフ
ルオロカーボン膜が塩電解用の実用隔膜として使用され
てきている。然しなから、これらの交換膜は原料となる
七ツマ−の合成が複雑であり膜が高価であることが実用
上の欠点である。
The ion exchange membrane used for salt electrolysis has low electrical resistance and contains ions. 'It must satisfy many conditions, such as having a large selective diaphragm property, high chemical stability such as alkali resistance and rigid chlorine resistance even at high temperatures, and excellent mechanical strength and durability. (No. Hydrocarbon-based membranes that have been used in the past cannot be sold in such situations, and recently fluorocarbon-based membranes have been used as practical membranes.Fluorocarbon A typical example of such membranes is the perfluorosulfonic acid membrane (trade name "Nafion'), which is a fluorine-containing polymer with sulfonic acid groups developed by DuPont in the 1940s.
Or there is a modified membrane thereof. However, since the sulfonic acid group has extremely low hydrophilicity, hydroxide ions tend to move back through the IF from the cathode chamber to the anode chamber, resulting in a low current efficiency. In contrast, recently, various fluorine-containing ion exchange membranes have been developed, such as ion exchange membranes made of fluorine-based polymers having 4QI trout as carboxyl groups. Both membranes are copolymers of tetrafluoroethylene and perfluorovinyl ether, which removes functional groups, and do not contain hydrogen atoms or molecules within the molecule except for functional groups, so they are thermally and chemically stable. It is stable when pressed. Therefore, perfluorocarbon membranes have been used as practical diaphragms for salt electrolysis. However, these exchange membranes have practical disadvantages in that the synthesis of the raw material 7mer is complicated and the membranes are expensive.

本発明の目的は電気抵抗が低く且つ陽イオンの選択透過
性が大きく、高温でも化学的安定性が大きく、機械的強
度、耐久性が優れている塩電解用イオン交換膜を提供す
ることである。
An object of the present invention is to provide an ion exchange membrane for salt electrolysis that has low electrical resistance, high cation permselectivity, high chemical stability even at high temperatures, and excellent mechanical strength and durability. .

本発明はテトラフルオロエチレン、一般式CF =CF
COCH(但しルは1以−ヒの整数)2      2
  n  2yz+1で表わされる1種以上のα、β、
β−トリフルオロアクリレートおよび一般式 (但し、)および扉は独立したO〜11の整数)で表わ
される1種以上のα−オレフィンから成る含フツ素モノ
マーとα−オレフィンの交互多元共重合体にカルボン酸
基を導入したイオン交換容量が05〜3 m e q/
g−乾燥膜のイオン交換膜を隔膜として使用することを
特徴とする塩の電解法に関する。
The present invention relates to tetrafluoroethylene, general formula CF=CF
COCH (where R is an integer from 1 to H) 2 2
One or more types of α, β, represented by n 2yz+1
An alternating multi-component copolymer of a fluorine-containing monomer and an α-olefin consisting of β-trifluoroacrylate and one or more α-olefins represented by the general formula (where ) and the door are independent integers from O to 11. Ion exchange capacity with carboxylic acid group introduced is 05 to 3 m eq/
g-Regarding a salt electrolysis method characterized by using a dry membrane ion exchange membrane as a diaphragm.

本発明は塩′電解用隔膜として使用するイオン交換膜に
qη徴カリ)るので以下このイオン交換用1さの製造法
、$77を造、物性雰について解説する。
Since the present invention relates to an ion exchange membrane used as a diaphragm for salt electrolysis, a method for manufacturing this ion exchange membrane ($77) will be described below, and its physical properties will be explained.

本発明で塩電解用隔膜として使用するイオン交換I+!
’、はテトラフルオロエチレン、一般式%式% 2   □ユ2yL+1  (但し、ルは1以上の整数
)で表わさねる一杆以上のα、β、β−トリフルオロア
クリレートおよび一般式 (但し、mおよび!は独立したO〜11の整数)で表わ
さft、る−腫以上のα−オレフィンがら成る含フツ素
モノマーとα−オレフィンの交互多元共1毛合体を加水
分解してTFA J4I−位のもつエステル基をカルボ
ン酸基に転換することによって製造される。
Ion exchange I+ used as a diaphragm for salt electrolysis in the present invention!
', represents tetrafluoroethylene, general formula % formula % 2 □U2yL+1 (wherein L is an integer of 1 or more) and α, β, β-trifluoroacrylate of one rod or more and the general formula (where m and ! is an independent integer from 0 to 11), an alternating multi-component polymer of a fluorine-containing monomer and an α-olefin consisting of an α-olefin of 1 or higher is hydrolyzed to form TFA with the J4I-position. Produced by converting an ester group to a carboxylic acid group.

本発明で隔膜として使用する含フツ素多元共重合体は広
いモノマー組成範囲にわたり含フツ素モノマー(TFE
 トTFA)とα−オレフィンの間に交互結合構造を形
成させた交互多元共重合体であり、重合の際のモノマー
混合物のTFEとTFAの組成比を変化させることによ
って共重合体中のエステル基濃度を容易に制御し得るも
のであり、かつ、α−オレフィンの種類若しくは複数の
α−オレフィンの組成比を変えることによって性質並び
に成形加工性を自由に制御し得る本のである。
The fluorine-containing multi-component copolymer used as the diaphragm in the present invention has a wide range of monomer compositions, including fluorine-containing monomers (TFE),
It is an alternating multi-component copolymer in which an alternating bond structure is formed between TFA) and α-olefin, and the ester groups in the copolymer can be changed by changing the composition ratio of TFE and TFA in the monomer mixture during polymerization. The concentration can be easily controlled, and the properties and moldability can be freely controlled by changing the type of α-olefin or the composition ratio of multiple α-olefins.

本発明で隔膜として使用するイオン交換膜を製造する原
料であるTFA は具体的には、α、β。
Specifically, TFA, which is a raw material for manufacturing the ion exchange membrane used as a diaphragm in the present invention, includes α and β.

β−トリフルオルアクリル酸エチル、α、β、β−トリ
フルオルアクリル酸ブチル等が例示され、−4、本発明
にいうα−オレフィンは具体的にはエチレン、フロピレ
ン、1−7’チン、1−ペンテン、1−ヘキセン、1−
ヘプテン、1−オクチン、1−ノネン、1−デセン、1
−ウンデセン、イソブチレン、2−メチル−1−ブテン
、2−メチル−1−はフラン、2−メチル−1−ヘキセ
ン、2−メチル−1−ヘプテン、2−メチル−1−オク
テン等が例示される。
Examples include β-ethyl trifluoroacrylate, α, β, β-butyl trifluoroacrylate, and the like. -Pentene, 1-hexene, 1-
Heptene, 1-octyne, 1-nonene, 1-decene, 1
- Undecene, isobutylene, 2-methyl-1-butene, 2-methyl-1- is exemplified by furan, 2-methyl-1-hexene, 2-methyl-1-heptene, 2-methyl-1-octene, etc. .

本発明で隔膜として使用するイオン交換膜を製造するに
あたり、上記交互多元共重合体の加水分解は公知ないし
周知の手段により容易に行うことができる。すなわち、
原料共重合体中のエステル基(−GoOCH基)をKO
H,N(ZOHのようなn 2ル+1 塩基性水溶液と反応させて、原料共重合体をカルボン酸
の塩に転換する仁とができ、次いで、HGlのような無
機強酸と反応させてカルボンl鍋に転換することもでき
る。また、塩基性水溶液と原料共重合体の接触を促進す
るためにメタノール、アセトン、テトラヒドロフラン等
の水溶性でかつ原料共重合体と親和性のある有機溶剤を
添加するのもよい。
In producing the ion exchange membrane used as a diaphragm in the present invention, the above-mentioned alternating multicomponent copolymer can be easily hydrolyzed by known or well-known means. That is,
KO the ester group (-GoOCH group) in the raw material copolymer
Reacting with a basic aqueous solution such as H,N(ZOH) produces a compound that converts the raw copolymer into a salt of carboxylic acid, and then reacting with a strong inorganic acid such as HGl to form a carboxylic acid salt. It can also be converted into a pot.Also, in order to promote contact between the basic aqueous solution and the raw material copolymer, an organic solvent that is water-soluble and has an affinity for the raw material copolymer, such as methanol, acetone, or tetrahydrofuran, is added. It's also good to do.

上述したイオン交換膜の製造法に従えば、α−オレフィ
ンを50モル%、TEAを0〜50モル%そしてTFE
 を50〜0モル%含有する共重合体が得られこの結果
、0〜6meq/、!9−乾燥膜のカルボン酸基を有す
るイオン交換膜が製造される。
According to the method for producing an ion exchange membrane described above, α-olefin is 50 mol%, TEA is 0 to 50 mol%, and TFE is
A copolymer containing 50 to 0 mol% of 9- An ion exchange membrane with carboxylic acid groups of the dry membrane is produced.

本発明に使用する隔膜はα−オレフィンを60モ、TI
/%含有しているにもかかわらず、優れた耐熱性、耐酸
化性を示すところに特徴があり、この優れた性質は含フ
ツ素モノマーとα−オレフィンの交互結合構造に起因す
るものであり、TFE−エチレン交互共升合体あるいは
TFE−プロピレン交互共重合体が優れた耐熱性、耐薬
品性を示すことと同一の現験である。
The membrane used in the present invention contains 60 moles of α-olefin, TI
/%, it is characterized by excellent heat resistance and oxidation resistance, and this excellent property is due to the alternating bond structure of the fluorine-containing monomer and α-olefin. , TFE-ethylene alternating copolymers or TFE-propylene alternating copolymers exhibit excellent heat resistance and chemical resistance.

本発明で使用するイオン交換膜は中性かつアルカリ性環
境下で濃度硝配や似電圧勾配により階イオンを容易にし
かも高い選択性をもって透過する。
The ion exchange membrane used in the present invention allows ions to pass through easily and with high selectivity in a neutral and alkaline environment due to the concentration gradient and similar voltage gradient.

本発明で使用するイオン交換膜は、カルボン酸基として
0.1〜6rneq19−乾燥膜の交換膜の交換容量を
もち、好ましくは0.5〜ろm e q/9−乾燥膜の
交換容量をもつ。イオン交換容量が0.5 me q/
g−乾燥膜よりも小さい場合は電気抵抗が高くなる。一
方、イオン交換容量が、!1IrlLeP/g−乾燥膜
より大きい場合は、膜−の機械的強度が低く、塩水の電
解に使用した場合、1ゆの膨潤性が太きすぎて陰極家へ
の塩の混入が多くなり、得られる生成物の品質が低下す
る。又、イオン交換)Iψの電気抵抗は膜内の官能ノ、
(濃度を変化させることによって10〜7000Ω・儂
の範囲で自由に設定することが出来る(25Mi量%、
苛性ソーダ水溶液中、温度25℃で測定)。
The ion exchange membrane used in the present invention has an exchange capacity of 0.1 to 6 rneq19-dry membrane as a carboxylic acid group, preferably 0.5 to 9 m eq/9-exchange capacity of dry membrane. Motsu. Ion exchange capacity is 0.5 meq/
g- If it is smaller than the dry film, the electrical resistance will be high. On the other hand, the ion exchange capacity is! If 1IrlLeP/g is larger than the dry membrane, the mechanical strength of the membrane is low, and when used for electrolysis of salt water, the swelling property of 1IrlLeP/g is too thick, resulting in a large amount of salt being mixed into the cathode. The quality of the product produced is reduced. In addition, the electrical resistance of Iψ (ion exchange) is due to the functional factors in the membrane,
(By changing the concentration, it can be set freely in the range of 10 to 7000 Ω・min (25 Mi amount%,
(measured in aqueous caustic soda solution at a temperature of 25°C).

本発明者等は上述したイオン交換膜を従来のパーフルオ
ロカーボンスルホン酸膜を使用して食塩水を′11テ気
分解した。その結果を表−1に示した。
The present inventors used a conventional perfluorocarbon sulfonic acid membrane as the ion exchange membrane described above to perform gas decomposition of a saline solution. The results are shown in Table-1.

表−1 閣 漬 (1)苛性ソーダ温度 25重量%。Table-1 Cabinet Pickles (1) Caustic soda temperature: 25% by weight.

(2)苛]生ソーダ中に汐、大した食塩濃度。(2) Salt] There is a large concentration of salt in raw soda.

この結果から、本発明に使用するイオン交換膜は従来の
パーフルオルスルホン酸膜に比べて電流効率が高く、生
成可性ンーダ中への混入食塩濃度が低く、優れた食塩電
解用イオン交換膜として使用できることがわかる。
From these results, the ion exchange membrane used in the present invention has higher current efficiency than conventional perfluorosulfonic acid membranes, lowers the concentration of salt mixed into the produced powder, and is an excellent ion exchange membrane for salt electrolysis. It can be seen that it can be used as

本発明でイオン交換膜に高い寸法安定性や機械的強度が
要求されろ場合にはポリエチレン、アクロン、テフロン
等のネットやクロス等で功打ちすることも出来、又、目
的に応じて官能基濃度の異なる膜・や、官能基の異なる
膜をはり合せて不均質j模として使用することも出来る
。膜の厚さは一般に0.01〜1韮が使用されるか、膜
の比電導度、電流効率、機械的強度等に従って0.05
〜0.5 rnmの範囲で追白に選択される。
In the present invention, if high dimensional stability and mechanical strength are required for the ion exchange membrane, nets or cloths made of polyethylene, Akron, Teflon, etc. can be used. It is also possible to use a heterogeneous model by gluing together membranes with different numbers or membranes with different functional groups. The thickness of the membrane is generally 0.01 to 1 mm, or 0.05 depending on the specific conductivity, current efficiency, mechanical strength, etc. of the membrane.
It is selected for whitewashing in the range of ~0.5 rnm.

本発明で使用する塩水電解槽は電極と隔膜を密着させた
構造又は、お互いに離した構造でもよい。
The salt water electrolyzer used in the present invention may have a structure in which the electrode and the diaphragm are in close contact with each other, or may be in a structure in which they are separated from each other.

又、電極材料としては電解反応に対する触媒能が高く且
つ生成物に対する安定性が高いものから追白に選択され
る。すなわち、陰極としては通常鉄にニッケルまたはニ
ッケル化合物をメッキしたものが好まし2く、陽極は3
+f!常ルテニウム四の貴金属の酸化物をコーテングし
たチタンメツシュ又は棒の電板が好ましい。
Further, the electrode material is selected from those having high catalytic ability for electrolytic reactions and high stability for products. In other words, the cathode is usually made of iron plated with nickel or a nickel compound, and the anode is preferably made of iron plated with nickel or a nickel compound.
+f! Preferred is a titanium mesh or rod plate coated with a noble metal oxide such as ruthenium tetrachloride.

本発明に従って塩′1l−1,解を実施する温度は、室
温から両極室内の溶液の沸点以下の範囲で可能であるが
70〜90’C;の範囲が望ましい。
The temperature at which the salt solution is carried out according to the present invention can range from room temperature to below the boiling point of the solution in the bipolar chamber, but is preferably in the range of 70-90'C.

v下、′−AI八゛りへにより本発明の構成および効果
を具体的′VCjjjp、明する。
Below, the configuration and effects of the present invention will be explained in detail through the ``-AI'' section.

実施例 答粕5 lのステンレス1(]オートクレーブを窒素で
パージした後、フレオンR−113、メチルトリフルオ
ルアクリレート50m1を加え、つづいてテトラフルオ
ルエチレン266gおよびエチレン78.19を仕込み
充分攪拌した。これをコバルト−60のγ線を線量率8
.、OX i 03rrtd/hrで6時間照射して1
00.8gの白色粉末状の共重合体を得た。この共M(
合体をろ00℃のホットブレステ製型し約300μの透
明なフィルムを製造した。このj模を20%NaOHメ
タノール水浴ン夜に浸7責してリフラックス温度で1週
間加水分解した。このようにして得られたイオン交換膜
の官能基濃度は1.18meqη−乾燥膜であった。
Example After purging a stainless steel 1 autoclave containing 5 liters of lees with nitrogen, Freon R-113 and 50 ml of methyl trifluoroacrylate were added, followed by 266 g of tetrafluoroethylene and 78.19 ml of ethylene and thoroughly stirred. This is applied to cobalt-60 gamma rays at a dose rate of 8
.. , irradiated with OX i 03rrtd/hr for 6 hours and 1
00.8 g of a white powdery copolymer was obtained. This co-M(
The combined product was molded into a hot breath mold at 00° C. to produce a transparent film of about 300 μm. This specimen was soaked in a 20% NaOH methanol water bath for 7 nights and hydrolyzed at reflux temperature for one week. The functional group concentration of the ion exchange membrane thus obtained was 1.18 meqη-dry membrane.

有効膜面積16cnL のイオン交換膜で陰極室と陽極
室とを区分した電解槽を4個組み立てた。陽極として白
金メッキしたチタンメツシュ、陰極として穴あきSUS
板を使用した。
Four electrolytic cells were assembled in which a cathode chamber and an anode chamber were separated by an ion exchange membrane with an effective membrane area of 16 cnL. Platinum-plated titanium mesh as anode, perforated SUS as cathode
I used a board.

カルシウム濃度1 ppm以下に調整した25%NcL
C,d水溶液を各電解槽のそれぞれの陰極室入口から1
39rnl/Ayの速度で供給しつつ、一方、陽極室に
純水を10.7 ml / hrの速度で供給して食塩
電解テストを実施した。このテストより得た結果を表−
2に示す。
25% NcL with calcium concentration adjusted to 1 ppm or less
Aqueous solutions C and d are poured into each electrolytic cell from each cathode chamber entrance.
A salt electrolysis test was carried out by supplying pure water to the anode chamber at a rate of 10.7 ml/hr while supplying pure water at a rate of 39 rnl/Ay. The results obtained from this test are shown below.
Shown in 2.

(1)苛性ソーダ中に混入した食塩濃度実施例2 実が・1例1と同様の方法で一能ジ1(祝′)度が1.
67meq/9−乾燥膜のイオン交換膜を製造した。こ
のイオン交換膜を実施例1で用いたと同じ電解槽6個に
取り付けた。
(1) Concentration of common salt mixed in caustic soda Example 2 The same method as in Example 1 was used to reduce the concentration of salt to 1.
An ion exchange membrane of 67 meq/9-dry membrane was manufactured. This ion exchange membrane was attached to the same six electrolytic cells as used in Example 1.

カルシウム濃度が1 ppm以下の25%NaO,l水
溶液を各電解槽のそれぞれの陰棒室入1コから169m
A / hrの速度で供給しつつ、一方、陽40室に純
水を28.7ml/hrの速度で供給して食塩電解テス
トを実が11シた。このテストで得られた結果を表−6
に示す。
A 25% NaO,L aqueous solution with a calcium concentration of 1 ppm or less was poured 169 m from each negative rod chamber of each electrolytic cell.
While supplying water at a rate of A/hr, pure water was supplied to the positive chamber at a rate of 28.7 ml/hr, and a salt electrolysis test was conducted for 11 times. Table 6 shows the results obtained from this test.
Shown below.

実施例ろ 実施例1と同じ方法で製造したイオン交換11Uを、実
施例1で使用したと同じ電解槽に取り付けた。
EXAMPLE An ion exchanger 11U manufactured in the same manner as in Example 1 was attached to the same electrolytic cell as used in Example 1.

陰り室に25%’KCl水溶液を92.8 ml / 
hrの速度で供給しつつ、一方、陽極室に純水を7.2
rnl/hrの速度で供給し、20に/dmの電流密度
で通電した。定常時における陽極室および陰極室の温度
は各々45°Cおよび47℃であった。この結果、61
.9%のKOHを電流効率81.0%で得た。このとき
のKOHに対するKCl の混入(!::は10 pp
m以下であった。
Add 92.8 ml of 25% KCl aqueous solution to a dark room.
Meanwhile, pure water was supplied to the anode chamber at a rate of 7.2 hr.
The current was supplied at a rate of rnl/hr and at a current density of 20 m/dm. The temperatures of the anode chamber and the cathode chamber during steady state were 45°C and 47°C, respectively. As a result, 61
.. 9% KOH was obtained with a current efficiency of 81.0%. At this time, the amount of KCl mixed into KOH (!:: is 10 pp
m or less.

(外4名)(4 other people)

Claims (1)

【特許請求の範囲】 1、 テトラフルオロエチレン、一般式CF =CFC
OCH(但しルは1以上の整数)2     2  n
  2n、+1 で表わさオフ、る1種以上のα、β、β−) IJフル
オロアクリレートおよび一般式 (但し、!およびmは独立した0〜11の整数)で表わ
される1錘以上のα−オレフィンから成る交互多元共重
合体にカルボン酸基を導入して成るイオン交換膜で電解
槽を陽極室と陰極室に区分し、陽極室に塩水を供給しつ
つ電解することから成る塩の電解方法。 2、 イオン交換膜のカルボン酸基の交換容量が0.5
〜ろrneq/(9−乾燥膜である特許請求の範囲第1
項記載の方法。
[Claims] 1. Tetrafluoroethylene, general formula CF = CFC
OCH (where ru is an integer greater than or equal to 1) 2 2 n
one or more α, β, β-) IJ fluoroacrylate and one or more α-olefins represented by the general formula (where ! and m are independent integers from 0 to 11); A method for electrolyzing salts, which comprises dividing an electrolytic cell into an anode chamber and a cathode chamber using an ion exchange membrane made by introducing a carboxylic acid group into an alternating multi-component copolymer consisting of the above, and carrying out electrolysis while supplying salt water to the anode chamber. 2. The exchange capacity of the carboxylic acid group of the ion exchange membrane is 0.5
〜lorneq/(9-Claim 1 which is a dry membrane
The method described in section.
JP7534683A 1983-04-28 1983-04-28 Method for electrolyzing salt Pending JPS59200777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7534683A JPS59200777A (en) 1983-04-28 1983-04-28 Method for electrolyzing salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7534683A JPS59200777A (en) 1983-04-28 1983-04-28 Method for electrolyzing salt

Publications (1)

Publication Number Publication Date
JPS59200777A true JPS59200777A (en) 1984-11-14

Family

ID=13573592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7534683A Pending JPS59200777A (en) 1983-04-28 1983-04-28 Method for electrolyzing salt

Country Status (1)

Country Link
JP (1) JPS59200777A (en)

Similar Documents

Publication Publication Date Title
SU1313352A3 (en) Cation membrane for using in electrolysis of sodium chloride
US4126588A (en) Fluorinated cation exchange membrane and use thereof in electrolysis of alkali metal halide
KR840001538B1 (en) Improved composite ion exchange memhraneo
US4212713A (en) Electrolysis of aqueous solution of alkali metal chloride
US3909378A (en) Composite cation exchange membrane and use thereof in electrolysis of an alkali metal halide
CA1151109A (en) Cation exchange membrane of fluorinated polymer with carboxylic acid groups
JPS6123933B2 (en)
US4508603A (en) Fluorinated cation exchange membrane and use thereof in electrolysis of an alkali metal halide
US5716504A (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
JPS62500243A (en) Novel ionic fluorinated polymer and its manufacturing method
CA1133425A (en) Fluorinated ion exchange polymer containing carboxylic groups, and film and membrane thereof
JPH0586971B2 (en)
JPS5833249B2 (en) Fluorine-containing cation exchange resin membrane
JPS58199884A (en) Improved cation exchange membrane for electrolysis
US4487668A (en) Fluorinated ion exchange polymer containing carboxylic groups, and film and membrane thereof
JPS59200777A (en) Method for electrolyzing salt
GB2065172A (en) Cation-exchange membrane for electrolysis of aqueous alkali metal halide solution
JPS5842626A (en) Production of fluorine-containing ion exchange resin membrane
JPS5837030A (en) Perfluorocarbon cation exchange resin membrane
US4316781A (en) Method for electrolyzing alkali metal halide
SU828977A3 (en) Method of electrolysis of aqueous alkaline metal halide solution
CA1085993A (en) Copolymers and diaphragms made therefrom
JPS5829802B2 (en) fluoropolymer fluoropolymer
JPH08120100A (en) Fluorine-containing cation-exchange membrane
JPS5857444B2 (en) Cation exchange membrane for electrolysis