JPS5920044B2 - Bearing preload device - Google Patents

Bearing preload device

Info

Publication number
JPS5920044B2
JPS5920044B2 JP51053568A JP5356876A JPS5920044B2 JP S5920044 B2 JPS5920044 B2 JP S5920044B2 JP 51053568 A JP51053568 A JP 51053568A JP 5356876 A JP5356876 A JP 5356876A JP S5920044 B2 JPS5920044 B2 JP S5920044B2
Authority
JP
Japan
Prior art keywords
ball bearing
preload
rotating shaft
spring
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51053568A
Other languages
Japanese (ja)
Other versions
JPS52135948A (en
Inventor
徹 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP51053568A priority Critical patent/JPS5920044B2/en
Publication of JPS52135948A publication Critical patent/JPS52135948A/en
Publication of JPS5920044B2 publication Critical patent/JPS5920044B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Support Of The Bearing (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 本発明はボールベアリングの定圧予圧装置に係ク、特に
回転報ρ振動を極めて小さく抑えることが要求される回
転機器の予圧方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant pressure preloading device for a ball bearing, and more particularly to a preloading method for a rotating device that is required to suppress rotational signal ρ vibration to an extremely low level.

ボールベアリングに支持された回転軸の振動を防ぐ為、
バネによりボールベアリングのスラスト方向に予圧を加
えることが行なわれているが第1図はO伝多面鏡式光偏
向器に於けるそのIW)断面図である。
To prevent vibration of the rotating shaft supported by ball bearings,
Preload is applied to the ball bearing in the thrust direction using a spring, and FIG. 1 is a cross-sectional view of an O-transmission polygonal mirror optical deflector.

以下図面に従つて説明すると1は回転軸、2はローター
マグネット、3は界磁巻線。4、5は回転軸1に圧入さ
れたボールベアリング。
The following will be explained according to the drawings: 1 is a rotating shaft, 2 is a rotor magnet, and 3 is a field winding. 4 and 5 are ball bearings press-fitted into the rotating shaft 1.

6はボールベアリング4のハウジング、Tはボールベア
リング4、5に予圧を加える為のサラバネ、8はサラバ
ネの圧力を調整する為の圧力調整リング、9はボールベ
アリング4を支持する可撓性を有する板材、10、11
はケース、12は回転多面鏡である。
6 is a housing for the ball bearing 4; T is a spring for applying preload to the ball bearings 4 and 5; 8 is a pressure adjustment ring for adjusting the pressure of the spring; 9 is flexible to support the ball bearing 4. Board material, 10, 11
is a case, and 12 is a rotating polygon mirror.

ボールベアリング4の外輪は振動を極力抑える為、ハウ
ジング6に圧入又は接着されている。ボールベアリング
5についても同様である。第1図構成に於て圧力調整リ
ング8で調整されたサラバネの予圧はハウジング6を通
じ、ボールベアリング4及びボールベアリング5に加え
られる。
The outer ring of the ball bearing 4 is press-fitted or bonded to the housing 6 in order to suppress vibration as much as possible. The same applies to the ball bearing 5. In the configuration shown in FIG. 1, the preload of the spring adjusted by the pressure adjustment ring 8 is applied to the ball bearings 4 and 5 through the housing 6.

予圧を加えられた結果ボールベアリング4及び5の内輪
と外輪はそれぞれスラスト方向に互いに反対方向にボー
ルベアリングのスラストすきま分だけ移動し、内輪、ボ
ール、外輪が互いに接触し、外輪とボールに支持されて
内輪はガタつくことなく回転できる様になる。小型モー
ター等一般の回転機器に於てはこの様な方法により回転
軸の振動を実用上十分な精度内に抑えることが可能であ
る。
As a result of the preload being applied, the inner and outer rings of the ball bearings 4 and 5 move in opposite directions in the thrust direction by the thrust clearance of the ball bearings, and the inner ring, ball, and outer ring come into contact with each other and are supported by the outer ring and the ball. This allows the inner ring to rotate without rattling. In general rotating equipment such as small motors, vibrations of the rotating shaft can be suppressed to within a practically sufficient accuracy by such a method.

しかしながら回転多面鏡式光偏向器等高速で回転し、回
転軸の振動を極めて小さく抑えることが要求される機器
に於てはこの様な方法だけでは回転軸の振動を十分に必
要な精度内に抑えることはできない。以下この点を第2
図、第3図、第4図、第5図及び第1図により説明する
。第3図はボールベアリング予圧用のサラバネの側面図
である。
However, for devices such as rotating polygonal mirror optical deflectors that rotate at high speed and require extremely low vibration of the rotating shaft, this method alone is insufficient to keep the vibration of the rotating shaft within the required precision. It cannot be suppressed. This point will be explained in the second section below.
This will be explained with reference to FIGS. 3, 3, 4, 5, and 1. FIG. 3 is a side view of a spring for preloading a ball bearing.

一般にボールベアリング予圧用のサラバネは荷重を受け
る面TaとTbの平行度が余ク良く抑えられていない。
たとえば外径35□。板厚0.4−程度のサラバネでは
実際の平行度は数分から十数分程度である。この様に荷
重を受ける面7aと7bの間に平行度の狂いがあると,
たとえ第1図の圧力調整リング8のサラバネ押圧面8a
が回転軸1の中心軸に対して直角が保たれかつボールベ
アリング4の内輪の軌道面か回転軸1の中心に直角に取
り付けられていたとしても、第2図のボールベアリング
の縦断面AOA2断面図に示す如く、ボールベアリング
4の外輪40はサラバネの平行度の狂い角度θだけ内輪
41に対し傾くことになる。
In general, the parallelism of the load-receiving surfaces Ta and Tb of a flat spring for ball bearing preloading is not sufficiently suppressed.
For example, the outer diameter is 35□. In the case of a flat spring with a plate thickness of about 0.4 mm, the actual parallelism is about several minutes to more than ten minutes. If there is a discrepancy in parallelism between the surfaces 7a and 7b that receive the load in this way,
For example, the counter spring pressing surface 8a of the pressure adjustment ring 8 in FIG.
is maintained perpendicular to the central axis of the rotating shaft 1, and even if the ball bearing 4 is installed perpendicularly to the raceway surface of the inner ring or to the center of the rotating shaft 1, the vertical section AOA2 cross section of the ball bearing in FIG. As shown in the figure, the outer ring 40 of the ball bearing 4 is inclined with respect to the inner ring 41 by an angle θ due to the deviation of the parallelism of the spring.

この様にボールベアリング4の外輪40が内輪41に対
し傾いて図に示す如く与圧Pが加えられた場合、外輪4
0の傾き方向XX方向に最も近い縦断面図AOA2断面
上のボールベアリング4を構成するボール4bにについ
ては共に外輪40及び内輪41に接触するが,XX2方
向に直角な方向YY′方向に最も近い縦断面BOB2断
面上のボールベアリングを構成するボール4b5は、B
OB2断面図の様に外輪40がXX″方向にθ傾いたこ
とによりθ=0の時にくらべ予圧Pによる外輪40の内
輪41に対するスラスト方向の移動量が小さくなる為、
外輪40と内輪41に接触できなくなり、ボールベリン
グ内に僅かなすきまが残る。これは予圧を加えないでボ
ールベアリングの外輪40をXX2軸とボールベアリン
グ4の中心軸を含む面内に、AOA5断面上のボール4
bが外輪40と内輪41に共に接触するまで回転させた
場合、BOB5断面上のボール4b′と外輪40及び内
輪41の間にはほぼボールベアリング4の初期すきまと
同じ量のすきまが残るという現象を考えれば容易に理解
されるのであろう。
In this way, when the outer ring 40 of the ball bearing 4 is inclined with respect to the inner ring 41 and pressurized P is applied as shown in the figure, the outer ring 40
The balls 4b constituting the ball bearing 4 on the AOA2 section of the vertical cross-sectional view closest to the XX direction of the tilt direction of 0 contact the outer ring 40 and the inner ring 41, but are closest to the YY' direction perpendicular to the XX2 direction. The balls 4b5 constituting the ball bearing on the longitudinal section BOB2 are B
As the outer ring 40 is tilted θ in the XX″ direction as shown in the OB2 cross-sectional view, the amount of movement of the outer ring 40 in the thrust direction relative to the inner ring 41 due to the preload P becomes smaller than when θ=0.
The outer ring 40 and the inner ring 41 cannot contact each other, and a slight gap remains within the ball bearing. This is done by placing the outer ring 40 of the ball bearing in a plane that includes the XX2 axis and the center axis of the ball bearing 4 without applying any preload.
When b is rotated until both the outer ring 40 and the inner ring 41 come into contact, a gap approximately the same amount as the initial gap of the ball bearing 4 remains between the ball 4b' on the cross section of the BOB 5 and the outer ring 40 and the inner ring 41. It can be easily understood if you think about it.

さてこの様にボールベアリングのある断面方向に僅かな
すきまが残つた場合、回転軸が高速で回転すると回転軸
はこの方向に振動を発生する。
Now, if a slight gap remains in the cross-sectional direction of the ball bearing, when the rotating shaft rotates at high speed, the rotating shaft will generate vibrations in this direction.

つのボールベアリング4に於てラジアル方向の振動が発
生すると第4図に示す如く、回転軸の幾何中心0A0′
Aは0B05Bに移動し、回転多面鏡式光偏向器にあつ
ては鏡面12pの倒れ角(回転中心軸に直角な平面に対
する鏡面の傾き角度)は図示の如く士Δψだけ増加する
。回転多面鏡式光偏 ,向器の鏡面の倒れΔψは、第5
図に示す様に偏光ビーム13が走査面14に描く走査線
の走査線に直角な方向の位置ずれdの原因となる。これ
は走査面が走査線に対して直角な方向で等速で移動する
場合に於ては走査線のピッチムラとなつて現れ、走査面
上に描かれた画像を見苦しいものにする。サラバネの平
行度誤差に起因するボールベアリング外輪の傾きは上述
の様に回転軸のラジアル方向の振動を誘発するだけでな
く、外輪のスラスト方向の振動も誘発させる。ボールベ
アリングのスラスト方向の振動は回転多面鏡式光偏向器
が装着された装置に於ける他の光学系の振動をも誘発せ
しめ、回転軸の傾きの場合と同様、走査様のピッチムラ
や走査線の走査方向の揺らぎ(ジツタ一)の原因となる
。この種の問題を解決する1方法として,例えば実公昭
40−5056において示されている通り、ボールベア
リングと予圧バネの間に球面のすべり面を待つた互いに
嵌合し合う2つの座金を介してバネの平行度誤差を吸収
しようという方法が提案されている。
When vibration occurs in the radial direction in the two ball bearings 4, the geometric center of the rotating shaft 0A0'
A moves to 0B05B, and in the case of the rotating polygonal mirror optical deflector, the inclination angle of the mirror surface 12p (the angle of inclination of the mirror surface with respect to a plane perpendicular to the rotation center axis) increases by Δψ as shown. Rotating polygonal mirror type optical deflection, the inclination Δψ of the mirror surface of the deflector is the fifth
As shown in the figure, the polarized beam 13 causes a positional deviation d of the scanning line drawn on the scanning plane 14 in a direction perpendicular to the scanning line. When the scanning plane moves at a constant speed in a direction perpendicular to the scanning line, this appears as pitch unevenness of the scanning line, making the image drawn on the scanning plane unsightly. The inclination of the ball bearing outer ring due to the parallelism error of the counter spring not only induces vibration in the radial direction of the rotating shaft as described above, but also induces vibration in the thrust direction of the outer ring. Vibration in the thrust direction of the ball bearing also induces vibration in other optical systems in equipment equipped with a rotating polygonal mirror optical deflector, and as with the tilt of the rotation axis, pitch unevenness in scanning and scanning lines can be caused. This causes fluctuations (jitter) in the scanning direction. One way to solve this kind of problem is to use two fitting washers with a spherical sliding surface between the ball bearing and the preload spring, as shown in Japanese Utility Model Publication No. 40-5056, for example. A method has been proposed to absorb the spring parallelism error.

しかし座金に球面のすべり面を設けるということは、互
いの球面の半径を精度良く揃えなければならないこと、
球面の仕上げ精度を良くしなければならないことから加
工費が高くつき、安価な方法とは言えない。本発明は上
述従来例の欠点に鑑みてなされたもので、予圧用バネの
荷重を受ける面にたとえ平行度誤差があつてもボールベ
アリングの外輪が内輪に対して傾くことなく常に平行に
なる様な予圧機構を安価に提供することを目的とする。
However, providing a spherical sliding surface on the washer means that the radii of the spherical surfaces must be precisely aligned.
Since the finishing accuracy of the spherical surface must be improved, the processing cost is high, so it cannot be said to be an inexpensive method. The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and is designed to ensure that even if there is a parallelism error on the surface receiving the load of the preload spring, the outer ring of the ball bearing will always be parallel to the inner ring without tilting. The purpose is to provide a preload mechanism at low cost.

以下図面に従つて本発明を説明する。The present invention will be explained below with reference to the drawings.

第6図は本発明の一実施例の断面図である。FIG. 6 is a sectional view of one embodiment of the present invention.

第7図は予圧を伝達する為の予圧リング部の斜視図第9
図は予圧部の部分拡大図である。第6,7,9図中15
は回転軸1の中心と同心のリング上に形成され、その構
造は第7図に示す如くその下面の中心を通る直線上の回
転軸の中心に対し対向位置に2つの半球状の突出部16
を、又その上面の中心を通り前記直線にほぼ直角な直線
上の回転軸の中心に対し対向位置に同じく2つの半球状
の突出部17を形成してなる予圧伝達リング、18はサ
ラバネの予圧を突出部17に伝達する為の座である。他
の構成部分の番号は第1図と全く同じである。上述の様
な構成であれば、第9図に示す如くたとえサラバネ7の
平行度に狂いがあつてもサラバネ7で加えられる予圧は
、サラバネの最下面7cの傾きには無関係に常に回転軸
1の中心即ちボ一ルベアリング4の中心に作用する。
Figure 7 is a perspective view of the preload ring section for transmitting preload.
The figure is a partially enlarged view of the preload portion. 15 in Figures 6, 7, and 9
is formed on a ring concentric with the center of the rotating shaft 1, and its structure includes two hemispherical protrusions 16 located opposite to the center of the rotating shaft on a straight line passing through the center of the lower surface, as shown in FIG.
and a preload transmission ring formed with two hemispherical protrusions 17 at opposite positions to the center of the rotating shaft on a straight line passing through the center of the upper surface and substantially perpendicular to the straight line, 18 is a preload of a spring. This is a seat for transmitting the information to the protrusion 17. The numbers of other components are exactly the same as in FIG. With the above configuration, as shown in FIG. 9, even if the parallelism of the spring 7 is out of alignment, the preload applied by the spring 7 will always be applied to the rotation axis 1, regardless of the inclination of the lowest surface 7c of the spring 7. , that is, the center of the ball bearing 4.

なぜなら今2つの半球状の突出部17を通る直線の回)
のモーメントを考えると予圧リング全体が・・ウジング
6の予圧受け面6a,及び座18の下面18bに加えて
いる力Pl9P2,P3,P4は互いにつり合つている
から突出部16からハウジング6の予圧受け面6aに伝
達される予圧P3,P4の合力は2つの半球状の突出部
17を通る直線と同じく2つの半球状の突出部16を通
る直線の交点、即ちボールベアリング4の中心に作用す
るからである。サラバネ7の予圧がボールベアリング±
の中心に作用すればボールベアリング迭の外輪40は内
輪41に対して正しく平行になり、ボール4bはすべて
内外輪に接触しボールベアリング内のすきまを全周に亘
つてなくすことができる。この様にボールベアリング内
のすきまを完全になくした状態で予圧を加えることがで
きれば、ボールベアリングの予圧の効果が最大に発揮さ
れ、回転軸の振動を非常に小さく抑えることができる。
さらにこの様な構成であれば、サラバネの平行度の狂い
の影響をなくすことができるだけでなく圧力調整リング
8のサラバネ押圧面8a、ハウジング6の予圧受け面6
a、及びハウジング6のボールベアリング外輪40の端
面突き当て面6bの回転軸1の中心軸に対する直角度の
狂いの影響もなくすることができるものである。
Because now the straight line passing through the two hemispherical protrusions 17)
Considering the moment, the entire preload ring...The forces Pl9P2, P3, and P4 applied to the preload receiving surface 6a of the housing 6 and the lower surface 18b of the seat 18 are balanced with each other, so the preload on the housing 6 from the protrusion 16 is The resultant force of the preloads P3 and P4 transmitted to the receiving surface 6a acts on the intersection of the straight line passing through the two hemispherical protrusions 17 and the straight line passing through the two hemispherical protrusions 16, that is, the center of the ball bearing 4. It is from. The preload of the spring 7 is the ball bearing ±
If it acts on the center of the ball bearing, the outer ring 40 of the ball bearing will be correctly parallel to the inner ring 41, and all the balls 4b will come into contact with the inner and outer rings, eliminating the gap in the ball bearing all around the circumference. In this way, if preload can be applied with the gap in the ball bearing completely eliminated, the effect of the preload on the ball bearing can be maximized, and the vibration of the rotating shaft can be suppressed to an extremely low level.
Furthermore, with such a configuration, it is possible not only to eliminate the influence of the eccentricity of the parallelism of the counter spring, but also to prevent the counter spring pressing surface 8a of the pressure adjustment ring 8 and the preload receiving surface 6 of the housing 6 from being affected.
a and the influence of the perpendicularity error of the end face abutting surface 6b of the ball bearing outer ring 40 of the housing 6 with respect to the central axis of the rotating shaft 1 can also be eliminated.

なお、予圧リング部としては必ずしも第7図に示した様
に突出部16,17を半球状に形成する必要はなく、第
8図に示す如くその軸線がリングの中心を通る半円柱状
に形成しても良い。
It should be noted that the preload ring part does not necessarily have to have the protrusions 16 and 17 formed in a hemispherical shape as shown in FIG. 7, but can be formed in a semicylindrical shape whose axis passes through the center of the ring as shown in FIG. You may do so.

さらに予圧用のバネとしてもサラバネである必要はなく
、圧縮コイルバネを用いても良く、又板バネを用いても
良く、さらに同等の機能を有する他のバネ形式を用いて
も良いものである。以上の様に本発明構成であれば極度
に振動や振れ回りをきらう回転軸の軸受予圧手段として
は単に圧力伝達部材を介在させるのみで多大な効果を発
揮しうるものであり,実用極めて有用である。
Further, the spring for preloading does not have to be a flat spring; a compression coil spring, a plate spring, or another spring type having the same function may be used. As described above, with the configuration of the present invention, a great effect can be achieved by simply interposing a pressure transmitting member as a bearing preloading means for a rotating shaft that is subject to extreme vibration and whirling, and is extremely useful in practical use. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の軸受予圧装置を回転多面鏡式光偏向器に
適用した場合の縦断面図、第2図は第1図における装置
のボールベアリングの状態を示す3面図、第3図は予圧
用のサラバネの側面図,第4図は第1図における装置の
動作説明図、第5図は第1図における装置の光偏向器と
しての機能説明図、第6図は本発明の軸受予圧装置を回
転多面鏡式光偏向器に適用した場合の縦断面図、第7図
は第6図における予圧リング部の斜視図、第8図は第6
図における予圧リング部の他の構成例を示す斜視図、第
9図は第6図における予圧部の部分拡大縦断面図である
。 1・・・・・・回転軸、4・・・・・・ボールベアリン
グ、6・・・・・・・・ウジング、7・・・・・・サラ
バネ、8・・・・・・圧力調整リング、12・・・・・
・回転多面鏡、15・・・・・・予圧リング、16,1
7・・・・・・突出部、18・・・・・・座。
Figure 1 is a vertical cross-sectional view of a conventional bearing preload device applied to a rotating polygonal mirror optical deflector, Figure 2 is a three-sided view showing the state of the ball bearing of the device in Figure 1, and Figure 3 is A side view of a spring for preloading, FIG. 4 is an explanatory diagram of the operation of the device in FIG. 1, FIG. 5 is an explanatory diagram of the function of the device in FIG. 1 as an optical deflector, and FIG. 6 is a diagram showing the bearing preload of the present invention. A vertical cross-sectional view of the device applied to a rotating polygonal mirror type optical deflector, FIG. 7 is a perspective view of the preload ring portion in FIG. 6, and FIG.
FIG. 9 is a perspective view showing another example of the configuration of the preload ring portion in the figure, and FIG. 9 is a partially enlarged longitudinal cross-sectional view of the preload portion in FIG. 6. 1...Rotating shaft, 4...Ball bearing, 6...Using, 7...Set spring, 8...Pressure adjustment ring , 12...
・Rotating polygon mirror, 15...Preload ring, 16,1
7... protrusion, 18... seat.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸をすくなくとも2個のボールベアリングによ
つて支承し、該ボールベアリングのスラスト方向に予圧
手段により予圧を与える軸受予圧装置において、該ボー
ルベアリングと該予圧手段の間に設けられ、該回転軸の
中心を通る直線上の対向位置の2箇所に形成された突起
部で該予圧手段からの圧力を受け、該回転軸の中心を通
る直線上の対向位置の該2箇所以外の2箇所に形成され
た突起部で該ボールベアリングに該予圧手段からの圧力
を与える予圧伝達部材を有することを特徴とした軸受予
圧装置。
1. A bearing preloading device in which a rotating shaft is supported by at least two ball bearings, and a preloading means applies a preload in the thrust direction of the ball bearing, which is provided between the ball bearing and the preloading means, and is provided between the ball bearing and the preloading means, Protrusions formed at two opposing positions on a straight line passing through the center of the rotating shaft receive pressure from the preloading means, and formed at two positions other than the two opposing positions on a straight line passing through the center of the rotating shaft. A bearing preloading device comprising a preload transmitting member that applies pressure from the preloading means to the ball bearing with a protrusion.
JP51053568A 1976-05-11 1976-05-11 Bearing preload device Expired JPS5920044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51053568A JPS5920044B2 (en) 1976-05-11 1976-05-11 Bearing preload device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51053568A JPS5920044B2 (en) 1976-05-11 1976-05-11 Bearing preload device

Publications (2)

Publication Number Publication Date
JPS52135948A JPS52135948A (en) 1977-11-14
JPS5920044B2 true JPS5920044B2 (en) 1984-05-10

Family

ID=12946421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51053568A Expired JPS5920044B2 (en) 1976-05-11 1976-05-11 Bearing preload device

Country Status (1)

Country Link
JP (1) JPS5920044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604621A (en) * 1983-06-21 1985-01-11 Yoshitsuka Seiki:Kk Spindle supporting apparatus

Also Published As

Publication number Publication date
JPS52135948A (en) 1977-11-14

Similar Documents

Publication Publication Date Title
US4984881A (en) Rotation supporting device of a polygon mirror
US8052327B2 (en) Hydrostatic gas bearing, rotator and CT scanner
JPH03140915A (en) Optical deflector
JP2872202B2 (en) motor
EP0404511B1 (en) Ultrasonic motor
US4353615A (en) Dynamic mounting for holographic spinners
JPS5920044B2 (en) Bearing preload device
JP2851851B2 (en) Driving device having pressure member
JPS63174012A (en) Inclination adjusting device for optical element or the like
JPS6211204B2 (en)
JPH05180217A (en) Bearing structure for scanner motor
JP3186188B2 (en) Table feeder
JP2541648Y2 (en) Carrier mechanism
JP2909842B2 (en) Optical deflector
JPH01145417A (en) Thrust bearing
JP2001349092A (en) Base isolation device
JPH032887Y2 (en)
JPS6141411Y2 (en)
JPH0318421B2 (en)
JP2008304628A (en) Optical deflector
JPS58187642A (en) Screw feed controlling device equipped with self-aligning mechanism
JP4073224B2 (en) Centering device for rotating object holder
JPS62106123A (en) Elastic bearing
JP2000081037A (en) Rotatably pivoting method and rotatably pivoting mechanism
JPS5846259Y2 (en) Support device for dynamic pressure type thrust bearings