JPS58187642A - Screw feed controlling device equipped with self-aligning mechanism - Google Patents

Screw feed controlling device equipped with self-aligning mechanism

Info

Publication number
JPS58187642A
JPS58187642A JP6869382A JP6869382A JPS58187642A JP S58187642 A JPS58187642 A JP S58187642A JP 6869382 A JP6869382 A JP 6869382A JP 6869382 A JP6869382 A JP 6869382A JP S58187642 A JPS58187642 A JP S58187642A
Authority
JP
Japan
Prior art keywords
feed
screw
trunnion
nut
feed nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6869382A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishida
石田 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Toyota Motor Corp
Original Assignee
Hitachi Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Toyota Motor Corp filed Critical Hitachi Ltd
Priority to JP6869382A priority Critical patent/JPS58187642A/en
Publication of JPS58187642A publication Critical patent/JPS58187642A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/38Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
    • B23Q5/40Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
    • B23Q5/408Nut bearings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/2445Supports or other means for compensating misalignment or offset between screw and nut

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

PURPOSE:To accomplish the smooth feeding of a feed nut without over-restrcting the feed nut in spite of geometrical errors such as off-set of axes in the directions of a guide and a feed screw shaft and of inclination wherein by a structure wherein the feed nut is supported by a gimbal mechanism and yet axial clearances are provided. CONSTITUTION:The self-aligning functions toward the off-set of the axes in the directions of the guide and the feed screw comprises rolling-shifting trunnions 10 axially through balls 15 against the off-set component element both in the directions of V-V' and H-H' and inclining the mechanism by utilizing the balls 15 as roller bearing with the trunnions 10 as rolling center against the inclination component element.

Description

【発明の詳細な説明】 本発明は回転運動をi[11!i!運動に変換する自動
調芯機構付ねし送り装置に係り、特に高度な直線位置決
め精度や、速度変動の極小な1111移動を必要とする
超精密型のねじ送り装flIK関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides rotational motion i[11! i! This invention relates to a screw feeding device with an automatic centering mechanism that converts motion into motion, and in particular to an ultra-precision screw feeding device flIK that requires high linear positioning accuracy and 1111 movement with minimal speed fluctuation.

(ロ)転運動t′直線運動に変換するねじ送り装置の一
例として、第1図ないし第2図に示すようなものかある
(b) An example of a screw feeding device that converts rolling motion t' into linear motion is shown in FIGS. 1 and 2.

ここに示すねじ送り装[はモータ1などからの回転運動
により送りねじ2を回し、送りねじ2のねじ擲に係合し
た送りナツト3を(ロ)転方向に拘束することにより、
送りナツト3が送りねじ2の回転軸中心[E −F’力
方向移動するようにしたものである。
The screw feed device shown here rotates the feed screw 2 by rotational motion from a motor 1 or the like, and restrains the feed nut 3 engaged with the screw thread of the feed screw 2 in the (b) rotation direction.
The feed nut 3 is configured to move in the force direction of the center of the rotation axis of the feed screw 2 [E-F'.

この場合、送りナツト3の回転方向拘束と、こねに伴う
軸方向移動を案内するために、スライタ。
In this case, the slider is used to constrain the rotational direction of the feed nut 3 and to guide the axial movement associated with kneading.

4およびガイドレール5による案内機*’i配設し、ロ
ーラ6などの転動体で負荷抵抗力全減少させること等も
必要に応じて採用されている。
4 and guide rails 5, and rolling elements such as rollers 6 to completely reduce the load resistance force are also adopted as necessary.

このようなねじ送り装置においては、送りナツト3の移
動方向F −F’とガイド機構の案内方向GHG’H(
水平方向)、およびGv  G’v  (垂直方向)が
合致しないと、第3図ないし第6図に示すことく、ねじ
送り機S特有のピッチ誤差および負荷トルクの変動を生
じる。
In such a screw feeding device, the moving direction F - F' of the feeding nut 3 and the guiding direction GHG'H (
If Gv G'v (horizontal direction) and G'v (vertical direction) do not match, pitch errors and load torque fluctuations peculiar to the screw feeder S will occur, as shown in FIGS. 3 to 6.

こtは、第3図に示す如く、送りナツト3の直線移動方
向F−F’の主たる運動成分に対するラジアル方向の好
ましくない動作成分に起因する。このラジアル方向動作
は、水平方向H−H’と撫直方向v−v’共、送りねじ
中心F −F’と案内方向G −aとのずれに起因する
This is caused by an undesirable motion component in the radial direction relative to the main motion component in the linear movement direction FF' of the feed nut 3, as shown in FIG. This radial direction movement is caused by the deviation between the feed screw center F-F' and the guide direction G-a in both the horizontal direction H-H' and the straightening direction v-v'.

すなわち、第4図ないし第5図に示すととく、案内方向
G −G”k理想的直線と仮定すると、送りねじ2の取
付誤差圧より#4図に示す傾斜状態、および送りねじ2
の軸回り(真直度)により第5図に示す湾曲状態でねじ
送りか行われる。この時、送りナツト3はスライタ4と
一体となるごとく動作するので、送りねじ2と送りナツ
ト3の保合状態に変化が生じる。
That is, as shown in Figs. 4 and 5, assuming that the guiding direction G - G''k is an ideal straight line, the mounting error pressure of the feed screw 2 causes the inclined state shown in Fig. #4 and the feed screw 2.
The screw is fed in the curved state shown in FIG. 5 depending on the axis (straightness) of the screw. At this time, since the feed nut 3 operates as if it were integrated with the sliver 4, a change occurs in the state of engagement between the feed screw 2 and the feed nut 3.

その結果、案内方向G−G’と直線等動方向F−1vの
芯ずれ蓋eによる章−ピッチ誤差、および傾斜θによる
累積ピッチ誤差が生じる。送りねじ2の回転数Hに対す
る送りナツト3の直線移動量S金弟6図にボす。従って
、第1図ないし第2図にπくす送りねじ装置VCおいて
、送りねじ2の軸芯F−)7と案内方向G−G’をμm
オーダー以下で合致させることは個々の部品精度のレベ
ルから困難を伴う。
As a result, a pitch error due to the misaligned lid e in the guide direction GG' and the linear motion direction F-1v and an accumulated pitch error due to the inclination θ occur. The amount of linear movement S of the feed nut 3 relative to the rotational speed H of the feed screw 2 is shown in Figure 6. Therefore, in Figs. 1 and 2, in the π Kusu feed screw device VC, the axis F-)7 of the feed screw 2 and the guiding direction G-G' are set in μm.
Matching below the order is difficult due to the level of accuracy of each individual part.

そこで、この樵の超梢密な自動調芯目的のために、通常
、@7図ないし第10図に示すように、送りナンド3を
過拘束しない手段が従来から用いらtlている。
Therefore, for the purpose of ultra-tight self-alignment of the woodcutter, a means has conventionally been used that does not over-restrict the feeding pad 3, as shown in FIGS. 7 to 10.

これらの図において、第7図ないし第8図に示すものは
ガイドレール5に対する送りナツト3の1ρ)り止め機
態を2個の支持ローラ7により行うもので、第8図rt
第7図に対する平面図である。この従来技術は、支持【
」−ラフを保持すね根ばね8のばね定数が送り方向の剛
性に影響することと、送りナツト3に′コニカルな力が
作用するので軽負荷の用途に用いられる。
In these figures, the one shown in FIGS. 7 to 8 is one in which the mechanism for preventing the feed nut 3 from sticking to the guide rail 5 is performed by two support rollers 7, and the one shown in FIG.
FIG. 7 is a plan view of FIG. 7; This conventional technology supports [
- The spring constant of the shank spring 8 that holds the roughness affects the rigidity in the feed direction, and a conical force acts on the feed nut 3, so it is used for light load applications.

第9図ないし第10図に示すものは送りナツト31rト
ラニオン構造で支持するものであり、第10図は第9図
に対する平面図である。この従来技術Vま、トラニオン
ビン10か水平方向H−H’に内d設されているので、
案内方向(水平)GM  (J’Hに対する送りねじ2
の軸芯(水平)FiF′aの芯すれ1°eと、案内方向
(垂If ) Gv−αHに対する送りねじ2の軸芯(
垂1flL) Fv  F’yiQ)#I斜量Qに対応
した過拘束を防止することができ、2伽のトラニオンビ
ン10の中心か送りナツト3の中心になるよう配設され
るたぬにナツトホルダ11が送りナツト3の中心を保持
する形となり、送りナツト3にコニカルな刀が作用しな
い特歇を有する。
The one shown in FIGS. 9 and 10 is supported by the feed nut 31r trunnion structure, and FIG. 10 is a plan view of FIG. 9. In this prior art V, since the trunnion bin 10 is installed in the horizontal direction H-H',
Guide direction (horizontal) GM (Feed screw 2 for J'H
The axial center (horizontal) of the feed screw 2 with respect to the center deviation 1°e of the axis (horizontal) and the guiding direction (vertical If) Gv-αH (
1flL) Fv F'yiQ) #I It is possible to prevent over-restriction corresponding to the slope amount Q, and the dog nut holder is arranged so that it is located at the center of the two trunnion bins 10 or the center of the feed nut 3. 11 is shaped to hold the center of the feed nut 3, and has a special spacing that prevents the conical sword from acting on the feed nut 3.

しかしなから、トラニオンビン10のはめ合いすきまに
より、送り方向に不感帯の生ずる恐れがある。
However, due to the fitting clearance of the trunnion bin 10, a dead zone may occur in the feeding direction.

すなわち、第9図に示すととく、トラニオンビン10と
ナンドホルダ11の保合穴にすきtqt有するので、送
り方向の遊びが生ずる。
That is, as shown in FIG. 9, since there is a clearance tqt between the retaining holes of the trunnion bin 10 and the Nand holder 11, play in the feeding direction occurs.

本発明の1的は、前述した従来技術の有する間亀点會解
消し、送り方向と案内方向の誤差に影響されない精密な
自動調芯様構付ねじ送り装置1i−提供するにある。
One object of the present invention is to provide a screw feeding device 1i with a self-aligning structure that is precise and unaffected by errors in the feeding direction and the guiding direction, and which eliminates the disadvantages of the prior art described above.

本発明は、回転運動をm線運動罠変換する手段として送
りねじ機構を用い、送りナツトの支持にトラニオン機s
を用い、直交する回転軸08.θアの回転機能に710
え、0xおよびθ、の軸方向移動が可能な構造とし、さ
らに、トラニオンビンと係合穴の間に複数個の球を配役
したものである。
The present invention uses a feed screw mechanism as a means for converting rotational motion into m-line motion, and uses a trunnion machine to support the feed nut.
using orthogonal rotation axes 08. 710 for rotation function of θa
Furthermore, it has a structure that allows axial movement of 0x and θ, and furthermore, a plurality of balls are arranged between the trunnion bin and the engagement hole.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

まず最初に本発明の基本要素となるトラニオン機構の構
成と作用を第11図を用いて説明する。
First, the structure and operation of the trunnion mechanism, which is a basic element of the present invention, will be explained using FIG. 11.

トラニオン機構そのものは、羅針儀などのように、直交
する回転軸01.θアの性質を利用して、2次冗平面に
対する任意の傾斜角度を得るために従来から用いられて
いる技術である。
The trunnion mechanism itself has two orthogonal rotational axes 01., like a compass. This is a technique that has been conventionally used to obtain an arbitrary inclination angle with respect to a secondary redundant plane by utilizing the property of θa.

第11図において、角度移動子12に一対のトラニオン
ビン10を配設し、このトラニオンビン10に係合する
穴を有し、かつ保合穴に対して直交する位首にさらにも
う一対のトラニオンビン10を配設した内ホルダ13を
配設し、このトラニオンビン10に係合する穴を有した
外ホルダ14を配設する。
In FIG. 11, a pair of trunnion pins 10 are disposed on the angle shifter 12, and the trunnion pin 10 has a hole that engages with the trunnion pin 10, and another pair of trunnions is provided at a position perpendicular to the retaining hole. An inner holder 13 with a bin 10 disposed thereon is disposed, and an outer holder 14 having a hole that engages with the trunnion bin 10 is disposed.

この場合、角度移動子12は内ホルダ13に対しθア方
向を回転軸とした傾斜か可能であり、内ホルダ13は外
ホルダ14に対しθア方向を回転軸とした#l斜をする
ので、結果的に、角度移動子12はUyと08のそれぞ
れを回転軸とE7た傾斜かEJ能となり、2次元平面に
対する任意角度に移動することかできる。
In this case, the angle mover 12 can tilt with respect to the inner holder 13 with the rotation axis in the θA direction, and the inner holder 13 can tilt with the rotation axis in the θA direction with respect to the outer holder 14. As a result, the angle mover 12 has an inclination or EJ function with each of Uy and 08 as the rotation axis and E7, and can be moved to any angle with respect to the two-dimensional plane.

次に、前記したトラニオン機構を送りナツト3の保持機
能と17て用いる九めに必要なことからについて第12
図ないし第16図を用いて説明する。
Next, we will discuss the 9th and 12th requirements for using the above-mentioned trunnion mechanism with the holding function of the feed nut 3.
This will be explained using FIGS. 16 to 16.

着す従来からのトラニオン機構は0□と0ア軸のそt[
ぞれ會中心とした傾斜機能を用いたものであるが、こわ
を送りナツト3の保持機能として用いるためには、前記
した傾斜機能のほかに、θ8および0アの軸方向に移動
できる芯ずれ機能が必要となる。
The conventional trunnion mechanism that attaches is the 0□ and 0a axis.
Each of these uses a tilting function centered on the shaft, but in order to use the stiffness as a holding function for the feed nut 3, in addition to the tilting function described above, a misalignment that can be moved in the axial direction of θ8 and 0a is required. functionality is required.

そこで本発明では送りナツト3と内ホルダ13の間、お
よび内ホルダ13と外ホルダ14の関に軸方向移動か可
能なすきまを設ける。
Therefore, in the present invention, gaps are provided between the feed nut 3 and the inner holder 13 and between the inner holder 13 and the outer holder 14 to allow for axial movement.

次に、第11図におけるトラニオンビンlOと係合穴と
のすきまqがあると、送りねじ機構において1ま送り方
向の遊びとなり、位置決hlllJQl上の不感帯とな
るので、すきまqのないビン係合手段か必要である。そ
こで、本発明ではトラニオンビン10と保合穴の間に球
15を介在させる。
Next, if there is a gap q between the trunnion pin lO and the engagement hole in Fig. 11, there will be play in the feed direction in the feed screw mechanism, which will create a dead zone on the positioning hllllJQl. Some means of integration are necessary. Therefore, in the present invention, a ball 15 is interposed between the trunnion bottle 10 and the retaining hole.

球15は第13図に示すことく、リテーナ16で保持し
たものを直接用いたり、第14図に示すことく、リテー
ナ16に入った球15をハウジング17で包んだ状態で
用いたり、第15図に示すごとく、リテーナ16’を使
用せず、循環式のハウジング17内に球15を入れて用
いる場合など、そfi+:r+−の球15の保持方式の
特失に対する周囲材質や予圧の程度さらには要求精度レ
ベルに応じて選択する。
As shown in FIG. 13, the ball 15 can be used directly while being held in a retainer 16, or as shown in FIG. As shown in the figure, when the ball 15 is placed in a circulation type housing 17 without using the retainer 16', the surrounding material and the degree of preload are affected by the special characteristics of the holding method of the ball 15 in the case of fi+:r+-. Furthermore, it is selected depending on the required accuracy level.

第16図は本発明の原理構成を示すものである。FIG. 16 shows the basic configuration of the present invention.

第16図において、送りナツト3に一対のトラニオンビ
ン10t−配設し、このトラニオンビン10に係合する
穴を有し、かつ係合穴に対して直交する表置にさらにも
う一対のトラニオンビン10を配設した内ホルタ−13
1に配設し、このトラニオンビン10に係合する穴を有
した外ホルダ14を配設する。さらに、送りナツト3と
内ホルダ13の間、および内ホルダ13と外ホルダ14
の間に軸方向移動が可動なすきまを設けると同時に、前
記二対のトラニオンビン10とそれぞれの保合穴との間
に球15をラジアル方向にすきまなく介在させる。
In FIG. 16, a pair of trunnion bins 10t are disposed on the feed nut 3, have a hole that engages with the trunnion bin 10, and another pair of trunnion bins are disposed perpendicularly to the engaging hole. Inner Holter 13 with 10 installed
1, and an outer holder 14 having a hole that engages with the trunnion bin 10 is provided. Further, between the feed nut 3 and the inner holder 13, and between the inner holder 13 and the outer holder 14,
At the same time, a ball 15 is interposed between the two pairs of trunnion bins 10 and their respective retaining holes without a gap in the radial direction.

これにより、案内方向G−G’と送りねじの軸芯F −
F’のずれに対する自動調芯の機能はv −v’および
H−H’方向共に、芯ずれCの要素に対してはトラニオ
ンビン10の軸方向に球15を介してころがり移動し、
傾斜θの要素に対してはトラニオンビン10を中心とし
た球15をころがり軸受として傾斜することにより成立
する。
As a result, the guiding direction G-G' and the axis of the feed screw F -
The self-alignment function for the misalignment of F' includes rolling movement via the ball 15 in the axial direction of the trunnion bin 10 for the element of misalignment C in both the v-v' and H-H'directions;
The element of inclination θ is realized by inclining the ball 15 centered on the trunnion bin 10 as a rolling bearing.

第17図ないし第19Fi、本発明の具体的な一実施例
を示す一連の第3角法投影図でるる。
Figures 17 to 19Fi are a series of third angle projection views showing a specific embodiment of the present invention.

本実施例は、送りねじとしてボールねじ18t−使用す
ると共に、ボールナツト19を対(ダブル)で使用し、
間座20で予圧をセットする。間座20に一対のトラニ
オンビン10を配設し、このトラニオンビン10にリテ
ーナ16付きの球15を介在させた係合穴を有し、かつ
係合穴に対して直交する位置にさらにもう一対のトラニ
オンビン10を配設した内ホルダA21と内ホルダB2
2を有し、内ホルダA21と内ホルダB22は球15を
組込後、位置決めビン23とねじで結合する。さらに内
ホルダA21に配設した一対のトラニオンビン10にリ
テーナ16付きの球15を介在させた状態で一対の分割
形ソトホルダ24を組込み、自NJJ調芯機構を形成す
る。
In this embodiment, a ball screw 18t is used as a feed screw, and a ball nut 19 is used in pairs (double).
Preload is set using the spacer 20. A pair of trunnion pins 10 are arranged in the spacer 20, and the trunnion pins 10 have an engagement hole in which a ball 15 with a retainer 16 is interposed, and another pair is provided at a position orthogonal to the engagement hole. Inner holder A21 and inner holder B2 in which the trunnion bin 10 of
2, and the inner holder A21 and the inner holder B22 are connected to the positioning pin 23 with screws after the ball 15 is assembled therein. Furthermore, a pair of split-type soto-holders 24 are assembled into a pair of trunnion bins 10 disposed in the inner holder A21 with balls 15 with retainers 16 interposed therebetween, thereby forming a self-NJJ alignment mechanism.

さらに分割形ソトホルダ24をスライダ4に取付け、ス
ライダ4はガイドレール5の間のローラーガイド25に
より軸方向移動を案内する。
Furthermore, a split type sotoholder 24 is attached to the slider 4, and the slider 4 is guided in its axial movement by a roller guide 25 between the guide rails 5.

以−Fの構成により、モータ1の回転が軸継手26を介
してボールねじ18に伝達され、ボールねじ18は軸受
27で支持されて回転するのでボールナツト19か軸方
向へ移動する。
With the configuration described below, the rotation of the motor 1 is transmitted to the ball screw 18 via the shaft joint 26, and the ball screw 18 is supported by the bearing 27 and rotates, so that the ball nut 19 moves in the axial direction.

以上の説明から明らかなごとく、本発明によれば、 (1)案内方向と送りねじ軸方向に芯ずねや傾斜の形状
的岨差かあっても、送りナツトを過拘束することなく円
滑な送りか得られる。すなわち、自動調芯機能が実現で
きる。
As is clear from the above explanation, according to the present invention, (1) Even if there is a difference in the shape of the center spring or inclination in the guiding direction and the axial direction of the feed screw, the feed nut can be smoothly tightened without being overly constrained. You can only get the shipping. In other words, an automatic alignment function can be realized.

(2)  ころかり軸受に予圧をつけることにより、送
り方向に遊びか生じない。すなわち、不感帯防止機能が
実現できる。
(2) By applying preload to the roller bearing, only play occurs in the feed direction. In other words, a dead zone prevention function can be realized.

(3)送りナツトの中心に負荷がかかるので、送りナツ
トにコニカルな外力が作用しない。すなわち、ねじ中心
への負向の印加作用が実現できる。などの効果會有する
ので、精密な直線送り機能を得ることができる。
(3) Since the load is applied to the center of the feed nut, no conical external force acts on the feed nut. That is, it is possible to realize a negative application action to the center of the screw. As it has the following effects, it is possible to obtain a precise linear feed function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第2図は従来のねじ送り装置の一般的構成
を示す概略図、第3図ないし第6図は従来のねし送り装
置の誤差要因を示す説明図、第7図ないし第8図は従来
技術の一例を示す一対の第3角法投影図、第9図ないし
第10図は従来技術の他の例會示す一対の第3角法投影
図、第11図ないし第15図は本発明の要部を示す説明
図、第16図は本発明の基本構成を示す一部断面図、第
17図ないし第19図は本発明の一実施例を示す一対の
第3角法投影図である。 1・・・モータ、2・・・送りねじ、3・・・送りナツ
ト、10・・・トラニオンビン、13・・・内ホルダ、
14・・・外ホルダ、15・・・球、16・・・リテー
ナ、17・・・ハウジング、21.22・・・内ホルダ
、23・・・位置決手 l 国 茅4− 目 茅j 図 R 第 17 1!! 第 78 国
Figures 1 and 2 are schematic diagrams showing the general configuration of a conventional screw feeding device, Figures 3 through 6 are explanatory diagrams showing error factors of the conventional screw feeding device, and Figures 7 and 8 are The figure is a pair of third angle projection views showing an example of the prior art, Figures 9 to 10 are a pair of third angle projection views showing other examples of the prior art, and Figures 11 to 15 are the main FIG. 16 is a partial sectional view showing the basic configuration of the invention, and FIGS. 17 to 19 are a pair of third angle projection views showing an embodiment of the invention. be. DESCRIPTION OF SYMBOLS 1... Motor, 2... Feed screw, 3... Feed nut, 10... Trunnion bin, 13... Inner holder,
14...Outer holder, 15...Ball, 16...Retainer, 17...Housing, 21.22...Inner holder, 23...Positioning lever R No. 17 1! ! 78th country

Claims (1)

【特許請求の範囲】 1、回転運動を直線運動に変換するねじ送り装置におい
て、送りナットヲジンノ(ル機構で支持し、1電文する
Q、およびQア軸の回転作用に加え% Q KおよびQ
、軸の軸方向にも移動可能になるような軸方向すきまを
設は念こと1に特徴とする自動調芯機構付ねじ送り装置
。 2、回転運動を直線運動に変換するねじ送り装置におい
て、送りナツトの支持手段として送りナツトと内ホルダ
、および外ホルダを支持ヒ゛ンと支持穴とで連結するジ
ンバル機構を用い、かつ該支持ビンと支持穴の間して球
を介在させたことを%像とする自動調芯機構付ねじ送り
装置。
[Claims] 1. In a screw feed device that converts rotational motion into linear motion, the feed nut is supported by a screw mechanism, and in addition to the rotational action of the Q and Q axes, % Q K and Q are used.
1. A screw feeding device with an automatic centering mechanism, which is characterized by: (1) providing an axial clearance to enable movement in the axial direction of the shaft; 2. In a screw feeding device that converts rotational motion into linear motion, a gimbal mechanism that connects the feeding nut, an inner holder, and an outer holder with a support pin and a support hole is used as a support means for the feed nut, and the support bin and A screw feeding device with a self-aligning mechanism that uses a ball interposed between support holes.
JP6869382A 1982-04-26 1982-04-26 Screw feed controlling device equipped with self-aligning mechanism Pending JPS58187642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6869382A JPS58187642A (en) 1982-04-26 1982-04-26 Screw feed controlling device equipped with self-aligning mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6869382A JPS58187642A (en) 1982-04-26 1982-04-26 Screw feed controlling device equipped with self-aligning mechanism

Publications (1)

Publication Number Publication Date
JPS58187642A true JPS58187642A (en) 1983-11-01

Family

ID=13381090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6869382A Pending JPS58187642A (en) 1982-04-26 1982-04-26 Screw feed controlling device equipped with self-aligning mechanism

Country Status (1)

Country Link
JP (1) JPS58187642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127819U (en) * 1984-02-08 1985-08-28 日本軽金属株式会社 Work positioning device
JPS60127818U (en) * 1984-02-08 1985-08-28 日本軽金属株式会社 Feeding device for stoppers for processing machines
JPS6434634A (en) * 1987-07-29 1989-02-06 Okuma Machinery Works Ltd Feed mechanism free from influence of deviation of feed screw

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1165492A (en) * 1967-03-13 1969-10-01 Bunker Ramo An Apparatus for Coupling a Driving Means to a Movable Member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1165492A (en) * 1967-03-13 1969-10-01 Bunker Ramo An Apparatus for Coupling a Driving Means to a Movable Member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127819U (en) * 1984-02-08 1985-08-28 日本軽金属株式会社 Work positioning device
JPS60127818U (en) * 1984-02-08 1985-08-28 日本軽金属株式会社 Feeding device for stoppers for processing machines
JPH0340508Y2 (en) * 1984-02-08 1991-08-26
JPS6434634A (en) * 1987-07-29 1989-02-06 Okuma Machinery Works Ltd Feed mechanism free from influence of deviation of feed screw

Similar Documents

Publication Publication Date Title
US6196138B1 (en) Movable table unit
US3464283A (en) Gimballing means for a movable carriage
JPH0249527Y2 (en)
JPS5943218A (en) Roller bearing movably supporting part in longitudinal direction
KR102593405B1 (en) Cam device
US7891111B2 (en) Goniometer
US5533417A (en) Leadscrew assembly
JPH1026133A (en) Bearing device
US4302981A (en) Longitudinal drive mechanisms
JPS58187642A (en) Screw feed controlling device equipped with self-aligning mechanism
US4515416A (en) Linear slide bearing
US7050226B2 (en) Play-free rotary mounting
JP3141994B2 (en) Spherical bearing
US3331575A (en) Precision positioning system
JP2006220174A (en) Double row ball bearing
JPH1113750A (en) Three-point contact ball bearing
US4872358A (en) Driving mechanism having a pressure member
JPS6146258B2 (en)
JPS5939027A (en) Precision xy stage
JPH0864661A (en) X-y stage and charged particle beam aligner
JP3219170B2 (en) Linear guide bearing
US3336090A (en) Machine assembly
JP2005221044A (en) Angle adjusting device
JPH08184360A (en) Frictional forward and backward movement drive device
JP3186188B2 (en) Table feeder