JPH1113750A - Three-point contact ball bearing - Google Patents

Three-point contact ball bearing

Info

Publication number
JPH1113750A
JPH1113750A JP9187210A JP18721097A JPH1113750A JP H1113750 A JPH1113750 A JP H1113750A JP 9187210 A JP9187210 A JP 9187210A JP 18721097 A JP18721097 A JP 18721097A JP H1113750 A JPH1113750 A JP H1113750A
Authority
JP
Japan
Prior art keywords
contact
angle
steel ball
point
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9187210A
Other languages
Japanese (ja)
Inventor
Chuichi Sato
忠一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP9187210A priority Critical patent/JPH1113750A/en
Publication of JPH1113750A publication Critical patent/JPH1113750A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/10Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • F16C2240/34Contact angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/064Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with two rows of balls, one on each side of the rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-point contact ball bearing to provide an increased life in relation to precision. SOLUTION: A radial ball bearing consists of a three-point contact ball bearing 10, and the radial ball bearing is provided with a steel ball 1 held between outer and inner rings 2 and 3. An orbit groove 2a formed in an arcuate shape with a radius r0 in cross section is formed in the outer ring 2, and an orbit groove 3a formed in the shape of a Gothic arc in cross section is formed in the inner ring 3. The steel ball 1 is held between the outer and inner rings 2 and 3 such that the steel ball makes contact with the orbit groove 2a of the outer ring 2 at one point Po and with the orbit groove 3a of the inner ring at two points Pi1 and Pi2 . The contact angle of the steel ball 1 with the outer ring 2 is an angle α. One of the contact angles of the inner ring 3 of the steel ball 1 with two points Pi1 and Pi2 is an angle α-β obtained by subtracting a given angle β from a contact angle α. The other contact angle is an angle α+β obtained by adding the given angle β to the contact angle α.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼球が外輪、内輪
の各軌道輪の内の一方の軌道輪に対し一点で接触するよ
うにかつ他方の軌道輪に対し二点で接触するように各軌
道輪間に保持されている三点接触玉軸に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel ball having an outer ring and an inner ring which are in contact with one of the races at one point and with the other at two points. The present invention relates to a three-point contact ball shaft held between races.

【0002】[0002]

【従来の技術】一般に、玉軸受は、外輪、内輪、および
それらの間に保持されている鋼球から構成されている。
この玉軸受の一例としてはラジアル玉軸受があり、ラジ
アル玉軸受においては、通常、鋼球が外輪、内輪のそれ
ぞれに対し一点で接触しながら回転(公転、自転)する
ことにより、外輪と内輪とが相対的に回転するように構
成されている。
2. Description of the Related Art In general, a ball bearing comprises an outer ring, an inner ring, and steel balls held between them.
As an example of this ball bearing, there is a radial ball bearing. In a radial ball bearing, usually, a steel ball rotates (revolution, rotation) while contacting each of an outer ring and an inner ring at one point, thereby forming an outer ring and an inner ring. Are configured to relatively rotate.

【0003】このラジアル玉軸受の構成について図11
ないし図13を参照しながら説明する。図11は従来の
玉軸受の構成を示す図、図12は図11のラジアル玉軸
受の正規の位置関係にあるときの鋼球と外輪、内輪との
間の接触状態を示す図、図13は図11のラジアル玉軸
受における鋼球と外輪、内輪との間で作用する摩擦力に
よる接触角αのずれを説明するための図である。
FIG. 11 shows the configuration of this radial ball bearing.
This will be described with reference to FIG. 11 is a diagram showing a configuration of a conventional ball bearing, FIG. 12 is a diagram showing a contact state between a steel ball, an outer ring, and an inner ring when the radial ball bearing in FIG. 11 is in a regular positional relationship, and FIG. FIG. 12 is a diagram for explaining a shift of a contact angle α due to a frictional force acting between a steel ball and an outer ring and an inner ring in the radial ball bearing of FIG. 11.

【0004】ラジアル玉軸受100は、図11に示すよ
うに、外輪101と、内輪102と、外輪101と内輪
102との間に保持されている鋼球1とを有し、外輪1
01は支持台に103に固定されている。これに対し、
内輪102は回転軸104に固定され、該内輪102に
は、X軸の周りに回転する回転軸104による予圧およ
び自重を含む負荷Qが掛けられている。
As shown in FIG. 11, the radial ball bearing 100 includes an outer ring 101, an inner ring 102, and a steel ball 1 held between the outer ring 101 and the inner ring 102.
Reference numeral 01 is fixed to the support 103. In contrast,
The inner ring 102 is fixed to a rotating shaft 104, and a load Q including a preload and its own weight is applied to the inner ring 102 by the rotating shaft 104 rotating around the X axis.

【0005】外輪101には、図12に示すように、半
径ro の円弧状の断面形状を有する軌道溝101aが形
成され、この軌道溝101aの径は直径Do に設定され
ている。内輪102には半径ri の円弧状の断面形状を
有する軌道溝102aが形成され、この軌道溝102a
の径は直径Di に設定されている。鋼球1は直径dを有
する球体からなり、該球体は外輪101の軌道溝101
a、内輪102の軌道溝102aのそれぞれに対し一点
で接触するように外輪101と内輪102との間に保持
されている。
As shown in FIG. 12, a raceway groove 101a having an arc-shaped cross section with a radius ro is formed in the outer race 101, and the diameter of the raceway groove 101a is set to a diameter Do. A raceway groove 102a having an arc-shaped cross section with a radius ri is formed in the inner ring 102. The raceway groove 102a
Is set to the diameter Di. The steel ball 1 is composed of a sphere having a diameter d.
a, is held between the outer ring 101 and the inner ring 102 so as to contact each of the raceway grooves 102a of the inner ring 102 at one point.

【0006】鋼球1の外輪101、内輪102に対する
接触角は角度αであり、この接触角αは、鋼球1、外輪
101間の接触点Po と鋼球1の中心点Os とを結ぶ直
線と、鋼球1の中心点Os を通りX軸に直交するY軸と
が成す角度である。同様に、鋼球1、内輪102間の接
触点が点Pi とY軸とが成す角度はこの接触角αにな
る。この接触角αは外輪101の軌道溝101aの直径
Do と内輪102の軌道溝102aの直径Di とで決定
される。本図から分かるように、外輪101の軌道溝1
01aとの接触点Po から鋼球1の中心点Os を通り内
輪102の軌道溝102aとの接触点Pi を結ぶ直線l
上には各軌道溝101a,102aの断面中心が位置
し、このような位置関係は、正規の位置関係と呼ばれ
る。
The contact angle of the steel ball 1 with the outer ring 101 and the inner ring 102 is an angle α, and the contact angle α is a straight line connecting the contact point Po between the steel ball 1 and the outer ring 101 and the center point Os of the steel ball 1. And the Y axis passing through the center point Os of the steel ball 1 and orthogonal to the X axis. Similarly, the angle between the point Pi and the Y axis at the point of contact between the steel ball 1 and the inner ring 102 is the contact angle α. The contact angle α is determined by the diameter Do of the raceway groove 101a of the outer ring 101 and the diameter Di of the raceway groove 102a of the inner race 102. As can be seen from this figure, the raceway groove 1 of the outer race 101
A straight line l connecting the contact point Pi with the raceway groove 102a of the inner ring 102 from the contact point Po with the center ball Os of the steel ball 1 to the contact point Pi with the inner ring 102.
The center of the cross section of each of the track grooves 101a and 102a is located above, and such a positional relationship is called a normal positional relationship.

【0007】しかし、実際には、図13に示すように、
鋼球1と外輪101、内輪102との間で作用する摩擦
力により接触角αが角度Δα分ずれる。すなわち、各接
触点が点Po ,Pi が、各点Po',Pi'に移動する。こ
の接触角αが角度Δα分ずれることは、接触角αに対し
直角な方向に距離Δ分ずれたことになり、この距離Δ分
ずれた状態による各接触点Po',Pi'の位置関係を保持
しながら鋼球1は外輪101、内輪102の間に安定し
て保持されることになる。このことは鋼球1の直径dが
見掛上さらに大きい直径になることに相当し、その差分
Δdは次の(1)式により表される。
However, actually, as shown in FIG.
The contact angle α is shifted by an angle Δα due to the frictional force acting between the steel ball 1 and the outer ring 101 and the inner ring 102. That is, the points of contact Po and Pi move to the points Po 'and Pi'. The shift of the contact angle α by the angle Δα means that the contact angle α is shifted by a distance Δ in a direction perpendicular to the contact angle α, and the positional relationship between the contact points Po ′ and Pi ′ in the state shifted by the distance Δ While holding, the steel ball 1 is stably held between the outer ring 101 and the inner ring 102. This corresponds to the apparently larger diameter d of the steel ball 1, and the difference Δd is represented by the following equation (1).

【0008】 Δd=d−d´={r−(d/2)}μ2 …(1) なお、上記式中のμは、鋼球1と外輪101、内輪10
2との間の摩擦係数を示し、rは軌道溝の半径を示すも
のとする。
Δd = dd ′ = {r− (d / 2)} μ 2 (1) where μ is the steel ball 1, the outer ring 101, and the inner ring 10.
2 and r indicates the radius of the raceway groove.

【0009】例えば、軌道溝の半径rを1.06mm、
鋼球1の直径dを2.0mm、摩擦係数μを0.01〜
0.02の間の値とすると、上記(1)式により差分Δ
dは摩擦係数μが0.01〜0.02の間で6nm〜2
4nmとなる。このような範囲内にある差分Δdの値は
一般的な装置に使用する際には問題を生じないが、ハー
ドディスク装置、精密工作機械に使用する場合には、こ
れらの装置では必要精度をnmのオーダとしているの
で、上述のラジアル玉軸受を使用して数十nmのオーダ
の精度を確保することは困難である。
For example, if the radius r of the raceway groove is 1.06 mm,
The diameter d of the steel ball 1 is 2.0 mm, and the friction coefficient μ is 0.01 to
Assuming a value between 0.02, the difference Δ
d is 6 nm to 2 when the friction coefficient μ is between 0.01 and 0.02.
4 nm. The value of the difference Δd within such a range does not cause a problem when used in a general device, but when used in a hard disk device or a precision machine tool, the required accuracy of the device is nm. Since it is on the order, it is difficult to secure an accuracy on the order of several tens of nm using the above-described radial ball bearing.

【0010】そこで、上述のラジアル玉軸受に代わるも
のとして、三点接触玉軸受が考えられる。この三点接触
玉軸受は、例えば、外輪と内輪との間に鋼球を外輪に対
し一点で接触するようにかつ内輪に対し二点で接触する
ように保持するように構成されている。
Therefore, as an alternative to the above-described radial ball bearing, a three-point contact ball bearing can be considered. This three-point contact ball bearing is configured, for example, to hold a steel ball between an outer ring and an inner ring so as to contact the outer ring at one point and to contact the inner ring at two points.

【0011】この三点接触玉軸受の構成を図を参照しな
がら説明する。図14は従来の三点接触玉軸受の構成を
示す図、図15は図14の三点接触玉軸受の内輪の軌道
溝の加工方法を説明するための図である。
The structure of the three-point contact ball bearing will be described with reference to the drawings. FIG. 14 is a view showing a configuration of a conventional three-point contact ball bearing, and FIG. 15 is a view for explaining a method of machining a raceway groove of an inner race of the three-point contact ball bearing of FIG.

【0012】三点接触玉軸受200は、図14に示すよ
うに、支持台に103に固定されている外輪201と、
回転軸104に固定されている内輪202と、外輪20
1と内輪202との間に保持されている鋼球1とを有す
る。外輪201には、半径ro の円弧状の断面形状を有
する軌道溝201aが形成され、内輪102にはゴシッ
クアークの断面形状を有する軌道溝202aが形成され
ている。鋼球1は直径dを有する球体からなり、該球体
は外輪201の軌道溝201aに対し一点で接触するよ
うにかつ内輪202の軌道溝202aに対し二点で接触
するように外輪201と内輪202との間に保持されて
いる。
As shown in FIG. 14, a three-point contact ball bearing 200 includes an outer ring 201 fixed to a support table 103,
The inner ring 202 fixed to the rotating shaft 104 and the outer ring 20
1 and a steel ball 1 held between the inner ring 202. A raceway groove 201a having an arc-shaped cross section with a radius ro is formed on the outer ring 201, and a raceway groove 202a having a cross section of a Gothic arc is formed on the inner ring 102. The steel ball 1 is made up of a sphere having a diameter d. The sphere has an outer race 201 and an inner race 202 so as to contact the raceway groove 201a of the outer race 201 at one point and to contact the raceway groove 202a of the inner race 202 at two points. And is held between.

【0013】鋼球1の外輪201に対する接触角は角度
αであり、その接触点は点Po である。これに対し、鋼
球1の内輪202の2点に対する接触角の一方は角度γ
1 であり、その接触点点Pi1である。鋼球1の内輪20
2に2点に対する接触角の他方は角度γ2 であり、その
接触点は点Pi2である。
The contact angle of the steel ball 1 with the outer ring 201 is an angle α, and the contact point is a point Po. On the other hand, one of the contact angles of the steel ball 1 with respect to the two points of the inner ring 202 is the angle γ.
1 and the contact point Pi1. Inner ring 20 of steel ball 1
The other of the contact angles with respect to two points is an angle γ2, and the contact point is a point Pi2.

【0014】上述の内輪202の軌道溝202aの断面
形状を決定する方法について図15を参照しながら説明
する。
A method of determining the cross-sectional shape of the raceway groove 202a of the inner ring 202 will be described with reference to FIG.

【0015】まず、図15(a)に示すように、リング
状の2つの構成部材202bをアーバーなどのより一体
に合わせて内輪部材を形成し、この内輪部材の外周面に
対しY軸上の鋼球1の中心位置Os からΔY離れた点O
i を中心とした半径ri の円弧状の軌道溝202cが形
成される。軌道溝202cの形成後、内輪部材は各構成
部材202bに分離され、各構成部材202bの合わせ
面がそれぞれ幅ΔXc分カットされる。このカット後、
図15(b)に示すように、各構成部材202bは、再
度一体的に合わせられる。このカット後の各構成部材2
02bを一体的に合わせることによって、ゴシックアー
クの断面形状を有する軌道溝202aが形成されている
内輪202が得られる。
First, as shown in FIG. 15A, an inner ring member is formed by combining two ring-shaped components 202b more integrally with each other, such as an arbor, and the outer peripheral surface of the inner ring member is positioned on the Y axis. A point O which is ΔY away from the center position Os of the steel ball 1
An arc-shaped orbit groove 202c having a radius ri centered on i is formed. After the formation of the raceway groove 202c, the inner race member is separated into the constituent members 202b, and the mating surfaces of the constituent members 202b are cut by the width ΔXc. After this cut,
As shown in FIG. 15 (b), the respective constituent members 202b are again united together. Each component 2 after this cut
The inner race 202 having the raceway groove 202a having the cross-sectional shape of the Gothic arc is obtained by integrally combining 02b.

【0016】このように、三点接触玉軸受では、鋼球1
が外輪201の軌道溝201aに対し一点で接触するよ
うにかつ内輪202の軌道溝202aに対し二点で接触
するように外輪201と内輪202との間に保持されて
いるので、鋼球1と外輪201、内輪202との間で位
置関係が摩擦に関係なく一定に保持され、必要精度例え
ばnmのオーダの精度を容易に確保することができる。
As described above, in the three-point contact ball bearing, the steel ball 1
Is held between the outer ring 201 and the inner ring 202 so that the steel ball 1 contacts the raceway groove 201a of the outer ring 201 at one point and the raceway groove 202a of the inner ring 202 at two points. The positional relationship between the outer ring 201 and the inner ring 202 is kept constant irrespective of friction, and required accuracy, for example, accuracy on the order of nm can be easily secured.

【0017】[0017]

【発明が解決しようとする課題】しかし、上述した従来
の三点接触玉軸受では、図14に示すように、接触点P
o における接線lo (鋼球1の中心点Os と接触点Po
とを結ぶ直線に対し直角な直線)と、鋼球1と内輪20
2の軌道溝202aとの間の各接触点Pi1,Pi2を通る
直線li との交点をPoiとすると、この交点Poiは回転
中心となるX軸(回転軸)上に位置せず、この交点Poi
とX軸間のY軸に沿う方向の距離は大きい。また、各接
触点Pi1,Pi2における接線をli1,li2とすると、接
線li1と直線li とが成す角度は接触角γ1 に、接線l
i2と直線li とが成す角度は接触角γ2 にそれぞれ等し
くなり、接線li1と直線li とが成す角度および接線l
i2と直線li とが成す角度は大きくなる。よって、各接
触点Pi1,Pi2におけるすべりすなわち接触楕円内での
すべりが大きくなり、軸受寿命が短いなどの問題が生
じ、特に、ハードディスク装置、精密工作機械などに使
用する場合には、短期間に回転精度、振動精度などが低
下することが問題となる。
However, in the above-mentioned conventional three-point contact ball bearing, as shown in FIG.
The tangent line lo at o (the center point Os of the steel ball 1 and the contact point Po
), The steel ball 1 and the inner ring 20.
Assuming that the point of intersection with the straight line li passing through each of the contact points Pi1 and Pi2 between the two track grooves 202a is Poi, the point of intersection Poi is not located on the X axis (rotation axis) which is the center of rotation, and this point of intersection Poi
The distance in the direction along the Y axis between the X axis and the X axis is large. Assuming that the tangents at the contact points Pi1 and Pi2 are li1 and li2, the angle between the tangent li1 and the straight line li becomes the contact angle γ1 and the tangent l
The angle formed by i2 and the straight line li is equal to the contact angle γ2, and the angle formed by the tangent line li1 and the straight line li and the tangent line l
The angle formed by i2 and the straight line li increases. Therefore, the slip at each of the contact points Pi1 and Pi2, that is, the slip within the contact ellipse becomes large, causing problems such as a short bearing life. In particular, when used in a hard disk drive, a precision machine tool, or the like, it takes a short time. There is a problem that rotation accuracy, vibration accuracy and the like are reduced.

【0018】本発明の目的は、精度に関する寿命を長期
化することができる三点接触玉軸受を提供することにあ
る。
An object of the present invention is to provide a three-point contact ball bearing capable of extending the life with respect to accuracy.

【0019】[0019]

【課題を解決するための手段】請求項1記載の発明は、
鋼球が外輪、内輪の各軌道輪の内の一方の軌道輪に対し
一点で接触するようにかつ他方の軌道輪に対し二点で接
触するように前記各軌道輪間に保持されている三点接触
玉軸受において、前記鋼球の前記一方の軌道輪の一点に
対する接触角をαとすると、前記鋼球の前記他方の軌道
輪に対する二点の接触角の内の一方を前記接触角αに所
定角度βを加算した角度とし、該二点の接触角の他方を
前記接触角αから前記所定角度βを減算した角度とする
ことを特徴とする。
According to the first aspect of the present invention,
A steel ball is held between each of the outer and inner races so as to contact one of the races at one point and the other at two points. In the point contact ball bearing, assuming that the contact angle of the steel ball with respect to one point of the one orbital ring is α, one of two contact angles of the steel ball with respect to the other orbital ring is set as the contact angle α. The contact angle of the two points is defined as an angle obtained by adding the predetermined angle β, and the other of the two contact angles is defined as the angle obtained by subtracting the predetermined angle β from the contact angle α.

【0020】請求項1記載の三点接触玉軸受では、鋼球
の一方の軌道輪の一点に対する接触角をαとすると、鋼
球の他方の軌道輪に対する二点の接触角の内の一方を接
触角αに所定角度βを加算した角度とし、該二点の接触
角の他方を接触角αから所定角度βを減算した角度とす
るので、鋼球と他方の軌道輪との間の各接触点における
それぞれの接線と各接触点を結ぶ直線とが成す角度はそ
れぞれ小さくなり、鋼球と他方の軌道輪との間の各接触
点におけるすべりすなわち接触楕円内でのすべりが小さ
くなる。よって、従来の三点接触玉軸受に比して精度に
関する寿命を長期化することができる。
In the three-point contact ball bearing according to the first aspect of the present invention, when the contact angle of one of the steel balls with respect to one of the races is α, one of the contact angles of the steel ball with the other race is defined as one of the two contact angles. The contact angle α is obtained by adding the predetermined angle β to the contact angle α, and the other of the two contact angles is set to the angle obtained by subtracting the predetermined angle β from the contact angle α. The angles formed by the respective tangent lines at the points and the straight lines connecting the respective contact points become smaller, and the slip at the respective contact points between the steel ball and the other race, that is, the slip within the contact ellipse, becomes smaller. Therefore, the life with respect to accuracy can be extended as compared with the conventional three-point contact ball bearing.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(実施の第1形態)図1は本発明に係る三
点接触玉軸受の実施の第1形態における主要部を示す構
成図である。
(First Embodiment) FIG. 1 is a structural view showing a main part of a three-point contact ball bearing according to a first embodiment of the present invention.

【0023】三点接触玉軸受10は、図1に示すよう
に、ラジアル玉軸受を構成し、該ラジアル玉軸受は、外
輪2と、内輪3と、外輪2と内輪3との間に保持されて
いる鋼球1とを有する。外輪2には、半径ro の円弧状
の断面形状を有する軌道溝2aが形成され、内輪3には
ゴシックアークの断面形状を有する軌道溝3aが形成さ
れている。鋼球1は直径dを有する球体からなり、該球
体は外輪2の軌道溝2aに対し一点で接触するようにか
つ内輪3の軌道溝3aに対し二点で接触するように外輪
2と内輪3との間に保持されている。鋼球1の外輪2に
対する接触角は角度αであり、その接触点は点Po であ
る。この接触角αは、上述した従来のラジアル玉軸受と
同じ角度に設定されている。これに対し、鋼球1の内輪
3の2点に対する接触角の一方は接触角αから所定角度
βを減算した角度α−βであり、その接触点は点Pi1で
ある。鋼球1の内輪3の2点に対する接触角の他方は接
触角αに所定角度βを加算した角度α+βであり、その
接触点は点Pi2である。
As shown in FIG. 1, the three-point contact ball bearing 10 forms a radial ball bearing, which is held between the outer ring 2, the inner ring 3, and the outer ring 2 and the inner ring 3. Steel ball 1 having The outer race 2 has a raceway groove 2a having an arc-shaped cross section with a radius ro, and the inner race 3 has a raceway groove 3a having a Gothic arc cross-section. The steel ball 1 is made up of a sphere having a diameter d. The sphere has an outer ring 2 and an inner ring 3 which contact the raceway groove 2a of the outer ring 2 at one point and the raceway groove 3a of the inner ring 3 at two points. And is held between. The contact angle of the steel ball 1 with the outer ring 2 is an angle α, and the contact point is a point Po. The contact angle α is set to the same angle as that of the above-described conventional radial ball bearing. On the other hand, one of the contact angles of the steel ball 1 with respect to the two points of the inner ring 3 is an angle α-β obtained by subtracting a predetermined angle β from the contact angle α, and the contact point is a point Pi1. The other of the contact angles of the steel ball 1 with respect to the two points of the inner ring 3 is an angle α + β obtained by adding a predetermined angle β to the contact angle α, and the contact point is a point Pi2.

【0024】次に、所定角度βの設定方法について図2
を参照しながら説明する。図2は図1の三点接触玉軸受
における所定角度βの設定方法を説明するための図であ
る。
Next, a method of setting the predetermined angle β will be described with reference to FIG.
This will be described with reference to FIG. FIG. 2 is a diagram for explaining a method of setting the predetermined angle β in the three-point contact ball bearing of FIG.

【0025】上記所定角度βは、外輪2の倒れにより生
じる外輪2と鋼球1との位置ずれによる鋼球1の外輪2
に対する接触角αからのずれ角度をΔα´とし、鋼球1
と外輪2との間の摩擦により生じる鋼球1の位置ずれに
よる鋼球1の外輪2に対する接触角αからのずれ角度を
Δαとすると、ずれ角度Δα´とずれ角度Δαとを加算
した角度より大きくかつ可能な限り小さい角度となるよ
うに設定されている。
The predetermined angle β is determined by the position of the outer race 2 of the steel ball 1 due to the displacement between the outer race 2 and the steel ball 1 caused by the fall of the outer race 2.
The angle of deviation from the contact angle α with respect to
Assuming that the deviation angle of the steel ball 1 from the contact angle α of the steel ball 1 with the outer ring 2 due to the positional deviation of the steel ball 1 caused by the friction between the steel ball 1 and the outer ring 2 is Δα, the angle obtained by adding the deviation angle Δα ′ and the deviation angle Δα The angle is set to be large and as small as possible.

【0026】具体的には、図2に示すように、外輪2の
倒れがあると、外輪2と鋼球1との間で位置ずれが生
じ、この位置ずれにより接触角は接触角αから角度Δα
´分ずれる。この外輪2の倒れをΔθとし、鋼球1のピ
ッチ径をDp とし、鋼球1の直径をdとし、外輪2の軌
道溝2aの半径をro とすると、Δα´は次の(2)式
により算出される。
More specifically, as shown in FIG. 2, when the outer ring 2 falls down, a positional shift occurs between the outer ring 2 and the steel ball 1, and the contact angle causes the contact angle to deviate from the contact angle α. Δα
'It's off. Assuming that the inclination of the outer ring 2 is Δθ, the pitch diameter of the steel ball 1 is Dp, the diameter of the steel ball 1 is d, and the radius of the raceway groove 2a of the outer ring 2 is ro, Δα ′ is given by the following equation (2). Is calculated by

【0027】 Δα´=[Dp /{2(ro −d/2)cos α}−1]Δθ …(2) ここで、Δθ=ΔH/Dp とし、ΔHは外輪2の傾斜量
を示す。
Δα ′ = [Dp / {2 (ro−d / 2) cos α} −1] Δθ (2) where Δθ = ΔH / Dp, and ΔH indicates the amount of inclination of the outer ring 2.

【0028】また、上述した従来のラジアル玉軸受と同
様に、鋼球1と外輪2との間の摩擦により鋼球1の位置
ずれが生じ、この位置ずれにより鋼球1の外輪2に対す
る接触角は接触角αから角度Δα分ずれる。このずれ角
度Δαと、鋼球1、外輪2間の摩擦係数μとの間では、
次の(3)および(4)の関係式が成立することによ
り、ずれ角度Δαは(5)式により求められる。
Further, similarly to the above-described conventional radial ball bearing, the friction between the steel ball 1 and the outer ring 2 causes a displacement of the steel ball 1, and the displacement causes the contact angle of the steel ball 1 with the outer ring 2. Is shifted from the contact angle α by an angle Δα. Between this deviation angle Δα and the friction coefficient μ between the steel ball 1 and the outer ring 2,
By satisfying the following relational expressions (3) and (4), the shift angle Δα is obtained by the expression (5).

【0029】 tan Δα=μ …(3) Δα<<1 …(4) Δα≒μ …(5) よって、所定角度βは次の(6)式の条件を満足する中
で可能な限り小さい角度になるように設定される。
Tan Δα = μ (3) Δα << 1 (4) Δα ≒ μ (5) Therefore, the predetermined angle β is as small as possible while satisfying the condition of the following equation (6). Is set to be

【0030】 β>Δα´+Δα …(6) 例えば、鋼球1のピッチ径Dp を9.0mmとし、鋼球
1の直径dを2.0mmとし、外輪2の軌道溝2aの半
径ro を1.06mmとし、接触角αを20度とし、外
輪2の傾斜量を25μm(想定値)とすると、上記
(2)式によりずれ角度Δα´は12.6度となる。ま
た、摩擦係数μを0.1とすると、上記(5)式よりず
れ角度Δαは6度となる。よって、所定角度βは、上記
(6)式から18.6度(12.6度+6度)より大き
くかつ可能な限り小さい角度になるという条件を満足す
るように、19度に設定される。
Β> Δα ′ + Δα (6) For example, the pitch diameter Dp of the steel ball 1 is set to 9.0 mm, the diameter d of the steel ball 1 is set to 2.0 mm, and the radius ro of the raceway groove 2 a of the outer ring 2 is set to 1 0.06 mm, the contact angle α is 20 degrees, and the inclination amount of the outer ring 2 is 25 μm (estimated value), the deviation angle Δα ′ is 12.6 degrees according to the above equation (2). If the friction coefficient μ is 0.1, the deviation angle Δα is 6 degrees according to the above equation (5). Therefore, the predetermined angle β is set to 19 degrees so as to satisfy the condition that the angle is larger than 18.6 degrees (12.6 degrees + 6 degrees) and is as small as possible from the above equation (6).

【0031】次に、内輪3の軌道溝3aの断面形状を決
定するためのオフセット量の算出方法について図3を参
照しながら説明する。図3は図1の三点接触玉軸受にお
ける内輪の軌道溝の断面形状を決定するためのオフセッ
ト量の算出方法を説明するための図である。
Next, a method of calculating an offset amount for determining the sectional shape of the raceway groove 3a of the inner race 3 will be described with reference to FIG. FIG. 3 is a diagram for explaining a method of calculating an offset amount for determining the cross-sectional shape of the raceway groove of the inner ring in the three-point contact ball bearing of FIG.

【0032】内輪3の軌道溝3aは、上述したように、
鋼球1の内輪3の軌道溝3aに対する各接触角(α−
β,α+β)が得られるように、ゴシックアークの断面
形状を有する。このゴシックアークの断面形状は、図3
に示すように、半径ri の2つの円弧で規定され、この
円弧の中心位置Oi1,Oi2は、鋼球1の中心位置Os を
通りY軸に対し接触角αを成す直線ls に対しオフセッ
トされる。この円弧の中心位置Oi1,Oi2の直線ls に
対するオフセット量は、直角な方向への距離を示すオフ
セット量ΔXと、鋼球1の中心位置Os から直線ls に
沿う方向への距離を示すオフセット量ΔYとで表され、
各オフセット量ΔX,ΔYは次の(7),(8)式によ
り算出される。
As described above, the raceway groove 3a of the inner race 3
Each contact angle of the steel ball 1 with respect to the raceway groove 3a of the inner ring 3 (α-
β, α + β) so as to obtain a Gothic arc sectional shape. The cross-sectional shape of this Gothic arc is shown in FIG.
As shown in FIG. 5, the center positions Oi1 and Oi2 of the arcs are offset from a straight line ls passing through the center position Os of the steel ball 1 and forming a contact angle α with the Y axis. . The offset amounts of the center positions Oi1 and Oi2 of the arc with respect to the straight line ls are an offset amount ΔX indicating a distance in a right angle direction and an offset amount ΔY indicating a distance from the center position Os of the steel ball 1 in a direction along the straight line ls. And represented by
The offset amounts ΔX and ΔY are calculated by the following equations (7) and (8).

【0033】 ΔX=(ri −d/2)sin β …(7) ΔY=(ri −d/2)cos β …(8) 例えば、鋼球1の直径dを2.0mmとし、内輪3の軌
道溝3aの半径ri を1.06mmとし、所定角度βを
20度とすると、上記(7)式によりオフセット量ΔX
は21μmになり、上記(8)式によりオフセット量Δ
Yは56μmになる。
ΔX = (ri−d / 2) sin β (7) ΔY = (ri−d / 2) cos β (8) For example, when the diameter d of the steel ball 1 is 2.0 mm, Assuming that the radius ri of the raceway groove 3a is 1.06 mm and the predetermined angle β is 20 degrees, the offset amount ΔX is obtained by the above equation (7).
Is 21 μm, and the offset Δ
Y becomes 56 μm.

【0034】このように、各オフセット量ΔX,ΔYを
算出することによって、軌道溝3aのゴシックアークの
断面形状を規定する半径ri の2つの円弧の中心位置O
i1,Oi2が求められ、鋼球1の内輪3の軌道溝3aに対
する各接触角(α−β,α+β)が得られるゴシックア
ークの断面形状を有する軌道溝3aを形成することが可
能になる。
As described above, by calculating the offset amounts ΔX and ΔY, the center position O of two arcs having a radius ri that defines the cross-sectional shape of the Gothic arc in the track groove 3a is obtained.
i1 and Oi2 are obtained, and it becomes possible to form a raceway groove 3a having a cross-sectional shape of a Gothic arc in which each contact angle (α-β, α + β) with respect to the raceway groove 3a of the inner ring 3 of the steel ball 1 is obtained.

【0035】以上より、本実施の形態では、鋼球1が外
輪2の軌道溝2aに対し一点で接触するようにかつ内輪
3の軌道溝3aに対し二点で接触するように外輪2と内
輪3との間に保持されているので、鋼球1と外輪2、内
輪3との間で位置関係が摩擦に関係なく一定に保持さ
れ、必要精度例えばnmのオーダの精度を容易に確保す
ることができる。
As described above, in the present embodiment, the outer race 2 and the inner race 2 are so arranged that the steel ball 1 contacts the raceway groove 2a of the outer race 2 at one point and the raceway groove 3a of the inner race 3 at two points. 3, the positional relationship between the steel ball 1 and the outer ring 2 and the inner ring 3 is kept constant irrespective of friction, and it is possible to easily secure required accuracy, for example, accuracy on the order of nm. Can be.

【0036】また、鋼球1の内輪3の二点に対する接触
角の内の一方を接触角αに所定角度βを加算した角度と
し、鋼球1の内輪3に対する接触角の他方を接触角αか
ら所定角度βを減算した角度としたので、鋼球1と内輪
3との間の各接触点Pi1,Pi2におけるそれぞれの接線
li1,li2と各接触点Pi1,Pi2を結ぶ直線li とが成
す角度γ1 はそれぞれ小さくなり、鋼球1と内輪3との
間の各接触点Pi1,Pi2におけるすべりすなわち接触楕
円内でのすべりが小さくなる。よって、従来の三点接触
玉軸受に比して精度に関する寿命を長期化することがで
きる。
One of the contact angles of the steel ball 1 with respect to the two points of the inner ring 3 is defined as an angle obtained by adding a predetermined angle β to the contact angle α, and the other of the contact angles of the steel ball 1 with the inner ring 3 is defined as the contact angle α. Is the angle obtained by subtracting the predetermined angle β from the angle 、, the angle formed by the tangent lines li1 and li2 at the contact points Pi1 and Pi2 between the steel ball 1 and the inner ring 3 and the straight line li connecting the contact points Pi1 and Pi2. γ1 becomes smaller, and the slip at the contact points Pi1 and Pi2 between the steel ball 1 and the inner ring 3, that is, the slip within the contact ellipse becomes smaller. Therefore, the life with respect to accuracy can be extended as compared with the conventional three-point contact ball bearing.

【0037】さらに、所定角度βが、外輪2の倒れによ
り生じる外輪2と鋼球1とのずれによる鋼球1の外輪2
に対する接触角αからのずれ角度Δα´と、鋼球1と外
輪2との間の摩擦により生じる鋼球1の位置ずれによる
鋼球1の外輪2に対する接触角αからのずれ角度Δαと
を加算した角度より大きくかつ可能な限り小さい角度と
なるように設定されているので、鋼球1と内輪3との間
の各接触点Pi1,Pi2におけるそれぞれの接線li1,l
i2と各接触点Pi1,Pi2を結ぶ直線li とが成す角度γ
1 はさらに小さくなり、鋼球1と内輪3との間の各接触
点Pi1,Pi2におけるすべりすなわち接触楕円内でのす
べりがさらに小さくなる。
Further, the predetermined angle β is set such that the outer ring 2 of the steel ball 1
Is added to the contact angle α of the steel ball 1 with respect to the outer ring 2 due to the displacement of the steel ball 1 caused by the friction between the steel ball 1 and the outer ring 2. Are set so as to be larger than the set angle and as small as possible, so that the respective tangent lines li1, l at the respective contact points Pi1, Pi2 between the steel ball 1 and the inner ring 3 are set.
The angle γ formed between i2 and a straight line l i connecting the contact points Pi1 and Pi2.
1 is further reduced, and the slip at the contact points Pi1 and Pi2 between the steel ball 1 and the inner ring 3, that is, the slip within the contact ellipse, is further reduced.

【0038】なお、本実施の形態では、鋼球1が外輪2
の軌道溝2aに対し一点で接触するようにかつ内輪3の
軌道溝3aに対し二点で接触するように外輪2と内輪3
との間に保持されている構成を説明したが、鋼球1が外
輪2の軌道溝2aに対し二点で接触するようにかつ内輪
3の軌道溝3aに対し一点で接触するように外輪2と内
輪3との間に保持されている構成の場合においても、鋼
球1の内輪3の一点に対する接触角αに対し、鋼球1の
外輪2の二点に対する接触角の内の一方を接触角αに所
定角度βを加算した角度とし、鋼球1の外輪2に対する
接触角の他方を接触角αから所定角度βを減算した角度
とすることにより、同様の効果が得られる。
In the present embodiment, the steel ball 1 is used as the outer ring 2
Outer race 2 and inner race 3 so as to make contact with raceway groove 2a at one point and to raceway groove 3a of inner race 3 at two points.
However, the outer ring 2 is held so that the steel ball 1 contacts the raceway groove 2a of the outer race 2 at two points and the raceway groove 3a of the inner race 3 at one point. In the configuration held between the steel ball 1 and the inner ring 3, one of the contact angles of the steel ball 1 with respect to the two points of the outer ring 2 is in contact with the contact angle α of the steel ball 1 with respect to one point of the inner ring 3. A similar effect can be obtained by setting the angle obtained by adding the predetermined angle β to the angle α and setting the other of the contact angles of the steel ball 1 and the outer ring 2 to the angle obtained by subtracting the predetermined angle β from the contact angle α.

【0039】(実施の第2形態)次に、本発明の実施の
第2形態について図4を参照しながら説明する。図4は
本発明に係る三点接触玉軸受の実施の第2形態における
主要部を示す構成図である。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram showing a main part of a three-point contact ball bearing according to a second embodiment of the present invention.

【0040】本実施の形態における三点接触玉軸受20
は、図4に示すように、ラジアル玉軸受を構成し、該ラ
ジアル玉軸受では、鋼球1の外輪2の一点に対する接触
角αに対し、鋼球1の内輪3の二点に対する接触角の内
の一方を接触角αに所定角度β1を加算した角度とし、
鋼球1の内輪3に対する接触角の他方を接触角αから所
定角度β2を減算した角度とし、鋼球1と外輪2との接
触点Po における接触角αに対する接線lo と鋼球1と
内輪3との各接触点Pi1,Pi2を通る直線liとがX軸
上の同一の点で交差するように、所定角度β1と所定角
度β2とをそれぞれ設定している。
The three-point contact ball bearing 20 according to the present embodiment
Constitutes a radial ball bearing as shown in FIG. 4, in which the contact angle α of the steel ball 1 with respect to two points of the inner ring 3 of the steel ball 1 with respect to the contact angle α of the steel ball 1 with respect to one point of the outer ring 2. Is an angle obtained by adding a predetermined angle β1 to the contact angle α,
The other contact angle of the steel ball 1 with the inner ring 3 is defined as an angle obtained by subtracting the predetermined angle β2 from the contact angle α, and the tangent line lo to the contact angle α at the contact point Po between the steel ball 1 and the outer ring 2 and the steel ball 1 and the inner ring 3 The predetermined angle β1 and the predetermined angle β2 are set such that the straight lines li passing through the respective contact points Pi1 and Pi2 intersect at the same point on the X-axis.

【0041】この所定角度β1,β2の設定において
は、まず、鋼球1と外輪2との接触点Po における接触
角αに対する接線lo を図中のX,Y軸の座標系の関数
で表す。この接線lo は次の(9)式で表される。
In setting the predetermined angles β1 and β2, first, the tangent line lo to the contact angle α at the contact point Po between the steel ball 1 and the outer ring 2 is represented by a function of the coordinate system of the X and Y axes in the drawing. This tangent line lo is expressed by the following equation (9).

【0042】 Y=aX+b …(9) なお、a=−{Dp /2+d/(2cos α)} /[{Dp /(2cos α)+d/2}/sin α−Dp tan α/2] b=Dp /2+d/(2cos α) 接線lo がX軸と交差する点Poiは、上記(9)式にY
=0を代入することによって求められ、 Poi=(xp,0) xp=[{Dp /(2cos α)+d/2}/sin α−Dp tan α/2] となる。
Y = aX + b (9) where a = − {Dp / 2 + d / (2 cos α)} / [{Dp / (2 cos α) + d / 2} / sin α−Dp tan α / 2] b = Dp / 2 + d / (2cos α) The point Poi at which the tangent line lo intersects the X axis is expressed by Y in the above equation (9).
= 0, and Poi = (xp, 0) xp = [{Dp / (2 cos α) + d / 2} / sin α−Dp tan α / 2].

【0043】次いで、鋼球1と内輪3との各接触点Pi
1,Pi2をX,Y軸の座標系の座標で表し、以下のよう
に定義する。
Next, each contact point Pi between the steel ball 1 and the inner ring 3
1, Pi2 is represented by the coordinates of the coordinate system of the X and Y axes, and is defined as follows.

【0044】 Pi1=(x1,y1) Pi2=(x2,y2) ここで、x1=−dsin (α−β1)/2 y1=Dp /2−dcos (α−β1)/2 x2=−dsin (α+β2)/2 y2=Dp /2−dcos (α+β2)/2 各接触点Pi1,Pi2を通る直線li は、次の(10)式
で表される。
Pi1 = (x1, y1) Pi2 = (x2, y2) where x1 = −dsin (α−β1) / 2 y1 = Dp / 2−dcos (α−β1) / 2 x2 = −dsin ( α + β2) / 2 y2 = Dp / 2−dcos (α + β2) / 2 A straight line li passing through the contact points Pi1 and Pi2 is expressed by the following equation (10).

【0045】 Y={(y1−y2)/(x1−x2)}(X−x1)+y1…(10) 直線li が直線lo とX軸上の同一の点で交差するため
の条件、すなわち直線li が直線lo とX軸との交点P
oiを通る条件は、上記(10)式に交点Poiを代入する
ことによって得られる条件式で表され、この条件式は次
の(11)式となる。
Y = {(y1-y2) / (x1-x2)} (X-x1) + y1 (10) A condition for the straight line li to intersect with the straight line lo at the same point on the X axis, that is, a straight line li is the intersection P between the straight line lo and the X axis
The condition passing through oi is represented by a conditional expression obtained by substituting the intersection Poi into the above expression (10), and this conditional expression is the following expression (11).

【0046】 { Dp −dcos(α−β1)}{ sin(α−β1) −sin(α+β2)}d = {cos(α+β2) −cos(α−β1)}d ×[ Dp {1/(cos αsin α) −tan α} +{ sin(α−β1) −1/sin α} d] …(11) 上記(11)式において、鋼球1の直径d、鋼球1のピ
ッチ径Dp 、接触角αを定数とすると、(11)式は、
所定角度β1と所定角度β2との関係を得るための条件
式となる。また、所定角度β1と所定角度β2との間に
は、β1>β2の関係が成立する。よって、所定角度β
1,β2を決定する際には、上述の実施の第2形態にお
ける所定角度βを設定する手法を用いて所定角度β2を
まず決定し、この決定した所定角度β2を上記(11)
式に代入することによってβ1>β2の関係を満足する
ような所定角度β1を決定する手法が用いられる。
{Dp−dcos (α−β1)} {sin (α−β1) −sin (α + β2)} d = {cos (α + β2) −cos (α−β1)} d × [Dp {1 / (cos α sin α) −tan α} + {sin (α−β1) −1 / sin α} d] (11) In the above equation (11), the diameter d of the steel ball 1, the pitch diameter Dp of the steel ball 1, the contact If the angle α is a constant, the equation (11) is
This is a conditional expression for obtaining the relationship between the predetermined angle β1 and the predetermined angle β2. Further, a relationship of β1> β2 is established between the predetermined angle β1 and the predetermined angle β2. Therefore, the predetermined angle β
To determine 1, β2, the predetermined angle β2 is first determined by using the method of setting the predetermined angle β in the above-described second embodiment, and the determined predetermined angle β2 is determined by the above (11).
A method of determining a predetermined angle β1 that satisfies the relationship β1> β2 by substituting into the equation is used.

【0047】このように所定角度β1,β2が決定され
ると、決定された所定角度β1,β2から鋼球1の内輪
3の軌道溝に対する各接触角(α−β1,α+β2)が
得られるように内輪3の軌道溝におけるゴシックアーク
の断面形状が規定されることになる。
When the predetermined angles β1 and β2 are determined in this manner, the contact angles (α-β1, α + β2) of the steel ball 1 with respect to the raceway groove of the inner ring 3 are obtained from the determined predetermined angles β1 and β2. Thus, the cross-sectional shape of the gothic arc in the raceway groove of the inner ring 3 is defined.

【0048】以上より、本実施の形態では、鋼球1の外
輪2の一点に対する接触角αに対し、鋼球1の内輪2の
二点に対する接触角の内の一方を接触角αに所定角度β
1を減算した角度とし、鋼球1の内輪に3対する接触角
の他方を接触角αから所定角度β2を加算した角度と
し、鋼球1と外輪2との接触点Po における接触角αに
対する接線lo と鋼球1と内輪3との各接触点Pi1,P
i2を通る直線li とがX軸上の同一の点で交差するよう
に、所定角度β1と所定角度β2とをそれぞれ設定して
いるので、鋼球1と内輪3との間の各接触点Pi1,Pi2
におけるすべりすなわち接触楕円内でのすべりが小さく
なり、従来の三点接触玉軸受に比して精度に関する寿命
を長期化することができる。
As described above, in the present embodiment, one of the contact angles of the steel ball 1 with respect to the two points of the inner ring 2 is set to the contact angle α with respect to the contact angle α of the outer ring 2 with respect to one point. β
1 is the angle obtained by subtracting 1 and the other of the three contact angles of the steel ball 1 with the inner ring is the angle obtained by adding the predetermined angle β2 from the contact angle α, and the tangent to the contact angle α at the contact point Po between the steel ball 1 and the outer ring 2 lo, each contact point Pi1, P between steel ball 1 and inner ring 3
Since the predetermined angle β1 and the predetermined angle β2 are set so that the straight line li passing through i2 intersects at the same point on the X axis, each contact point Pi1 between the steel ball 1 and the inner ring 3 is set. , Pi2
, I.e., the slip within the contact ellipse, becomes smaller, and the life with respect to accuracy can be extended as compared with the conventional three-point contact ball bearing.

【0049】(実施の第3形態)次に、本発明の実施の
第3形態について図5を参照しながら説明する。図5は
本発明に係る三点接触玉軸受の実施の第2形態における
主要部を示す構成図である。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a configuration diagram showing a main part of a three-point contact ball bearing according to a second embodiment of the present invention.

【0050】本実施の形態における三点接触玉軸受30
は、図5に示すように、ラジアル玉軸受を構成し、該ラ
ジアル玉軸受では、鋼球1の内輪3の一点に対する接触
角αに対し、鋼球1の外輪2の二点に対する接触角の内
の一方を接触角αに所定角度β1を加算した角度とし、
鋼球1の外輪2に対する接触角の他方を接触角αから所
定角度β2を減算した角度とし、鋼球1と内輪3との接
触点Pi における接触角αに対する接線li と鋼球1と
外輪3との各接触点Po1,Po2を通る直線loとがX軸
上の同一の点Poiで交差するように、所定角度β1と所
定角度β2とをそれぞれ設定している。
The three-point contact ball bearing 30 in the present embodiment
Constitutes a radial ball bearing as shown in FIG. 5, in which the contact angle α of the steel ball 1 with respect to two points of the outer ring 2 with respect to the contact angle α of the steel ball 1 with respect to one point of the inner ring 3. Is an angle obtained by adding a predetermined angle β1 to the contact angle α,
The other contact angle of the steel ball 1 with the outer ring 2 is defined as the angle obtained by subtracting the predetermined angle β2 from the contact angle α, and the tangent line i to the contact angle α at the contact point Pi between the steel ball 1 and the inner ring 3 and the steel ball 1 and the outer ring 3 The predetermined angle β1 and the predetermined angle β2 are set so that the straight line lo passing through each of the contact points Po1 and Po2 intersects at the same point Poi on the X-axis.

【0051】本実施の形態の場合においても、上述の実
施の第2形態と同様の効果を得ることができる。
In the case of the present embodiment, the same effects as those of the above-described second embodiment can be obtained.

【0052】(実施の第4形態)次に、本発明の実施の
第4形態について図6を参照しながら説明する。図6は
本発明に係る三点接触玉軸受の実施の第4形態における
主要部を示す構成図である。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a configuration diagram showing a main part of a three-point contact ball bearing according to a fourth embodiment of the present invention.

【0053】本実施の形態における三点接触玉軸受40
は、図6に示すように、スラスト玉軸受を構成し、該ス
ラスト玉軸受では、鋼球1の外輪41の一点に対する接
触角αに対し、鋼球1の内輪42の二点に対する接触角
の内の一方を接触角αに所定角度βを加算した角度とな
るように、鋼球1の内輪42に対する接触角の他方を接
触角αから所定角度βを減算した角度となるようにそれ
ぞれ設定している。
The three-point contact ball bearing 40 in the present embodiment
Constitutes a thrust ball bearing as shown in FIG. 6, in which the contact angle α of the steel ball 1 with respect to two points of the inner ring 42 with respect to the contact angle α of the steel ball 1 with respect to one point of the outer ring 41. One of the contact angles is set to the angle obtained by adding the predetermined angle β to the contact angle α, and the other of the contact angles of the steel ball 1 to the inner ring 42 is set to the angle obtained by subtracting the predetermined angle β from the contact angle α. ing.

【0054】このように、本実施の形態では、精度に関
する寿命を長期化することができるスラスト玉軸受が得
られる。
As described above, according to the present embodiment, a thrust ball bearing can be obtained in which the life with respect to accuracy can be lengthened.

【0055】また、本実施の形態において、上述した実
施の第1形態と同様に、所定角度βを、外輪41の倒れ
により生じる外輪41と鋼球1とのずれによる鋼球1の
外輪41に対する接触角αからのずれ角度Δα´と、鋼
球1と外輪41との間の摩擦により生じる鋼球1の位置
ずれによる鋼球1の外輪41に対する接触角αからのず
れ角度Δαとを加算した角度より大きくかつ可能な限り
小さい角度となるように設定することによって、鋼球1
と内輪42との間の各接触点Pi1,Pi2におけるすべり
すなわち接触楕円内でのすべりをさらに小さくすること
ができる。
Further, in the present embodiment, similarly to the first embodiment described above, the predetermined angle β is set with respect to the outer ring 41 of the steel ball 1 due to the displacement between the outer ring 41 and the steel ball 1 caused by the fall of the outer ring 41. The deviation angle Δα ′ from the contact angle α and the deviation angle Δα from the contact angle α of the steel ball 1 with respect to the outer ring 41 due to the positional deviation of the steel ball 1 caused by friction between the steel ball 1 and the outer ring 41 are added. By setting the angle larger than the angle and as small as possible, the steel ball 1
Slip at the contact points Pi1 and Pi2 between the and the inner ring 42, that is, the slip within the contact ellipse, can be further reduced.

【0056】(実施の第5形態)次に、本発明の実施の
第5形態について図7を参照しながら説明する。図7は
本発明に係る三点接触玉軸受の実施の第5形態における
主要部を示す構成図である。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a configuration diagram showing a main part of a three-point contact ball bearing according to a fifth embodiment of the present invention.

【0057】本実施の形態では、図7に示すように、本
発明の三点接触玉軸受の原理を適用してボールねじ50
を構成し、該ボールねじ50は、ねじ軸51と、ナット
52と、ねじ軸51とナット52との間に保持されてい
る複数の鋼球1とを有する。ねじ軸51には、所定半径
の円弧状の断面形状を有する軸溝51aが形成され、ナ
ット52にはゴシックアークの断面形状を有するナット
溝52aが形成されている。鋼球1は、ねじ軸51の軸
溝51aに対し一点Po で接触するようにかつナット5
2のナット溝52aに対し二点Pi1,Pi2で接触するよ
うにナット52とねじ軸51との間に保持されている。
鋼球1のねじ軸51の軸溝51aの点Po に対する接触
角は角度αであり、鋼球1のナット52のナット溝52
aの二点Pi1,Pi2に対する接触角の内の一方は接触角
αに所定角度βを加算した角度となるように、鋼球1の
軸溝51aに対する接触角の他方は接触角αから所定角
度βを減算した角度となるようにそれぞれ設定されてい
る。
In this embodiment, as shown in FIG. 7, the ball screw 50 is applied by applying the principle of the three-point contact ball bearing of the present invention.
The ball screw 50 has a screw shaft 51, a nut 52, and a plurality of steel balls 1 held between the screw shaft 51 and the nut 52. The screw shaft 51 has a shaft groove 51a having an arc-shaped cross section with a predetermined radius, and the nut 52 has a nut groove 52a having a Gothic arc cross section. The steel ball 1 is brought into contact with the shaft groove 51a of the screw shaft 51 at one point Po and the nut 5
It is held between the nut 52 and the screw shaft 51 so as to contact the two nut grooves 52a at two points Pi1 and Pi2.
The contact angle of the shaft groove 51a of the screw shaft 51 of the steel ball 1 with respect to the point Po is an angle α, and the nut groove 52 of the nut 52 of the steel ball 1 is formed.
The other of the contact angles of the steel ball 1 with respect to the axial groove 51a is a predetermined angle from the contact angle α so that one of the contact angles with respect to the two points Pi1 and Pi2 is the angle obtained by adding the predetermined angle β to the contact angle α. Each angle is set so that the angle is obtained by subtracting β.

【0058】よって、精度に関する寿命を長期化するこ
とができるボールねじ50が得られる。
Thus, the ball screw 50 capable of extending the life with respect to accuracy can be obtained.

【0059】(実施の第6形態)次に、本発明の実施の
第6形態について図8を参照しながら説明する。図8は
本発明に係る三点接触玉軸受の実施の第6形態における
主要部を示す構成図である。
(Sixth Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a configuration diagram showing a main part in a sixth embodiment of the three-point contact ball bearing according to the present invention.

【0060】本実施の形態では、図8に示すように、本
発明の三点接触玉軸受の原理を適用してボールガイド6
0を構成し、該ボールガイド60は、軌道台61と、移
動体62と、移動体62を軌道台61に沿って案内する
ための複数の鋼球1とを有する。軌道台61にはゴシッ
クアークの断面形状を有するレール溝61aが形成さ
れ、移動体62には円弧状の断面形状を有するベアリン
グ溝62aが形成されている。鋼球1は、移動体62の
移動に応じて移動体62のベアリング溝62aと軌道台
61のレール溝61aとの間で移動体62内の循環穴6
2bを介して循環しながら回転運動をする。
In the present embodiment, as shown in FIG. 8, the ball guide 6 is applied by applying the principle of the three-point contact ball bearing of the present invention.
0, the ball guide 60 has a track 61, a moving body 62, and a plurality of steel balls 1 for guiding the moving body 62 along the track 61. A rail groove 61a having a Gothic arc cross-sectional shape is formed in the way 61, and a bearing groove 62a having an arc-shaped cross-sectional shape is formed in the moving body 62. The steel ball 1 circulates between the bearing groove 62 a of the moving body 62 and the rail groove 61 a of the track base 61 in accordance with the movement of the moving body 62.
Rotate while circulating through 2b.

【0061】鋼球1は、移動体62のベアリング溝62
aに対し一点Po でかつ軌道台61のレール溝61aに
対し二点Pi1,Pi2で接触しながら回転運動する。鋼球
1の移動体62のレール溝62aの点Po に対する接触
角は角度αであり、鋼球1の軌道台61のレール溝61
aの二点Pi1,Pi2に対する接触角の内の一方は接触角
αに所定角度βを加算した角度となるように、鋼球1の
レール溝61aに対する接触角の他方は接触角αから所
定角度βを減算した角度となるようにそれぞれ設定され
ている。
The steel ball 1 is provided in the bearing groove 62 of the moving body 62.
a and the rail groove 61a of the rail 61 at two points Pi1 and Pi2. The contact angle of the rail groove 62a of the moving body 62 of the steel ball 1 with respect to the point Po is an angle α, and the rail groove 61 of the rail 61 of the steel ball 1 is
The other of the contact angles of the steel ball 1 with respect to the rail groove 61a is a predetermined angle from the contact angle α so that one of the contact angles with respect to the two points Pi1 and Pi2 is an angle obtained by adding the predetermined angle β to the contact angle α. Each angle is set so that the angle is obtained by subtracting β.

【0062】よって、精度に関する寿命を長期化するこ
とができるボールガイド60が得られる。
Accordingly, the ball guide 60 capable of extending the life with respect to accuracy can be obtained.

【0063】なお、移動体62のベアリング溝62aに
対して二点接触としかつ軌道台61のレール溝61aに
対して一点で接触するように構成してもよい。
It should be noted that two-point contact may be made with the bearing groove 62a of the moving body 62 and that the rail groove 61a of the track base 61 may be contacted at one point.

【0064】(実施の第7形態)次に、本発明の実施の
第7形態について図9を参照しながら説明する。図9は
本発明に係る三点接触玉軸受の実施の第7形態における
主要部を示す構成図である。
(Seventh Embodiment) Next, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 9 is a configuration diagram illustrating a main part of a three-point contact ball bearing according to a seventh embodiment of the present invention.

【0065】本実施の形態では、図9に示すように、本
発明の三点接触玉軸受の原理を適用してボールガイド7
0を構成し、該ボールガイド70は、軌道台71と、移
動体72と、移動体72を軌道台71に沿って案内する
ための複数の循環列の鋼球1とを有する。軌道台71に
はゴシックアークの断面形状を有するレール溝71a,
71bが鋼球1の各循環列毎に形成され、移動体72に
は円弧状の断面形状を有するベアリング溝72a,72
bが鋼球1の各循環列毎に形成されている。
In the present embodiment, as shown in FIG. 9, the ball guide 7 is applied by applying the principle of the three-point contact ball bearing of the present invention.
0, the ball guide 70 has a track 71, a moving body 72, and a plurality of circulation rows of steel balls 1 for guiding the moving body 72 along the track 71. The rail 71 has a rail groove 71a having a Gothic arc cross-sectional shape.
71b is formed for each circulating train of the steel balls 1, and the moving body 72 has bearing grooves 72a, 72 having an arc-shaped cross section.
b is formed for each circulating train of the steel balls 1.

【0066】上段に位置する鋼球1の循環列に対して
は、レール溝71aとベアリング溝72aとが組み合わ
され、この循環列の鋼球1は、移動体72の移動に応じ
て移動体72のベアリング溝72aと軌道台71のレー
ル溝71aとの間で移動体72内の循環穴72cを介し
て循環しながら回転運動をする。下段に位置する鋼球1
の循環列に対しては、レール溝71bとベアリング溝7
2bとが組み合わされ、この循環列の鋼球1は、移動体
72のベアリング溝72bと軌道台71のレール溝71
bとの間で移動体72内の循環穴72dを介して循環し
ながら回転運動をする。
A rail groove 71a and a bearing groove 72a are combined with the circulating train of the steel balls 1 located at the upper stage, and the steel balls 1 in this circulating train move in accordance with the movement of the moving body 72. Between the bearing groove 72a and the rail groove 71a of the rail 71 while circulating through the circulation hole 72c in the moving body 72. Steel ball 1 located at the bottom
The rail groove 71b and the bearing groove 7
2b, and the steel balls 1 in the circulation train are provided with a bearing groove 72b of the moving body 72 and a rail groove 71 of the track base 71.
b) and makes a rotational movement while circulating through a circulation hole 72d in the moving body 72.

【0067】鋼球1は、移動体72のベアリング溝72
a,72bに対し一点Po でかつ軌道台71のレール溝
71a,71bに対し二点Pi1,Pi2で接触しながら回
転運動する。鋼球1の移動体72のレール溝72a,7
2bの点Po に対する接触角は角度αであり、鋼球1の
軌道台71のレール溝71a,71bの二点Pi1,Pi2
に対する接触角の内の一方は接触角αに所定角度βを加
算した角度となるように、鋼球1のレール溝71a,7
1bに対する接触角の他方は接触角αから所定角度βを
減算した角度となるようにそれぞれ設定されている。
The steel ball 1 is provided in the bearing groove 72 of the moving body 72.
It rotates while contacting at one point Po with respect to a and 72b and at two points Pi1 and Pi2 with the rail grooves 71a and 71b of the way 71. Rail grooves 72a, 7 of moving body 72 of steel ball 1
The contact angle of the point 2b with respect to the point Po is an angle α, and the two points Pi1 and Pi2 of the rail grooves 71a and 71b of the rail 71 of the steel ball 1 are shown.
One of the contact angles with respect to the rail groove 71a, 7
The other of the contact angles with respect to 1b is set to an angle obtained by subtracting a predetermined angle β from the contact angle α.

【0068】また、上段に位置する鋼球1の循環列にお
ける接触点Po は斜め上方位置に、接触点Pi1,Pi2は
斜め下方位置にそれぞれある。これに対し、下段に位置
する鋼球1の循環列における接触点Po は斜め下方位置
に、接触点Pi1,Pi2は斜め上方位置にそれぞれある。
このように、上段に位置する鋼球1の循環列における接
触点Po および接触点Pi1,Pi2と下段に位置する鋼球
1の循環列における接触点Po および接触点Pi1,Pi2
との位置関係は、移動体72の移動方向(紙面に垂直な
方向)に直交する水平方向の軸に対し対称である。よっ
て、モーメントに対する剛性は小さいが、移動体72と
軌道台71との間の干渉は非常に小さくなる。
The contact point Po in the circulating train of the steel balls 1 located at the upper stage is located diagonally upward, and the contact points Pi1 and Pi2 are located diagonally downward. On the other hand, the contact point Po in the circulating train of the steel balls 1 located at the lower stage is located diagonally below, and the contact points Pi1 and Pi2 are located diagonally above.
As described above, the contact points Po and Pi1, Pi2 in the circulation train of the steel balls 1 located in the upper stage and the contact points Po, Pi1, Pi2 in the circulation train of the steel balls 1 located in the lower stage.
Is symmetric with respect to a horizontal axis orthogonal to the moving direction of the moving body 72 (the direction perpendicular to the plane of the paper). Therefore, although the rigidity against the moment is small, the interference between the moving body 72 and the track 71 is very small.

【0069】以上より、本発明の三点接触玉軸受の原理
を適用した複数の循環列のボールガイド70を得ること
ができる。
As described above, it is possible to obtain the ball guides 70 in a plurality of circulation rows to which the principle of the three-point contact ball bearing of the present invention is applied.

【0070】なお、本実施の形態では、鋼球1が移動体
72のベアリング溝72a,72bに対し一点Po でか
つ軌道台71のレール溝71a,71bに対し二点Pi
1,Pi2で接触するようにしているが、鋼球1が軌道台
71のレール溝71a,71bに対し一点でかつ移動体
72のベアリング溝72a,72bに対し二点で接触す
るように構成することもできる。
In the present embodiment, the steel ball 1 is located at one point Po with respect to the bearing grooves 72a and 72b of the moving body 72 and at two points Pi with respect to the rail grooves 71a and 71b of the track base 71.
1 and Pi2, but the steel ball 1 contacts the rail grooves 71a and 71b of the rail 71 at one point and the bearing grooves 72a and 72b of the moving body 72 at two points. You can also.

【0071】(実施の第8形態)次に、本発明の実施の
第8形態について図10を参照しながら説明する。図1
0は本発明に係る三点接触玉軸受の実施の第8形態にお
ける主要部を示す構成図である。
(Eighth Embodiment) Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG.
0 is a configuration diagram showing a main part of an eight embodiment of a three-point contact ball bearing according to the present invention.

【0072】本実施の形態では、図10に示すように、
本発明の三点接触玉軸受の原理を適用してボールガイド
80を構成し、該ボールガイド80は、軌道台81と、
移動体82と、移動体82を軌道台81に沿って案内す
るための複数の循環列の鋼球1とを有する。軌道台81
にはゴシックアークの断面形状を有するレール溝81
a,81bが鋼球1の各循環列毎に形成され、移動体8
2には円弧状の断面形状を有するベアリング溝82a,
82bが鋼球1の各循環列毎に形成されている。
In the present embodiment, as shown in FIG.
The ball guide 80 is configured by applying the principle of the three-point contact ball bearing of the present invention, and the ball guide 80 includes a raceway 81 and
It has a moving body 82 and a plurality of circulation rows of steel balls 1 for guiding the moving body 82 along the track 81. Railway 81
Has a rail groove 81 having a Gothic arc cross-sectional shape.
a, 81b are formed for each circulating train of the steel ball 1, and the moving body 8
2, a bearing groove 82a having an arc-shaped cross section is provided.
82b is formed for each circulating train of steel balls 1.

【0073】上段に位置する鋼球1の循環列に対して
は、レール溝81aとベアリング溝82aとが組み合わ
され、この循環列の鋼球1は、移動体82の移動に応じ
て移動体82のベアリング溝82aと軌道台81のレー
ル溝81aとの間で移動体82内の循環穴82cを介し
て循環しながら回転運動をする。下段に位置する鋼球1
の循環列に対しては、レール溝81bとベアリング溝8
2bとが組み合わされ、この循環列の鋼球1は、移動体
82のベアリング溝82bと軌道台81のレール溝81
bとの間で移動体82内の循環穴82dを介して循環し
ながら回転運動をする。
A rail groove 81a and a bearing groove 82a are combined with the circulating train of the steel balls 1 located in the upper stage, and the steel balls 1 in this circulating train move in accordance with the movement of the moving body 82. Between the bearing groove 82a and the rail groove 81a of the rail 81 while circulating through the circulation hole 82c in the moving body 82. Steel ball 1 located at the bottom
The rail groove 81b and the bearing groove 8
2b, and the steel balls 1 of this circulation train are provided with a bearing groove 82b of the moving body 82 and a rail groove 81 of the track base 81.
b) and makes a rotational movement while circulating through a circulation hole 82d in the moving body 82.

【0074】鋼球1は、移動体82のベアリング溝82
a,82bに対し一点Po でかつ軌道台81のレール溝
81a,81bに対し二点Pi1,Pi2で接触しながら回
転運動する。鋼球1の移動体82のレール溝82a,8
2bの点Po に対する接触角は角度αであり、鋼球1の
軌道台81のレール溝81a,81bの二点Pi1,Pi2
に対する接触角の内の一方は接触角αに所定角度βを加
算した角度となるように、鋼球1のレール溝81a,8
1bに対する接触角の他方は接触角αから所定角度βを
減算した角度となるようにそれぞれ設定されている。
The steel ball 1 is mounted on the bearing groove 82 of the moving body 82.
a, 82b and the rail groove 81a, 81b of the track base 81 at two points Pi1, Pi2 while rotating. Rail grooves 82a, 8 of moving body 82 of steel ball 1
The contact angle of the point 2b with respect to the point Po is an angle α, and the two points Pi1 and Pi2 of the rail grooves 81a and 81b of the rail 81 of the steel ball 1 are shown.
One of the contact angles with respect to the rail groove 81a, 8 of the steel ball 1 is set to an angle obtained by adding a predetermined angle β to the contact angle α.
The other of the contact angles with respect to 1b is set to an angle obtained by subtracting a predetermined angle β from the contact angle α.

【0075】また、上段に位置する鋼球1の循環列にお
ける接触点Po は斜め下方位置に、接触点Pi1,Pi2は
斜め上方位置にそれぞれある。これに対し、下段に位置
する鋼球1の循環列における接触点Po は斜め上方位置
に、接触点Pi1,Pi2は斜め下方位置にそれぞれある。
このように、上段に位置する鋼球1の循環列における接
触点Po および接触点Pi1,Pi2と下段に位置する鋼球
1の循環列における接触点Po および接触点Pi1,Pi2
との間の位置関係は移動体82の移動方向(紙面に垂直
な方向)に直交する水平方向の軸に対し対称である。
The contact point Po in the circulating train of the steel balls 1 located at the upper stage is at the obliquely lower position, and the contact points Pi1 and Pi2 are at the obliquely upper position. On the other hand, the contact point Po in the circulating train of the steel balls 1 located at the lower stage is at an obliquely upper position, and the contact points Pi1 and Pi2 are at obliquely lower positions.
As described above, the contact points Po and Pi1, Pi2 in the circulation train of the steel balls 1 located in the upper stage and the contact points Po, Pi1, Pi2 in the circulation train of the steel balls 1 located in the lower stage.
Is symmetric with respect to a horizontal axis orthogonal to the moving direction of the moving body 82 (the direction perpendicular to the plane of the paper).

【0076】よって、モーメントに対する剛性が大きい
複数の循環列のボールガイド80が得られる。
Thus, a plurality of circulation rows of ball guides 80 having high rigidity against moment can be obtained.

【0077】なお、本実施の形態では、鋼球1が移動体
82のベアリング溝82a,82bに対し一点Po でか
つ軌道台81のレール溝81a,81bに対し二点Pi
1,Pi2で接触するようにしているが、鋼球1が軌道台
81のレール溝81a,81bに対し一点でかつ移動体
82のベアリング溝82a,82bに対し二点で接触す
るように構成することもできる。
In this embodiment, the steel ball 1 is located at one point Po with respect to the bearing grooves 82a and 82b of the moving body 82 and at two points Pi with respect to the rail grooves 81a and 81b of the rail 81.
1 and Pi2, but the steel ball 1 is configured to contact the rail grooves 81a and 81b of the rail 81 at one point and the bearing grooves 82a and 82b of the moving body 82 at two points. You can also.

【0078】[0078]

【発明の効果】以上説明したように、請求項1記載の三
点接触玉軸受によれば、鋼球の一方の軌道輪の一点に対
する接触角をαとすると、鋼球の他方の軌道輪に対する
二点の接触角の内の一方を接触角αに所定角度βを加算
した角度とし、該二点の接触角の他方を接触角αから所
定角度βを減算した角度とするので、鋼球と他方の軌道
輪との間の各接触点におけるそれぞれの接線と各接触点
を結ぶ直線とが成す角度はそれぞれ小さくなり、鋼球と
他方の軌道輪との間の各接触点におけるすべりすなわち
接触楕円内でのすべりが小さくなる。よって、従来の三
点接触玉軸受に比して精度に関する寿命を長期化するこ
とができる。
As described above, according to the three-point contact ball bearing of the first aspect, if the contact angle of one ball of the steel ball with respect to one point is α, the steel ball contacts the other ball of the other race. Since one of the two contact angles is an angle obtained by adding the predetermined angle β to the contact angle α, and the other of the two contact angles is an angle obtained by subtracting the predetermined angle β from the contact angle α, The angles formed by the respective tangent lines at the respective contact points with the other bearing ring and the straight lines connecting the respective contact points become smaller, and the slip at the respective contact points between the steel ball and the other bearing ring, that is, the contact ellipse Slip inside is reduced. Therefore, the life with respect to accuracy can be extended as compared with the conventional three-point contact ball bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る三点接触玉軸受の実施の第1形態
における主要部を示す構成図である。
FIG. 1 is a configuration diagram showing a main part in a first embodiment of a three-point contact ball bearing according to the present invention.

【図2】図1の三点接触玉軸受における所定角度βの設
定方法を説明するための図である。
FIG. 2 is a diagram for explaining a method of setting a predetermined angle β in the three-point contact ball bearing of FIG.

【図3】図1の三点接触玉軸受における内輪の軌道溝の
断面形状を決定するためのオフセット量の算出方法を説
明するための図である。
3 is a diagram for explaining a method of calculating an offset amount for determining a cross-sectional shape of a raceway groove of an inner ring in the three-point contact ball bearing of FIG. 1;

【図4】本発明に係る三点接触玉軸受の実施の第2形態
における主要部を示す構成図である。
FIG. 4 is a configuration diagram illustrating a main part of a three-point contact ball bearing according to a second embodiment of the present invention.

【図5】本発明に係る三点接触玉軸受の実施の第2形態
における主要部を示す構成図である。
FIG. 5 is a configuration diagram showing a main part of a three-point contact ball bearing according to a second embodiment of the present invention.

【図6】本発明に係る三点接触玉軸受の実施の第4形態
における主要部を示す構成図である。
FIG. 6 is a configuration diagram illustrating a main part of a three-point contact ball bearing according to a fourth embodiment of the present invention.

【図7】本発明に係る三点接触玉軸受の実施の第5形態
における主要部を示す構成図である。
FIG. 7 is a configuration diagram showing a main part of a three-point contact ball bearing according to a fifth embodiment of the present invention.

【図8】本発明に係る三点接触玉軸受の実施の第6形態
における主要部を示す構成図である。
FIG. 8 is a configuration diagram illustrating a main part of a three-point contact ball bearing according to a sixth embodiment of the present invention.

【図9】本発明に係る三点接触玉軸受の実施の第7形態
における主要部を示す構成図である。
FIG. 9 is a configuration diagram showing a main part of a three-point contact ball bearing according to a seventh embodiment of the present invention.

【図10】本発明に係る三点接触玉軸受の実施の第8形
態における主要部を示す構成図である。
FIG. 10 is a configuration diagram showing a main part of a three-point contact ball bearing according to an eighth embodiment of the present invention.

【図11】従来の玉軸受の構成を示す図である。FIG. 11 is a view showing a configuration of a conventional ball bearing.

【図12】図11のラジアル玉軸受の正規の位置関係に
あるときの鋼球と外輪、内輪との間の接触状態を示す図
である。
12 is a diagram showing a contact state between a steel ball and an outer ring and an inner ring when the radial ball bearing in FIG. 11 is in a regular positional relationship.

【図13】図11のラジアル玉軸受における鋼球と外
輪、内輪との間で作用する摩擦力による接触角αのずれ
を説明するための図である。
13 is a view for explaining a shift of a contact angle α due to a frictional force acting between a steel ball and an outer ring or an inner ring in the radial ball bearing of FIG. 11;

【図14】従来の三点接触玉軸受の構成を示す図であ
る。
FIG. 14 is a view showing a configuration of a conventional three-point contact ball bearing.

【図15】図14の三点接触玉軸受の内輪の軌道溝の加
工方法を説明するための図である。
FIG. 15 is a view for explaining a method of processing a raceway groove of an inner race of the three-point contact ball bearing of FIG. 14;

【符号の説明】[Explanation of symbols]

1 鋼球 2,41 外輪 2a,3a 軌道溝 3,52 内輪 10,20,30,40 三点接触玉軸受 50 ボールねじ 60,70,80 ボールガイド 51 ねじ軸 52 ナット 61,71,81 軌道台 62,72,82 移動体 DESCRIPTION OF SYMBOLS 1 Steel ball 2,41 Outer ring 2a, 3a Raceway groove 3,52 Inner race 10,20,30,40 Three-point contact ball bearing 50 Ball screw 60,70,80 Ball guide 51 Screw shaft 52 Nut 61,71,81 Way base 62, 72, 82 Moving object

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼球が外輪、内輪の各軌道輪の内の一方
の軌道輪に対し一点で接触するようにかつ他方の軌道輪
に対し二点で接触するように前記各軌道輪間に保持され
ている三点接触玉軸受において、前記鋼球の前記一方の
軌道輪の一点に対する接触角をαとすると、前記鋼球の
前記他方の軌道輪に対する二点の接触角の内の一方を前
記接触角αに所定角度βを加算した角度とし、該二点の
接触角の他方を前記接触角αから前記所定角度βを減算
した角度とすることを特徴とする三点接触玉軸受。
A steel ball is provided between each of the outer and inner races so that the steel ball contacts one of the races at one point and the other race at two points. In the held three-point contact ball bearing, assuming that the contact angle of the steel ball with respect to one point of the one orbital ring is α, one of two contact angles of the steel ball with respect to the other orbital ring is defined as α. A three-point contact ball bearing, wherein the contact angle α is obtained by adding a predetermined angle β, and the other of the two contact angles is obtained by subtracting the predetermined angle β from the contact angle α.
JP9187210A 1997-06-30 1997-06-30 Three-point contact ball bearing Pending JPH1113750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9187210A JPH1113750A (en) 1997-06-30 1997-06-30 Three-point contact ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9187210A JPH1113750A (en) 1997-06-30 1997-06-30 Three-point contact ball bearing

Publications (1)

Publication Number Publication Date
JPH1113750A true JPH1113750A (en) 1999-01-22

Family

ID=16202019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9187210A Pending JPH1113750A (en) 1997-06-30 1997-06-30 Three-point contact ball bearing

Country Status (1)

Country Link
JP (1) JPH1113750A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010355A1 (en) * 2007-03-03 2008-09-04 Schaeffler Kg Rolling-body bearing with multiple support of bodies to support shaft has inner connection line intersecting two contact points of inner ring
US7448806B2 (en) * 2002-02-20 2008-11-11 Nsk Ltd. Rotation support device for compressor pulley
CN101776121A (en) * 2010-03-16 2010-07-14 河南三维重工有限公司 Three-point contact thrust ball bearing and design method
DE102012205318B3 (en) * 2012-04-02 2013-10-02 Aktiebolaget Skf bearing arrangement
WO2013161566A1 (en) * 2012-04-26 2013-10-31 Thk株式会社 Rotary shaft device and vertical shaft fluid power generator
WO2019151306A1 (en) * 2018-01-30 2019-08-08 日本精工株式会社 Ball bearing
JP2020197297A (en) * 2019-06-03 2020-12-10 隆志 浜口 bearing
CN112855755A (en) * 2021-02-23 2021-05-28 青岛理工大学 Method for selecting use condition of high-speed four-point contact ball bearing
US20230008954A1 (en) * 2019-12-16 2023-01-12 Safran Helicopter Engines Three-point contact rolling bearing with improved drain

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448806B2 (en) * 2002-02-20 2008-11-11 Nsk Ltd. Rotation support device for compressor pulley
DE102007010355A1 (en) * 2007-03-03 2008-09-04 Schaeffler Kg Rolling-body bearing with multiple support of bodies to support shaft has inner connection line intersecting two contact points of inner ring
CN101776121A (en) * 2010-03-16 2010-07-14 河南三维重工有限公司 Three-point contact thrust ball bearing and design method
DE102012205318B3 (en) * 2012-04-02 2013-10-02 Aktiebolaget Skf bearing arrangement
EP2647856A3 (en) * 2012-04-02 2015-02-18 Aktiebolaget SKF Bearing assembly
WO2013161566A1 (en) * 2012-04-26 2013-10-31 Thk株式会社 Rotary shaft device and vertical shaft fluid power generator
US9657713B2 (en) 2012-04-26 2017-05-23 Thk Co., Ltd. Rotary shaft device and vertical shaft fluid power generator
WO2019151306A1 (en) * 2018-01-30 2019-08-08 日本精工株式会社 Ball bearing
JP2019132311A (en) * 2018-01-30 2019-08-08 日本精工株式会社 Ball bearing
JP2020197297A (en) * 2019-06-03 2020-12-10 隆志 浜口 bearing
US20230008954A1 (en) * 2019-12-16 2023-01-12 Safran Helicopter Engines Three-point contact rolling bearing with improved drain
CN112855755A (en) * 2021-02-23 2021-05-28 青岛理工大学 Method for selecting use condition of high-speed four-point contact ball bearing

Similar Documents

Publication Publication Date Title
JPH0132380B2 (en)
TW201819790A (en) Rolling bearing cage and rolling bearing
JPH1113750A (en) Three-point contact ball bearing
JP2011158097A (en) Self-aligning roller bearing with retainer
US7033081B2 (en) Ball bearing
US6978693B2 (en) Ball screw
WO2007063829A1 (en) Retainer for ball bearing, ball bearing, and machine tool
JP2006336752A (en) Assembling method of self-aligning roller bearing
JP2940295B2 (en) Lead screw device
US20090197687A1 (en) Constant velocity universal joint
US8029372B2 (en) Constant velocity universal joint
JPH0743487Y2 (en) Angular contact ball bearing
JPH09126233A (en) Cross roller bearing
JP2006183718A (en) Rolling bearing
JP3614602B2 (en) Roller bearing cage
JPS6311386Y2 (en)
US3438275A (en) Non-rotating tool holder or carrier for a vibrating tool
Ricci Ball bearings subjected to a variable eccentric thrust load
RU2084715C1 (en) Self-adjusting pivot device
JPH10231837A (en) Bearing and bonding device using this bearing
JP3219170B2 (en) Linear guide bearing
EP1022476A1 (en) Rolling bearing
US11493092B2 (en) Speed-reducing or -increasing apparatus
JP3186188B2 (en) Table feeder
JP2007040419A (en) Tri-port type constant velocity universal joint